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Abstract

We study predictive textures for the lepton mass matrices in which the charged-lepton mass matrix has 
either four or five zero matrix elements while the neutrino Majorana mass matrix has, respectively, either 
four or three zero matrix elements. We find that all the viable textures of these two kinds share many 
predictions: the neutrino mass spectrum is inverted, the sum of the light-neutrino masses is close to 0.1 eV, 
the Dirac phase δ in the lepton mixing matrix is close to either 0 or π , and the mass term responsible for 
neutrinoless double-beta decay lies in between 12 and 22 meV.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The origin of neutrino masses, the reasons behind their smallness, and the structure of lepton 
mixing are still unanswered questions. There has been a great deal of theoretical work in this 
area, trying to provide answers based on such diverse ideas as, for instance, seesaw mechanisms, 
radiative generation of the neutrino masses, Abelian and non-Abelian symmetries imposed on the 
leptonic sector, and ‘textures’ for the leptonic mass matrices. In the past few years, a wealth of 
experimental data concerning neutrino oscillations—in particular the recent confirmation [1–3]
of a non-zero value for the mixing angle θ13—became available, allowing theorists to test their 
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models and discard those that do not conform to the experimental discoveries. Here, we shall 
consider new textures for the leptonic mass matrices and investigate what the most recent and 
stringent phenomenological data say about them and their predictive power.

In this paper we work in the context of a model with three light neutrinos which are Majorana 
particles. The lepton mass terms are given by

Lmass = −�̄LM��R − �̄RM
†
� �L + 1

2

(
νT C−1Mνν − ν̄M∗

ν Cν̄T
)
, (1)

where C is the charge-conjugation matrix in Dirac space. The three light-neutrino fields in the 
column–vector ν are left-handed. The neutrino mass matrix Mν acts in flavour space and is 
symmetric. Let the two mass matrices be bi-diagonalized as

U
†
LM�UR = diag(me,mμ,mτ ), (2a)

UT
ν MνUν = diag(m1,m2,m3), (2b)

where UL, UR , and Uν are 3 × 3 unitary matrices. Then, the lepton mixing matrix is

U = U
†
LUν. (3)

Even though M� is more fundamental, in practice we only need to consider

H ≡ M�M
†
� , (4)

since it is its diagonalization that fixes the matrix UL which appears in U :

U
†
LHUL = diag

(
m2

e,m
2
μ,m2

τ

)
. (5)

Let Mν denote the neutrino mass matrix in the basis where the charged-lepton mass matrix is 
diagonal. Then,

Mν = UT
L MνUL. (6)

There have been many attempts at using non-Abelian symmetries to constrain lepton mixing 
[4–21]. This is usually done with the goal of obtaining ‘mass-independent schemes’, wherein 
the constraints on U do not depend on the values of the lepton masses. However, those attempts 
appear to have reached their limits [22]. A simpler avenue, at least in group-theoretical terms, 
is provided by Abelian symmetries. In appropriate bases for the lepton and Higgs fields, they 
enforce ‘texture zeros’ in the lepton mass matrices, but they cannot enforce relationships among 
their nonzero matrix elements. In the pioneering work of Ref. [23], M� was assumed to be di-
agonal, hence to have six zero matrix elements, while Mν had two zero matrix elements. This 
was later generalized to the situation wherein M� is diagonal and M−1

ν has two zero matrix el-
ements [24]; mixed situations in which both Mν and M−1

ν have one zero matrix element, while 
M� remains diagonal, were considered in Ref. [25].

In this work we propose new textures for the lepton mass matrices which are in principle as 
predictive as the ones considered in Refs. [23–25]. Let (m, n) denote a class of textures with 
m nonzero matrix elements in M� and n nonzero matrix elements in Mν .1 Then, the textures 

1 Mν is symmetric because it is a Majorana mass matrix. Hence, only six out of its nine matrix elements are indepen-
dent. The integer n denotes the number of independent matrix elements which do not vanish; if some of those elements 
are off-diagonal, then the actual number of nonzero entries in Mν is larger than n.
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mentioned at the end of the previous paragraph are in the (3, 4) class. In this paper we con-
sider predictive, viable textures in the (4, 3) and (5, 2) classes. Those textures are in principle 
just as predictive as the ones in class (3, 4); each of them has eight degrees of freedom—seven 
moduli and one rephasing-invariant phase—in the matrices H and Mν . Those eight degrees of 
freedom are meant to fit ten observables—the three charged-lepton masses me,μ,τ , the three neu-
trino masses m1,2,3, the three lepton mixing angles θ12,13,23, and the Dirac phase δ. (We do 
not care about the Majorana phases in U because they are not observable in neutrino oscilla-
tions. However, we shall specify the predictions of our textures for the mass term responsible 
for neutrinoless double-beta decay, mββ ≡ |(Mν)ee|.) So, in principle each texture yields two
predictions, which may conveniently be taken to be one prediction for the overall scale of the 
neutrino masses and one prediction for cosδ.

It has long been known [26] that any mass-matrix texture, in particular any set of matrices 
M� and Mν with some zero matrix elements, can be implemented in a suitable extension of the 
Standard Model of the electroweak interactions, furnished with both additional scalar multiplets 
and appropriate Abelian symmetries. We rely on this fact to assert that all the textures in this 
paper may be implemented in renormalizable models. However, we shall not attempt here to 
construct a specific model for any of the textures; we also do not attempt to search for the simplest 
model which might justify any given texture [27].

We emphasize that all the textures will be analyzed in this paper only at the ‘classical’ level, 
i.e. we shall neglect both quantum corrections to the mass matrices and renormalization-group 
effects.

The texture-zero approach for the mass matrices pursued in this paper is inherently limited 
in its scope and objectives. Even if it were found that the experimental data fully agree with the 
predictions of some texture, we would not be sure that the mass matrices indeed have that texture, 
because there are many sets of mass matrices leading to the same observables—in particular, any 
two sets of mass matrices connected among themselves through a weak-basis transformation lead 
to the same observables. Further studies would be necessary in order to identify specific models 
that lead to mass matrices with that texture and also to identify other observable predictions of 
those models, viz. extra particles and interactions that they may feature. So, the study of textures 
may be looked upon as just the first part of a longer search for models of ‘new physics’. Still, 
that study has some relevance in itself, since it may suggest the most likely ranges for some 
observables—for instance, knowing whether the phase δ is more likely to be large or small—and 
which correlations among observables may be expected and are enforceable through well-defined 
renormalizable models.

