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Standard automata and semidirect 
products of transformation 
semigroups 

Kunze, M.. Standard automata and semidirect products of transformation semigroups, Theoretical 

Computer Science 108 (1993) 151P171. 

We propose a decomposition of transformation semigroups (X.5) on a finite set X that provides 

(a) a composttion of its elements out of idempotents,generators. 

(b) a way by which S is obtained from semilattices.!cyclic groups acting on X, namely by means of 

bilateral semidirect products and quotients. 

The point is to provide both (a) and (b) simultaneously while still being accountable for the resources 

used in terms of cardinalities. This approach is applied to the semigroup End(X, <) of isotonic 

mappings of a linearly ordered set as well as the transition semigroups of automata that arise from 

certain varieties of formal languages. We discuss the semigroup varieties D. R, J. LJ,. and give 

a bilateral semidirect decomposition of the full transformation semigroup T(X) into End(X, <) and 

the symmetric group on X. 

0. Introduction 

Our topic is the decomposition of transformation semigroups by means of quo- 

tients and suitable products. Put another way, starting from actions of semilattices 

and cyclic groups as basic building blocks, we want to construct arbitrary finite 

transformation semigroups in a natural way. Simultaneously, for individual trans- 

formations YES of a given transformation semigroup (X, S), we want a decomposition 

of x into idempotent elements of S and/or permutations in S. The point is that this 

should be achieved uniformly for every YES. (The problem of independent decomposi- 

tions of transformations into idempotent mappings is investigated by Howie [S] and 

Saito [12].) So, the decomposition of elements of S should actually arise from 
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a decomposition of the semigroup S into subsemilattices and subgroups of S. In 

contrast to ordinary (Schreier type) extension and decomposition theory of Rhodes 

and Weil [ 111, our approach is based exclusively on substructures rather than making 

use of homomorphic images also. Automata theoretic ideas will be encountered in 

motivation and definition of the product as well as proofs of algebraic theorems about 

semigroups, and applications. 

1. The bilateral semidirect product 

A fundamental question is: What kind of product to employ‘? For groups, the 

notion of semidirect product has led to an extensive theory with simple groups as 

basic building blocks, and examples of natural decompositions of transformation 

groups are abundant. Indeed, the semidirect product, or equivalently the wreath 

product, has been applied very successfully to the semigroup case, too, cf. e.g. 131. 

However, semigroup theory is inherently different and we propose to study the 

bilateral semidirect product as a fundamental operation. This generalization comes in 

naturally from the point of view of automata theory, which we believe to be a typical 

realm of transformation semigroups. 

Therefore, it may be appropriate to motivate the following Definition of bilateral 

semidirect products in terms of automata theory. Let (S, .), (T, .) be semigroups, 

q : S+ T(T) be a homomorphism and 6 : T+ T(S) be an anti-homomorphism into the 

full transformation semigroup on T, and S. respectively. 

Notation. For SES and TV T. denote the operation of (p(s) on T by t t-t tqp(‘) and the 

operation of 6(t) on S by s H d,(s). 

Additionally, suppose that the following two conditions (@) and (A) hold true for 

every s,sl,sz~S and t,tI,rzET: 

(@) (t* f2) 
qTP(S)= Iy,,w), p [Sequential processing rule] 

(4 6,(sI ~~)=fi,(s~).S,~~i~~i(.s~) [Serial composition rule] 

Under these assumptions (S x T, - ) is a semigroup with respect to the multiplication 

(cf. [S]): 

(sl,tl)’ (SZ,t*)=(S1’61,(S1),f~(~L)‘tZ). 

Definition. This semigroup (S8x, T, )) is called the bilateral semidirect product of 

S, T with respect to 6, cp. If q(S)= (idT) we have a semidirect product S x,) T, if 

6(T)= {ids; we have a reverse semidirect product S ~ x ‘p T, and if both operations are 

trivial we get a direct product of S and T. 



Standard automata and semidirect products 153 

In order to understand conditions (0) and (A) more clearly, imagine a sequence 

22 i, . . . , .dk of finite automata acting on an input string a,. . . a, from right to left. The 

input of a,, . . . . a, to Ai produces a certain output string which is fed to ~2’~. In 

general, each subsequent automaton ~di receives the output of the previous automa- 

tion c&ii-i as input. Denoting the current state of automaton Eli by Ai, the state 

transitions by 6, the output functions by cp (where the index of the automaton is 

understood from the state symbol), and using the formalism of semi-Thue systems we 

may write 

In this automata theoretic setting, 6 happens to be an anti-homomorphism and 

condition (0) holds true. This accounts for its mnemonic name: sequential processing 

rule. It is also evident that processors J&‘~, . , dk may start operating as soon as the 

output of &r appears. Concurrent operation of .di, . . . , dk in this fashion is called 

pipelining in VLSI circuits. Restricted to a single input symbol, we derive 

In other words, cp is a homomorphism and (A) is aptly called “serial composition rule”. 

