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Abstract-Hyperbolic nonconservative partial differential equations. such as the Von Foerster system, in 
which boundary conditions may depend upon the dependent variable (integral boundary conditions, for 
example) are solved by an approximation method based on similar work of the author for (nonlinear 
stochastic) ordinary differential equations. 

In certain problems of physics modelled by nonconservative hyperbolic partial differential 
equations, the boundary conditions may depend upon the dependent variable. The Von Foerster 
system, for example, is given by 

au(x t) auk t) 
Qly+(Y?F = --/.a 4 u)f,(u) 

u(x, 0) = +(x1 

where CY,, a2 are arbitrary constants and fl, f2 are arbitrary functions of u. Let’s write the right 
side as 

- i bi(x, tINi + g(X, t) 
I=1 

where N,(U) are nonlinear functions in u. For this specific problem-let’s take 0~~ = CQ = 1 for 
convenience, and consider one term in the sum; now write LX = a/ax and L, = alat as 
convenient linear operators, then we have 

L&4 + L,u + b(x, f)N(u) = g(x, t). (2) 

We can as well let L,, L, represent more general operators, e.g. L, = a2/ax2, L, = a(x, t)a/at and 
N(u) could depend not only on u but some derivatives of u, and g, b, and coefficients in LX, L, 
could be stochastic, but we will limit ourselves in this discussion to the specified problem in (2) 
with the first order partials. Solving for L,u and L,u in turn, 

L,u = g - L,u - bN(u) 

L,u = g - L,u - bN(u). 

Defining the inverses L;‘, L;‘, 

L;‘L,u = L;‘g - L;‘L,u - L;'bN(u) 

L;‘L,u = L;‘g - L;‘L,u - L;‘bN( u). 
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Thus 

CL AWMIAN 

[Li’L, + L;‘L,]u = [L,’ + mg 

- [Li’L, + L;‘L,lu 

- [L;’ + L;‘]biV(u). 

(3) 

Examine L;‘L,u. This is u(x, t)- u(x, 0) for the specific case L, = alat here. Similarly, 
L;‘L,u = u(x, t) - ~(0, t). Hence the left side is 2u(x, t) + u(x, 0) + ~(0, t) so we can write 

u(x, t) = (1/2){u(x, 0) + [L;’ + L;‘lg 

- [L;‘L* t L;‘L,]u 

-[L;’ t L;‘lbN(u) + 140, t,}. 

The solution u is decomposed into components ZUi to be determined assuming 

ug = (1/2){u(x, 0) + [L;’ + L;‘lg} (4) 

noting that ~(0, t) is not included in u. as it would be if it were not dependent on u but is put on 
the right side. 

We now have 

u(x, t) = ug - (1/2){[L;‘L* + L;‘L,]u 

- [L;’ t L;‘lbiV(u) t f&(x, t))} 

(5) 

where fz(u) = Jr y(x, t)u(x, t)dx is given, N(u) is, of course, a given nonlinearity, and u. is 
given by (4). We parametrize (5) as 

u = ug - A( 1/2){[Li’L, t L;‘L,]u 

- A[L;’ t L;‘]bN(u) t A 

and assume temporarily u = i A”u, where A will later be set equal to one; it is only an aid in 
n=O 

Zc 
collecting terms. Then N(u) = f(u(A)) which we set equal to X0 A,A” assuming analyticity. If 

the solution u exists, u = F-‘g since the entire left side of (2) can be written Fu where F is a 
r 

nonlinear operator. Thus, the decomposition of u means u = Z, A”F;‘g. Hence 

$oA”K’g = uo- A(l/2)[L;‘L, + L;‘L,]goA”F,lg 

I 
P m 

+ A(1/2) 
0 

y(x, t) z A”F,‘g dx. 
n=O 

Consequently, FR’g = u. and 

F;‘g = -(1/2)[L;‘L, + L;‘L,]F,‘g 

- (1/2)[L;’ + L;‘lbA,, 

I 

= 
t (l/2) y(x, t)F;‘g dx etc. 

0 
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or 

u, = -(1/2)[L;‘L, + L;‘L,lu,-(1/2)[L;‘+ L;‘lbAo 

I 

d 
+ Y(X, Wk 0 dx 

0 

u2 = -(1/2)[~;‘L, + L;‘L,]u, - (1/2)[L;’ + L;‘lbA, 

+ (l/2) 
I 

=y(x, t)ul(x, t) dx etc. 
0 

It remains then to discuss the A,. For simple (non-differential) operators N in N(u) it is quite 
easy to find the A,, (and the techniques can be extended even to N(u, u’, . . . , 1.4~“)) if needed). 
A0 will depend only on uo, A, will depend on uo, ul, AZ will depend on uo, ulr u2, etc., and can 
be found from 

A, = (l/n!)D”,f~~=,, 

where D = d/dh = (du/dh)(d/du) since f = f(u) and u = u(A). If we define the polynomials 

h”(UO) = ~f(u(h))lA=o 
then 

Ao = ho(uo) 

A,= hduo)u, 

A:= (1/2!){hz(uo)u’2+2h’(u,)u~} 

A3= (1/3!)(h,(u,)u1~+6hz(uo)u,uz+6h1(~0)~3} 

A4=(1/4!){h4(~O)~14+ 12h3(uO)u12u2+ h2(uo)[12u22+24u’u3] +24hl(uo)u4}etc. 

The A, have now been calculated to Alo and ,offer no difficulty to go higher. A, for more 
complicated nonlinear functions involving derivatives have also been calculated and will be 
published along with various applications such as Van der Pol and Duffing oscillators and 
soliton equations. 

The solution has been written in such a form that higher order derivatives for LX, L, are 
easily dealt with. In that case u. will involve more terms involving derivatives of u evaluated at 
the boundaries (analogous to our work for ordinary differential equations.) Other generaliza- 
tions are readily apparent to higher dimensional equations, for example. In the Von Foerster 
system, if we suppose f,(u) = u’ we have then A,,= uo2, Al = 2uou’, A2= u12+ 2uou2, A3 = 
2(u,u,+ uou3), etc. 

Consequently, using u. from (4) and 

uo = 40) 

u, = -[L;‘L, + L;‘L,]r#J(x) - IL;‘+ L;‘]@*(x) 

+ 
I 
ox y(x, t)&(x) dx 

u? = -[L;‘L, + L;‘L,]u’- IL;‘+ L;‘lb(Zuou,) 

+ I 6; v(x, flu, dx 

involving simple differentiations and integrations. The solution u = u. + ul + uz + . . . and is given 
to some acceptable accuracy by the n term expression uo+ u, +. . . u,_‘. 