This paper is organized as follows. In Section 2 we derive all the viable (5, 2) textures and 
briefly survey their predictions. We do the same for (4, 3) textures in Section 3. A listing of all the 
viable textures that we have found, and a summary of their predictions, is provided in Section 4.

2. (5, 2) textures

Since all three charged leptons are massive, the determinant of M� cannot vanish. Therefore, 
through an appropriate permutation of the columns of M�—this permutation changes UR but 
does not change UL, hence it leaves U invariant—one may always obtain the (1, 1), (2, 2), and 
(3, 3) matrix elements of M� to be nonzero. Since in a (5, 2) texture M� has five nonzero matrix 
elements, there are then (6 × 5)/2 = 15 possibilities:
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M� ∼
⎛
⎝ × × 0

× × 0
0 0 ×

⎞
⎠ , (7a)

M� ∼
⎛
⎝ × 0 ×

0 × 0
× 0 ×

⎞
⎠ , (7b)

M� ∼
⎛
⎝ × 0 0

0 × ×
0 × ×

⎞
⎠ ; (7c)

M� ∼
⎛
⎝ × 0 ×

0 × 0
0 × ×

⎞
⎠ , (8a)

M� ∼
⎛
⎝ × 0 0

0 × ×
× 0 ×

⎞
⎠ , (8b)

M� ∼
⎛
⎝ × 0 0

0 × 0
× × ×

⎞
⎠ ; (8c)

M� ∼
⎛
⎝ × × 0

0 × ×
0 0 ×

⎞
⎠ , (9a)

M� ∼
⎛
⎝ × 0 0

× × 0
0 × ×

⎞
⎠ , (9b)

M� ∼
⎛
⎝ × 0 0

× × ×
0 0 ×

⎞
⎠ ; (9c)

M� ∼
⎛
⎝ × × 0

0 × 0
× 0 ×

⎞
⎠ , (10a)

M� ∼
⎛
⎝ × 0 ×

× × 0
0 0 ×

⎞
⎠ , (10b)

M� ∼
⎛
⎝ × × ×

0 × 0
0 0 ×

⎞
⎠ ; (10c)

M� ∼
⎛
⎝ × 0 0

× × 0
× 0 ×

⎞
⎠ ; (11)
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M� ∼
⎛
⎝ × × 0

0 × 0
0 × ×

⎞
⎠ ; (12)

M� ∼
⎛
⎝ × 0 ×

0 × ×
0 0 ×

⎞
⎠ . (13)

Eqs. (8) are equivalent2 because they all lead to H12 = 0, hence to the same constraints on UL

and on U . Similarly, Eqs. (9) feature H13 = 0 and Eqs. (10) have H23 = 0. Also, (H−1)23 = 0
for Eq. (11), (H−1)13 = 0 for Eq. (12), and (H−1)12 = 0 for Eq. (13).

In a (5, 2) texture Mν has only two nonzero matrix elements. Leaving aside possible reorder-
ings of the rows and columns of Mν , there are only four possibilities:

Mν ∼
⎛
⎝ 0 × ×

× 0 0
× 0 0

⎞
⎠ , (14a)

Mν ∼
⎛
⎝ × 0 0

0 × 0
0 0 0

⎞
⎠ , (14b)

Mν ∼
⎛
⎝ 0 × 0

× 0 0
0 0 ×

⎞
⎠ , (14c)

Mν ∼
⎛
⎝ 0 0 0

0 0 ×
0 × ×

⎞
⎠ . (14d)

Both Eqs. (14a) and (14c) lead to two degenerate neutrinos and are therefore incompatible with 
experiment.

With Eq. (14b) lepton mixing originates fully in M�; indeed, one then has U = U
†
L but for 

possible reorderings of the columns of U . For two physical neutrinos νi and νj with i �= j ,

Hij = m2
eU

∗
eiUej + m2

μU∗
μiUμj + m2

τU
∗
τ iUτj

= (
m2

μ − m2
e

)
U∗

μiUμj + (
m2

τ − m2
e

)
U∗

τ iUτj . (15)

So,

Hij = 0 ⇒ − U∗
τ iUτj

U∗
μiUμj

= m2
μ − m2

e

m2
τ − m2

e

≈ m2
μ

m2
τ

≈ 1

280
. (16)

Similarly,

(
H−1)

ij
= 0 ⇒ − U∗

eiUej

U∗
μiUμj

= m−2
μ − m−2

τ

m−2
e − m−2

τ

≈ m2
e

m2
μ

≈ 1

43 000
. (17)

Phenomenologically, there are no two columns i and j of U such that either |(UτiUτj )/(UμiUμj )|
or |(UeiUej )/(UμiUμj )| are allowed to be so much smaller than unity as indicated by Eqs. (16)

2 It may easily be demonstrated that, through unitary redefinitions of the right-handed charged leptons, one may trans-
form any one of Eqs. (8) into any other of them.
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and (17). Therefore, with Eq. (14b) either Hij = 0 or (H−1)ij = 0 are phenomenologically for-
bidden for i �= j . If, together with Eq. (14b), the form of M� is as in one of Eqs. (7), then lepton 
mixing would only be 2 × 2, which is also incompatible with experiment. Therefore, Eq. (14b)
must be excluded, just as Eqs. (14a) and (14c).

We shall therefore concentrate on Eq. (14d). With that form for Mν , one neutrino is massless; 
this is one of the predictions of viable (5, 2) textures.

If Mν is as in Eq. (14d) while M� is as in one of Eqs. (7), then the matrix U has one van-
ishing matrix element. This contradicts the phenomenology. Therefore, we may exclude Eqs. (7)
and concentrate exclusively on the other possibilities for M�. As we have seen, they can be sub-
sumed in six different possibilities: H12 = 0, H13 = 0, H23 = 0, (H−1)23 = 0, (H−1)13 = 0, and 
(H−1)12 = 0.

Let

A ≡
⎛
⎝ 0 1 0

1 0 0
0 0 1

⎞
⎠ , B ≡

⎛
⎝ 0 0 1

0 1 0
1 0 0

⎞
⎠ . (18)

Then, the permutation group of three objects is represented by

S3 = {
A,B,ABA,AB,BA,A2}. (19)

Let Z be any of the six matrices in S3. Those matrices are orthogonal, hence Z−1 = ZT . Inter-
changing the rows and columns of Mν is equivalent to making Mν → ZMνZ

T . But Uν → ZUν

when this happens. Therefore U → U
†
LZUν . This is equivalent to letting UL → Z†UL or 

H → Z†HZ, which means a reordering of the rows and columns of H .
So, a reordering of the rows and columns of Mν is equivalent to an analogous reordering of the 

rows and columns of H . Therefore, instead of considering separately each of the three conditions 
H12 = 0, H13 = 0, and H23 = 0, one may consider only the condition H12 = 0 provided one 
allows for all the possible reorderings of the rows and columns of Mν . We thus conclude that 
there are twelve potentially viable (5, 2) textures:

H12 = 0 and Mν ∼
⎛
⎝ 0 0 0

0 0 ×
0 × ×

⎞
⎠ , (20a)

H12 = 0 and Mν ∼
⎛
⎝ 0 0 ×

0 0 0
× 0 ×

⎞
⎠ , (20b)

H12 = 0 and Mν ∼
⎛
⎝ 0 0 0

0 × ×
0 × 0

⎞
⎠ , (20c)

H12 = 0 and Mν ∼
⎛
⎝ 0 × 0

× × 0
0 0 0

⎞
⎠ , (20d)

H12 = 0 and Mν ∼
⎛
⎝ × × 0

× 0 0
0 0 0

⎞
⎠ , (20e)
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H12 = 0 and Mν ∼
⎛
⎝ × 0 ×

0 0 0
× 0 0

⎞
⎠ , (20f)

together with the six textures that result from substituting H12 = 0 by (H−1)12 = 0 in each of 
Eqs. (20).

With either H12 = 0 or (H−1)12 = 0, the matrix H can always be made real through a rephas-
ing, i.e. there is always a diagonal unitary matrix Y� such that

Y ∗
� HY� = Hreal (21)

has real matrix elements. The real and symmetric matrix Hreal is diagonalized by an orthogonal 
matrix O�:

OT
� HrealO� = diag

(
m2

e,m
2
μ,m2

τ

)
. (22)

Since either Hreal or its inverse has one vanishing matrix element, it contains only five degrees 
of freedom; three of them correspond to the three charged-lepton masses and the remaining two 
are implicitly contained in O�. Thus, O� is not fully general—a general 3 × 3 orthogonal matrix 
has three degrees of freedom, not just two.

Similarly, phases may be withdrawn from the matrix Mν in Eq. (14d):

Yν

⎛
⎝ 0 0 0

0 0 f eiφ

0 f eiφ reiρ

⎞
⎠Yν =

⎛
⎝ 0 0 0

0 0 f

0 f r

⎞
⎠ , (23)

where f and r are non-negative real and Yν = diag(eiξ , ei(ρ/2−φ), e−iρ/2), the phase ξ being 
arbitrary. Therefore, the lepton mixing matrix always ends up being

U = OT
� XOb, (24)

where Ob is the real, orthogonal matrix that diagonalizes the real version of Mν while X is a 
diagonal unitary matrix containing only one phase. This is because the arbitrariness of the phase 
ξ in Yν allows one to absorb one phase in X.

Let us define

δ ≡ �m2
sol ≡ m2

2 − m2
1, � ≡ �m2

atm ≡ ∣∣m2
3 − m2

1

∣∣, ε ≡ δ

�
≈ 1

30
. (25)

With a massless neutrino there are two possibilities for the neutrino mass spectrum: either it is 
‘normal’ (which we call “case n”), and then3

m1√
�

= 0,
m2√
�

= √
ε,

m3√
�

= 1,
m1 + m2 + m3√

�
= 1 + √

ε; (26)

or it is ‘inverted’ (which we call “case i”), and then

m1√
�

= 1,
m2√
�

= √
1 + ε,

m3√
�

= 0,
m1 + m2 + m3√

�
= 1 + √

1 + ε. (27)

Notice that

3 We use in this paper the quantity 
√

� ≈ 0.5 eV as the unit for all neutrino masses.
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m1 + m2 + m3√
�

≈ 1 in case n, but (28a)

m1 + m2 + m3√
�

≈ 2 in case i. (28b)

Suppose the initial Mν was as in Eq. (14d). Then, after withdrawing phases from it, we would 
have, in case n

Mν → Mn = √
�

⎛
⎝ 0 0 0

0 0 ε1/4

0 ε1/4 1 − √
ε

⎞
⎠ , (29)

while, in case i

Mν → Mi = √
�

⎛
⎝ 0 0 0

0 0 (1 + ε)1/4

0 (1 + ε)1/4
√

1 + ε − 1

⎞
⎠ . (30)

The diagonalization of the real matrices Mn and Mi proceeds as OT
n MnOn =√

�diag(0, −√
ε, 1) and OT

i MiOi = √
�diag(−1, 

√
1 + ε, 0), with4

On =

⎛
⎜⎜⎝

1 0 0

0 1√
1+√

ε

ε1/4√
1+√

ε

0 − ε1/4√
1+√

ε

1√
1+√

ε

⎞
⎟⎟⎠ , (31a)

Oi =

⎛
⎜⎜⎝

0 0 1
(1+ε)1/4√
1+√

1+ε

1√
1+√

1+ε
0

− 1√
1+√

1+ε

(1+ε)1/4√
1+√

1+ε
0

⎞
⎟⎟⎠ , (31b)

We see that the mixing angle θb appears in Ob. If b is n, then

cos θn =
√

1

1 + √
ε

≡ cn, sin θn =
√ √

ε

1 + √
ε

≡ sn. (32)

If b is i, then

cos θi =
√

1

1 + √
1 + ε

≡ ci, sin θi =
√ √

1 + ε

1 + √
1 + ε

≡ si. (33)

Since ε ∼ 1/30 is small, θn ∼ 20◦ is smallish. On the other hand, θi is very close to 45 degrees, 
viz. almost maximal.

It turns out that, because the mixing angle θn is so small, case n is not much different from the 
one, treated in Eqs. (15)–(17), in which lepton mixing originates fully in M�. Because of this, a 
normal neutrino mass spectrum does not work with (5, 2) textures.

For case i, one may write down the six possible forms of the lepton mixing matrices. They 
are

4 The remarkable and desirable properties of mass matrices like Mn and Mi have been noticed long ago [28].
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Mi√
�

=
⎛
⎝ 0 0 0

0 0 (1 + ε)1/4

0 (1 + ε)1/4
√

1 + ε − 1

⎞
⎠ ⇒ U = OT

�

⎛
⎝ 0 0 1

sie
iℵ cie

iℵ 0
−ci si 0

⎞
⎠ , (34a)

Mi√
�

=
⎛
⎝ 0 (1 + ε)1/4 0

(1 + ε)1/4
√

1 + ε − 1 0
0 0 0

⎞
⎠ ⇒ U = OT

�

⎛
⎝ sie

iℵ cie
iℵ 0

−ci si 0
0 0 1

⎞
⎠ , (34b)

Mi√
�

=
⎛
⎝

√
1 + ε − 1 0 (1 + ε)1/4

0 0 0
(1 + ε)1/4 0 0

⎞
⎠ ⇒ U = OT

�

⎛
⎝ −ci si 0

0 0 1
sie

iℵ cie
iℵ 0

⎞
⎠ , (34c)

Mi√
�

=
⎛
⎝ 0 0 0

0
√

1 + ε − 1 (1 + ε)1/4

0 (1 + ε)1/4 0

⎞
⎠ ⇒ U = OT

�

⎛
⎝ 0 0 1

−ci si 0
sie

iℵ cie
iℵ 0

⎞
⎠ , (34d)

Mi√
�

=
⎛
⎝ 0 0 (1 + ε)1/4

0 0 0
(1 + ε)1/4 0

√
1 + ε − 1

⎞
⎠ ⇒ U = OT

�

⎛
⎝ sie

iℵ cie
iℵ 0

0 0 1
−ci si 0

⎞
⎠ , (34e)

Mi√
�

=
⎛
⎝

√
1 + ε − 1 (1 + ε)1/4 0

(1 + ε)1/4 0 0
0 0 0

⎞
⎠ ⇒ U = OT

�

⎛
⎝ −ci si 0

sie
iℵ cie

iℵ 0
0 0 1

⎞
⎠ . (34f)

In the forms for U in Eqs. (34), the matrix O� is the real orthogonal matrix that diagonalizes H
according to Eq. (22). The matrix O� contains two degrees of freedom because H satisfies either 
H12 = 0 or (H−1)12 = 0. The matrix U depends on three degrees of freedom: one of them is the 
phase ℵ and the other two are contained in O�. So, there is one non-trivial constraint on U .

For the mass term responsible for neutrinoless double-beta decay one finds the formula

mββ√
�

= ∣∣(O�)i1
∣∣∣∣(√1 + ε − 1)(O�)i1 + 2(1 + ε)1/4eiℵ(O�)j1

∣∣, (35)

where the values for the indices i and j are given in Table 1.
One should note that Eqs. (34d)–(34f) correspond to Eqs. (34a)–(34c), respectively, after an 

interchange between νμ and ντ . This interchange is equivalent, in the standard parametrization 
of U , to the transformations cos θ23 ↔ sin θ23 and cos δ → − cos δ. In so far as the extant phe-
nomenological data are approximately invariant under cosθ23 ↔ sin θ23, one may anticipate that 
the predictions of Eqs. (34d)–(34f) for cos δ will be approximately symmetric to the correspond-
ing predictions of Eqs. (34a)–(34c).

We have found numerically that all six Eqs. (34) are able to fit U provided H12 = 0, 
but they are unable to achieve that fit when (H−1)12 = 0. Furthermore, the predictions of 
Eqs. (34a)–(34c) (with H12 = 0) are all very similar (but not really identical) among them-
selves. In all those cases, one must have a rather large solar mixing angle, sin2 θ12 � 0.3. The 
prediction of Eqs. (34a)–(34c) for the Dirac phase is cos δ � −0.6, while Eqs. (34d)–(34f)

Table 1
The indices i and j to be used in Eq. (35).

Equation for U (34a) (34b) (34c) (34d) (34e) (34f)

i 3 2 1 2 3 1
j 2 1 3 3 1 2
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Fig. 1. mββ/
√

� vs cos δ in a numeric scan for models with (5,2) textures.

make the symmetric prediction cos δ � 0.6. The prediction for neutrinoless double-beta decay 
is 0.24 � mββ/

√
� � 0.4. We can see these predictions displayed in Fig. 1, in which we plot 

mββ/
√

� against cos δ. Each point in the plot corresponds to some definite values for the param-
eters of the model—neutrino oscillation observables, phase ℵ, and two entries of the matrix H .
For definiteness, these predictions are based on the use of the phenomenological 3σ data in 
Ref. [29]; other phenomenological fits to the data—see Refs. [30] and [31]—can hardly yield 
much too different results.

3. (4, 3) textures

Since there are no massless charged leptons, the determinant of M� must be nonzero. There-
fore, after an adequate reordering of the rows and columns of M�,

M� =
⎛
⎝ t1 0 0

0 t2 0
0 t3 t4

⎞
⎠ . (36)

Therefore,

H =
⎛
⎝ |t1|2 0 0

0 |t2|2 |t2t3|eiγ

0 |t2t3|e−iγ |t3|2 + |t4|2

⎞
⎠ , (37)

where γ ≡ arg (t2t
∗
3 ). From Eq. (5), the columns of UL are the normalized eigenvectors of H . It 

is clear from Eq. (37) that one of the eigenvalues of H is |t1|2 and the corresponding normalized 
eigenvector is (1, 0, 0)T . Therefore, either

UL =
⎛
⎝ 1 0 0

0 cos θ eiγ sin θ

0 −e−iγ sin θ cos θ

⎞
⎠X, or (38a)
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UL =
⎛
⎝ 0 1 0

cos θ 0 eiγ sin θ

−e−iγ sin θ 0 cos θ

⎞
⎠X, or (38b)

UL =
⎛
⎝ 0 0 1

cos θ eiγ sin θ 0
−e−iγ sin θ cos θ 0

⎞
⎠X, (38c)

where X is a diagonal unitary matrix containing the phases of the eigenvectors of H ; those phases 
are meaningless. Eq. (38a) holds if |t1| = me , Eq. (38b) holds if |t1| = mμ, and Eq. (38c) holds 
if |t1| = mτ . The angle θ is fixed by

tan 2θ = 2|t2t3|
|t3|2 + |t4|2 − |t2|2 . (39)

We assume that only three out of the six independent matrix elements of Mν are nonzero. 
Therefore there are (6 × 5 × 4)/3! = 20 possible forms for Mν . They are

Mν ∼
⎛
⎝ × 0 0

0 × 0
0 0 ×

⎞
⎠ , (40)

Mν ∼
⎛
⎝ × × 0

× × 0
0 0 0

⎞
⎠ , (41)

Mν ∼
⎛
⎝ × 0 ×

0 × 0
× 0 0

⎞
⎠ , (42)

Mν ∼
⎛
⎝ × 0 0

0 × ×
0 × 0

⎞
⎠ , (43)

Mν ∼
⎛
⎝ × × 0

× 0 0
0 0 ×

⎞
⎠ , (44)

Mν ∼
⎛
⎝ × 0 ×

0 0 0
× 0 ×

⎞
⎠ , (45)

Mν ∼
⎛
⎝ × 0 0

0 0 ×
0 × ×

⎞
⎠ , (46)

Mν ∼
⎛
⎝ 0 × 0

× × 0
0 0 ×

⎞
⎠ , (47)

Mν ∼
⎛
⎝ 0 0 ×

0 × 0
× 0 ×

⎞
⎠ , (48)



P.M. Ferreira, L. Lavoura / Nuclear Physics B 891 (2015) 378–400 389
Mν ∼
⎛
⎝ 0 0 0

0 × ×
0 × ×

⎞
⎠ , (49)

Mν ∼
⎛
⎝ × × ×

× 0 0
× 0 0

⎞
⎠ , (50)

Mν ∼
⎛
⎝ × × 0

× 0 ×
0 × 0

⎞
⎠ , (51)

Mν ∼
⎛
⎝ × 0 ×

0 0 ×
× × 0

⎞
⎠ , (52)

Mν ∼
⎛
⎝ 0 × ×

× × 0
× 0 0

⎞
⎠ , (53)

Mν ∼
⎛
⎝ 0 × 0

× × ×
0 × 0

⎞
⎠ , (54)

Mν ∼
⎛
⎝ 0 0 ×

0 × ×
× × 0

⎞
⎠ , (55)

Mν ∼
⎛
⎝ 0 × ×

× 0 0
× 0 ×

⎞
⎠ , (56)

Mν ∼
⎛
⎝ 0 × 0

× 0 ×
0 × ×

⎞
⎠ , (57)

Mν ∼
⎛
⎝ 0 0 ×

0 0 ×
× × ×

⎞
⎠ , (58)

Mν ∼
⎛
⎝ 0 × ×

× 0 ×
× × 0

⎞
⎠ . (59)

Let Z be any of the six matrices in the group S3 of Eq. (19). Those matrices are orthogonal, 
hence Z−1 = ZT . Interchanging the rows and columns of Mν is equivalent to making Mν →
ZMνZ

T . But Uν → ZUν when this happens. Therefore U → U
†
LZUν . This is equivalent to 

letting UL → Z†UL, which corresponds to a reordering of the rows of UL. We conclude that, 
provided one allows for a reordering of the rows of the three possibilities for UL in Eqs. (38), 
one is free to avoid considering separately two matrices Mν which differ only by an interchange 
of their rows and columns. In this way, out of the 20 forms for Mν in Eqs. (40)–(59), one only 
needs to consider the following six:
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Mν ∼
⎛
⎝ × 0 0

0 × 0
0 0 ×

⎞
⎠ , (60a)

Mν ∼
⎛
⎝ × 0 ×

0 0 0
× 0 ×

⎞
⎠ , (60b)

Mν ∼
⎛
⎝ × × 0

× 0 0
0 0 ×

⎞
⎠ , (60c)

Mν ∼
⎛
⎝ × × ×

× 0 0
× 0 0

⎞
⎠ , (60d)

Mν ∼
⎛
⎝ × × 0

× 0 ×
0 × 0

⎞
⎠ , (60e)

Mν ∼
⎛
⎝ 0 × ×

× 0 ×
× × 0

⎞
⎠ . (60f)

The first three of these forms for Mν are excluded when taken in conjunction with the UL matri-
ces in Eqs. (38). Indeed, Eq. (60a) leads to U with four zero matrix elements; either Eq. (60b) or 
Eq. (60c) lead to U with one zero matrix element; and both those situations are phenomenologi-
cally excluded. The only viable forms of Mν are those that give rise to genuine 3 × 3 mixing in 
Mν , viz. Eqs. (60d)–(60f).

One may, without lack of generality, assume the three nonzero matrix elements of Mν to be 
real and positive, because, for each of the three matrices in Eqs. (60d)–(60f), there is a diagonal 
unitary matrix Yψ = diag(eiψ1, eiψ2, eiψ3) such that YψMνYψ is real and has positive nonzero 
matrix elements. We may thus write the matrices

MA =
⎛
⎝ a d b

d 0 0
b 0 0

⎞
⎠ , MB =

⎛
⎝ a b 0

b 0 d

0 d 0

⎞
⎠ , MC =

⎛
⎝ 0 a b

a 0 d

b d 0

⎞
⎠ , (61)

where a, b, and d are positive. One has Mν = Y ∗
ψMKY ∗

ψ , where K may be either A, B , or C.
The matrix MK is diagonalized by the orthogonal matrix OK :

OT
KMKOK = diag(μ1,μ2,μ3). (62)

The real numbers μk (k = 1, 2, 3) are the eigenvalues of MK ; |μk| = mk are the neutrino masses.
From Eq. (2b),

Uν = YψOKY ′; (63)

the matrix Y ′ is a diagonal unitary matrix which affects the transformation μk → mk in the 
following way: Y ′

kk = 1 if μk > 0 and Y ′
kk = i if μk < 0. So, from Eq. (3), U = U

†
LYψOKY ′, 

where UL is either one of the matrices in Eqs. (38) or one of them with the rows interchanged.
The matrix U†

LYψ contains four phases—one phase γ in U†
L and three phases ψ1,2,3 in Yψ . 

One may pull three of those phases to the left-hand side of U†
L, leaving at its right-hand side only 

one phase—let χ denote it. Suppose for instance that Eq. (38a) holds, then
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U
†
LYψ = X∗

⎛
⎝ eiψ1 0 0

0 eiψ2 cos θ −ei(ψ3+γ ) sin θ

0 ei(ψ2−γ ) sin θ eiψ3 cos θ

⎞
⎠

= X∗ diag
(
eiψ1, eiψ2, ei(ψ2−γ )

)⎛
⎝ 1 0 0

0 cos θ −eiχ sin θ

0 sin θ eiχ cos θ

⎞
⎠

= X′
⎛
⎝ 1 0 0

0 cos θ −eiχ sin θ

0 sin θ eiχ cos θ

⎞
⎠ , (64)

where χ ≡ ψ3 − ψ2 + γ . The matrix X′ ≡ X∗ diag(eiψ1 , eiψ2, ei(ψ2−γ )) contains unphysical 
phases.

Thus, there are 18 possible forms for U in (4, 3) textures. Let Kp denote those 18 forms, 
where K may be either A, B , or C. If K = B , then the number p may be 1, 2, . . . , 9:

U =
⎛
⎝ 1 0 0

0 cos θ −eiχ sin θ

0 sin θ eiχ cos θ

⎞
⎠OBY ′ (form B1); (65a)

U =
⎛
⎝ 0 cos θ −eiχ sin θ

1 0 0
0 sin θ eiχ cos θ

⎞
⎠OBY ′ (form B2); (65b)

U =
⎛
⎝ 0 cos θ −eiχ sin θ

0 sin θ eiχ cos θ

1 0 0

⎞
⎠OBY ′ (form B3); (65c)

U =
⎛
⎝ 0 1 0

cos θ 0 −eiχ sin θ

sin θ 0 eiχ cos θ

⎞
⎠OBY ′ (form B4); (65d)

U =
⎛
⎝ cos θ 0 −eiχ sin θ

0 1 0
sin θ 0 eiχ cos θ

⎞
⎠OBY ′ (form B5); (65e)

U =
⎛
⎝ cos θ 0 −eiχ sin θ

sin θ 0 eiχ cos θ

0 1 0

⎞
⎠OBY ′ (form B6); (65f)

U =
⎛
⎝ 0 0 1

cos θ −eiχ sin θ 0
sin θ eiχ cos θ 0

⎞
⎠OBY ′ (form B7); (65g)

U =
⎛
⎝ cos θ −eiχ sin θ 0

0 0 1
sin θ eiχ cos θ 0

⎞
⎠OBY ′ (form B8); (65h)

U =
⎛
⎝ cos θ −eiχ sin θ 0

sin θ eiχ cos θ 0
0 0 1

⎞
⎠OBY ′ (form B9). (65i)

The real orthogonal matrix OB diagonalizes the real symmetric matrix MB , see Eqs. (61)
and (62).
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When one interchanges the second and third rows and columns in the matrix MA one obtains 
the same matrix with b and d interchanged; this is just a meaningless renaming of parameters. 
Similarly, any permutation of the rows and columns of MC is equivalent to a renaming of the 
parameters a, b, and d . Therefore, there are nine more possible forms for U :

U =
⎛
⎝ 1 0 0

0 cos θ −eiχ sin θ

0 sin θ eiχ cos θ

⎞
⎠OAY ′ (form A1); (66a)

U =
⎛
⎝ 0 cos θ −eiχ sin θ

1 0 0
0 sin θ eiχ cos θ

⎞
⎠OAY ′ (form A2); (66b)

U =
⎛
⎝ 0 cos θ −eiχ sin θ

0 sin θ eiχ cos θ

1 0 0

⎞
⎠OAY ′ (form A3); (66c)

U =
⎛
⎝ 0 1 0

cos θ 0 −eiχ sin θ

sin θ 0 eiχ cos θ

⎞
⎠OAY ′ (form A4); (66d)

U =
⎛
⎝ cos θ 0 −eiχ sin θ

0 1 0
sin θ 0 eiχ cos θ

⎞
⎠OAY ′ (form A5); (66e)

U =
⎛
⎝ cos θ 0 −eiχ sin θ

sin θ 0 eiχ cos θ

0 1 0

⎞
⎠OAY ′ (form A6); (66f)

U =
⎛
⎝ 1 0 0

0 cos θ −eiχ sin θ

0 sin θ eiχ cos θ

⎞
⎠OCY ′ (form C1); (66g)

U =
⎛
⎝ 0 cos θ −eiχ sin θ

1 0 0
0 sin θ eiχ cos θ

⎞
⎠OCY ′ (form C2); (66h)

U =
⎛
⎝ 0 cos θ −eiχ sin θ

0 sin θ eiχ cos θ

1 0 0

⎞
⎠OCY ′ (form C3). (66i)

In Eqs. (65) and (66) the angle θ and the phase χ are free parameters, to be adjusted in order to 
obtain a good fit of U . The diagonal unitary matrix Y ′ is in practice irrelevant for phenomenology.

For the parameter of neutrinoless double-beta decay mββ one easily derives the formulae

mββ = 0 for forms A2, A3, A4, B4, B7, and C1; (67a)

mββ = a for forms A1 and B1; (67b)

mββ = a cos2 θ for forms B5 and B6; (67c)

mββ = d sin 2θ for forms B2, B3, C2, and C3; (67d)

mββ = ∣∣a cos2 θ − be−iχ sin 2θ
∣∣ for forms A5, A6, B8, and B9. (67e)
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3.1. Forms A1–6

We first consider the matrix MA in the first Eq. (61) and its diagonalizing matrix OA. It is 
convenient to define f ≡ √

b2 + d2 and the angle ϕ:

cosϕ = b

f
, sinϕ = d

f
. (68)

The matrix MA has vanishing determinant. Therefore, one neutrino is massless and Eqs. (26)–
(28) apply. In case n,

MA = √
�

⎛
⎝ 1 − √

ε ε1/4 sinϕ ε1/4 cosϕ

ε1/4 sinϕ 0 0
ε1/4 cosϕ 0 0

⎞
⎠ , (69a)

OA =

⎛
⎜⎜⎜⎜⎝

0 ε1/4√
1+√

ε

1√
1+√

ε

cosϕ − 1√
1+√

ε
sinϕ ε1/4√

1+√
ε

sinϕ

− sinϕ − 1√
1+√

ε
cosϕ ε1/4√

1+√
ε

cosϕ

⎞
⎟⎟⎟⎟⎠ . (69b)

In case i,

MA = √
�

⎛
⎝

√
1 + ε − 1 (1 + ε)1/4 sinϕ (1 + ε)1/4 cosϕ

(1 + ε)1/4 sinϕ 0 0
(1 + ε)1/4 cosϕ 0 0

⎞
⎠ , (70a)

OA =

⎛
⎜⎜⎜⎜⎝

1√
1+√

1+ε

(1+ε)1/4√
1+√

1+ε
0

− (1+ε)1/4√
1+√

1+ε
sinϕ 1√

1+√
1+ε

sinϕ cosϕ

− (1+ε)1/4√
1+√

1+ε
cosϕ 1√

1+√
1+ε

cosϕ − sinϕ

⎞
⎟⎟⎟⎟⎠ . (70b)

It is clear from Eqs. (66a)–(66f) that one row of U must coincide, but for the phases contained 
in Y ′, with a row of OA. But, no row of the matrix OA in Eq. (69b) may possibly coincide with 
a row of U , therefore case n is excluded. This is because:

1. The first row of OA in Eq. (69b) contains a zero matrix element, while no matrix element of 
U vanishes.

2. In the second and third rows of Eq. (69b), the second entry is larger in modulus than the third 
entry by a factor ε−1/4 ≈ 2.4; this factor is much too small for what is observed in the first 
row of U and much too large for what is observed in the second and third rows of U .

Coming to case i, either the second row or the third row of OA in Eq. (70b) may coincide 
with either the second row or the third row of U . This is because those rows of OA feature a 
first entry which is larger in modulus than the second entry by a factor (1 + ε)1/4 ≈ 1; this is 
compatible with what occurs in either the second or third row of U . Therefore, models A5, 6 are 
viable (although with some deviation from the mean values of the mixing angles) in case i.

Numerically, we have found that the form A5 for U works (with the 3σ data of Ref. [29]) pro-
vided cos δ ≥ 0.55 when sin2 θ23 = 0.64; for θ23 in the first octant cos δ must be even closer to 1, 
in particular cos δ ≥ 0.92 for sin2 θ23 = 0.40. The mixing angle θ12 must also be relatively large: 
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Fig. 2. cos δ vs sin2 θ23 for form A5. The numeric scan was made using the 3σ data of Ref. [29].

Fig. 3. sin2 θ12 vs sin2 θ23 for form A5. The numeric scan was made using the 3σ data of Ref. [29].

sin2 θ12 > 0.285 for sin2 θ23 = 0.64 and sin2 θ12 > 0.365 for sin2 θ23 = 0.40. These correlations 
between the angles θ12, θ23 and the phase δ can be appreciated in Figs. 2, 3. For form A6 of U
the results are analogous to those of form A5, except that cosδ is negative instead of positive and 
θ23 is preferred to be in the first octant instead of in the second one.

Neutrinoless double beta decay is governed by 0.25 < mββ/
√

� < 0.33 in forms A5, 6.
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3.2. Forms C1–3

We next consider the matrix MC in the third Eq. (61) and its diagonalizing matrix OC , 
cf. Eq. (62) with K = C. Since the trace of MC is zero, μ1 + μ2 + μ3 = 0. Also, μ1μ2μ3 =
2abd > 0 and μ1μ2 +μ1μ3 +μ2μ3 = −a2 − b2 − d2 < 0. Therefore, the largest μk in absolute 
value is positive and the other two μk are negative. Thus, in case n

μ1√
�

= −
√

−1 − ε + 2
√

1 − ε + ε2

3
, (71a)

μ2√
�

= −
√

−1 + 2ε + 2
√

1 − ε + ε2

3
, (71b)

μ3√
�

=
√

2 − ε + 2
√

1 − ε + ε2

3
; (71c)

while in case i

μ1√
�

= −
√

1 − ε + 2
√

1 + ε + ε2

3
, (72a)

μ2√
�

=
√

1 + 2ε + 2
√

1 + ε + ε2

3
, (72b)

μ3√
�

= −
√

−2 − ε + 2
√

1 + ε + ε2

3
. (72c)

Therefore,

m1 + m2 + m3√
�

≈ 4 − ε√
3

in case n, (73a)

m1 + m2 + m3√
�

≈ 2 + ε in case i. (73b)

According to Eqs. (66g)–(66i), if the PMNS matrix is of form Ci (i = 1, 2, 3) then its ith row 
coincides, in the moduli of its matrix elements, with the first row of OC . It follows from Eq. (62)
that

(MC)11 =
3∑

j=1

μj

[
(OC)1j

]2 = 0. (74)

Eq. (74), together with the normalization of the first row of OC , yield

[
(OC)11

]2 = μ2 + (μ3 − μ2)[(OC)13]2

μ2 − μ1
, (75a)

[
(OC)12

]2 = −μ1 + (μ1 − μ3)[(OC)13]2

. (75b)

μ2 − μ1
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Fig. 4. cos δ vs sin2 θ12 for form C3. The numeric scan made using the 3σ data of Ref. [29].

Thus, when U has the form Ci,

|Ui1|2
|Ui2|2 = μ2 + (μ3 − μ2)|Ui3|2

−μ1 + (μ1 − μ3)|Ui3|2 . (76)

One may use the expressions of μ1,2,3 in either Eqs. (71) or Eqs. (72)—for cases n and i, 
respectively—together with |Ui3|2 to compute |Ui1/Ui2|2 through Eq. (76). One can in this way 
find out for which values of ε and of the parameters of U the form Ci agrees with experiment. 
We have found that form C1 is incompatible with the phenomenology, while both forms C2 and 
C3 are viable, but only for the case of an inverted hierarchy. Form C2 predicts cos δ � 0.67 while 
form C3 predicts cos δ � −0.67; both forms predict 0.24 ≤ mββ/

√
� ≤ 0.34; furthermore, these 

forms only work for sin2 θ12 � 0.325, cf. Fig. 4.

3.3. Forms B1–9

The mass matrix MB in the second Eq. (61) is of ‘Fritzsch type’ [32]. The exact diagonal-
ization of a Fritzsch mass matrix has been known for a long time [33]. The use of Fritzsch-type 
mass matrices in the lepton sector has been proposed before [34].

With MB the neutrino masses are not fixed. In case n, m1 is the smallest neutrino mass, 
m2 = (m2

1 + δ)1/2, m3 = (m2
1 + �)1/2, and

a = m3 − m2 + m1, (77a)

b =
√

(m3 − m2)(m3 + m1)(m2 − m1)

a
, (77b)

d =
√

m3m2m1
. (77c)
a
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Then,

OB =

⎛
⎜⎜⎜⎜⎝

−
√

(m3+m1)(m2−m1)m1
(m3−m1)a(m2+m1)

√
(m3−m2)m2(m2−m1)
(m3+m2)a(m2+m1)

√
m3(m3−m2)(m3+m1)
(m3+m2)(m3−m1)a√

(m3−m2)m1
(m3−m1)(m2+m1)

−
√

(m3+m1)m2
(m3+m2)(m2+m1)

√
m3(m2−m1)

(m3+m2)(m3−m1)√
m3(m3−m2)m2

(m3−m1)a(m2+m1)

√
(m3+m1)m3m1

(m3+m2)a(m2+m1)

√
m2(m2−m1)m1

(m3+m2)(m3−m1)a

⎞
⎟⎟⎟⎟⎠ . (78)

If the matrix U has form Bp, then one of its rows coincides, in the moduli of its matrix elements, 
with a row of OB . Considering the absolute values of the matrix elements in the third column of 
OB , one finds that none of them can be equal to either sinθ23 cos θ13 or cos θ23 cos θ13—they are 
either too large or too small for that. On the other hand, either (OB)23 or (OB)33 may coincide 
with sin θ13. However, whenever this happens the other two matrix elements in the correspond-
ing row of OB are practically equal in absolute value, which means that θ12 would be close to 
maximal, contradicting phenomenology. We thus conclude that the forms B1–9 for U are not 
viable in case n.

In case i, m3 is the smallest neutrino mass, m1 = (m2
3 + �)1/2, m2 = (m2

3 + � + δ)1/2, and

a = m2 − m1 + m3, (79a)

b =
√

(m2 − m1)(m2 + m3)(m1 − m3)

a
, (79b)

d =
√

m2m1m3

a
. (79c)

Moreover,

OB =

⎛
⎜⎜⎜⎜⎝

√
(m2−m1)m1(m1−m3)
(m2+m1)a(m1+m3)

√
m2(m2+m3)(m2−m1)
(m2+m1)(m2−m3)a

−
√

(m2+m3)(m1−m3)m3
(m2−m3)a(m1+m3)

−
√

(m2+m3)m1
(m2+m1)(m1+m3)

√
m2(m1−m3)

(m2+m1)(m2−m3)

√
(m2−m1)m3

(m2−m3)(m1+m3)√
(m2+m3)m2m3

(m2+m1)a(m1+m3)

√
m1(m1−m3)m3

(m2+m1)(m2−m3)a

√
m2(m2−m1)m1

(m2−m3)a(m1+m3)

⎞
⎟⎟⎟⎟⎠ . (80)

In this case one finds that either the first or the third row of OB are suitable to fit either the second 
or the third row of U ; this means that the forms B2, B3, B8, and B9 of U are viable.

Forms B2 and B8 predict a positive cos δ: cos δ > 0.37 for form B2 and cos δ > 0.58 for 
form B8. They both privilege higher-than-average θ12 and θ23—both angles are not allowed to 
be simultaneously below their best-fit values. The overall scale of the neutrino masses is given 
by 2.023 ≤ (m1 + m2 + m3)/

√
� ≤ 2.050 (2.047) for form B2 (B8); neutrinoless ββ decay 

is governed by 0.24 ≤ mββ/
√

� ≤ 0.47, 0.41 for forms B2 and B8, respectively. We also find 
some broad correlation between these mass ratios and sin2 θ23, as may be seen in Figs. 5 and 6
for the form B8. Similar correlations occur for form B2, but there the variation is opposite: 
(m1 + m2 + m3)/

√
� increases with sin2 θ23 and mββ/

√
� decreases.

Forms B3 and B9 of U are similar to forms B2 and B8, respectively, with the interchange 
νμ ↔ ντ . Therefore the predictions are broadly similar, only cos δ is predicted to be negative 
instead of positive and θ23 is expected to be small, viz. in the first octant, rather than large. Again, 
there are hints of correlations of mass parameters with sin2 θ23, similar to those found for models 
B2 and B8, but they now appear reversed: for model B3, (m1 + m2 + m3)/

√
� decreases with 

sin2 θ23 and mββ/
√

� increases (the exact opposite of what occurred for model B2). Likewise, 
the behaviour of these correlations for model B9 is the opposite of what occurred for model B8.
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Fig. 5. mββ/
√

� vs sin2 θ23 in form B8. The numeric scan was made by using the 3σ data of Ref. [29].

Fig. 6. (m1 + m2 + m3)/
√

� vs sin2 θ23 for form B8. The numeric scan was made by using the 3σ data of Ref. [29].

4. Synopsis

In this paper we have found that there are six (5, 2) textures that are still viable: they are 
listed in Eqs. (20), wherein H12 = 0 is the consequence of one of the M� textures in Eqs. (8). 
As for (4, 3) textures, there are eight of them which agree with present-day phenomenology; the 
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corresponding forms the lepton mixing matrix are given in Eqs. (65b), (65c), (65h), (65i), (66e), 
(66f), (66h), and (66i); the corresponding textures of Mν are those in Eqs. (60d)–(60f).5

Even though there such a large variety of viable textures, the same cannot be said about the 
ensuing predictions, which are broadly similar for all of them: all the viable textures only tolerate

• an inverted neutrino mass spectrum,
• an overall scale of the neutrino masses given by (m1 +m2 +m3)/

√
� in the range [2.0, 2.1],

• cos δ far away from 0, i.e. close to either +1 or −1, and
• neutrinoless double-beta decay governed by mββ/

√
� ∈ [0.24, 0.48].

We thus conclude that texture-zero models of the (5, 2) and (4, 3) varieties are quite monotonous 
in their predictive power.
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