It is worthwhile to note the dualism between input/output and state symbols which 

carries over to the properties (0) and (A). 

The relationship between bilateral semidirect products and several important 

constructions in semigroup theory is discussed in [8]; for applications in automata 

theory see [7]. To get a feeling for this kind of product, we mention that a group 

G is a bilateral semidirect product of two subgroups Ur, U2 iff G= U1 U2 and 

U,n U2 = {I}. This product is semidirect iff one of the subgroups is normal. In the case 

of groups, however, the notions of semidirect and reverse semidirect products co- 

incide. The symmetric group on X is a bilateral semidirect product of the stabilizer of 

a given element and any cyclic subgroup generated by a cyclic permutation of order 

IX/. This is an immediate consequence of the following lemma. 

Lemma (On bilateral decompositions of transformation groups). Let (X,G) be 

a transformation group and C,(z) the stabilizer ofun element ZEX. If T is a subgroup of 

G that operates transitively on the orbit qf z and C,(z)n T= {id}, then G is a bilateral 

semidirect product of C,(z) und T. 

Proof. For any S~EG there exists a JET such that (ZCC)T=Z. Therefore, ZSEC~(Z) and 

cc=~rr-‘~C~(z). T. This shows that G=C,(z). T. 0 
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2. Semidirect decompositions 

As in the case of groups, we would like to study decompositions of transformation 

semigroups (X,H) into transformation subsemigroups acting on the same set X. 

However, bilateral semidirect products of subsemigroups of H may happen to act on 

X and cover H in a natural way, but without that action being faithful. This technical 

complication is reflected in the following definition: 

Definition. A transformation semigroup (X, H) is called a bilateral semidirect 

(semidirect, reverse semidirect) product of transformation subsemigroups (X, S) and 

(X, T). if 

/1:S6xV T-+T(X). .up(s,t)=.x,st 

is a homomorphism and Hz ,u(S 6 x m T) (p(S x d T), ,u(S B x ~ T)). 

This definition is a compromise that avoids talking about nonfaithful actions as 

a technical tool for decompositions of transformation semigroups. 

Now let us have a look at the connection between semidirect product and wreath 

product as closure operations on classes of transformation semigroups. Although this 

should be considered folklore in general, we have to be a bit careful, because we chose 

not to manipulate the underlying set X when forming semidirect products. But two 

minor auxiliary operations will take care of that. 

Definition. Given a transformation semigroup (X. S) and a set Y define transforma- 

tion semigroups 

(Xx Y,S), where (.u.J)x=(.w,~) 

and 

(XU Y, S), where JSC = 2; 

for .x6X, J‘E Y, XES. (X x Y,S) is said to be obtained by splitting of states, and 

(Xu Y, S) is said to be obtained by adding fixed points. 

Proposition 2.1. Let X he a class qfmnplete,finite tran$wmation semiyr0up.s contain- 

ing ({O, l), [id]). Tlzen X is closed under wreath product und quotients ifand only ifit is 

closed under semidirect products, splitting of states, addimg fixed points, and quotients. 

Proof. First suppose that X is closed under wreath product and quotients. This 

implies closure under direct products in the usual sense (e.g., [3]) and (P, {idp))EX for 

any finite set P, because (10, I), (id),)EX. Consequently, (Q x P, S x {idpI )EX when- 

ever (Q, S)EX, i.e., X is closed under splitting of states. For adding fixed points we note 

that (QuP,Sx jidp})=(Q,S)+(P, jidp)) and use the closure under sum, 13, III, 

Proposition 1.41. Now let (Q, H) be a semidirect product of (Q,,S) and (Q, T) with 
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(ys. t) 
QxT- QxT 

(4, f) (q&(s), fr) 

I I 
Yf qt’st=q~~(id,t’)~c(s,f)=q6,.(s)t’t 

P(-\.O 
Q- Q 

Fig. 1 

respect to an anti-homomorphism 6 : T+End(S) and suppose (Q, S), (Q, T)EX. Then 

(T, T)sX by [3, I, Proposition 9.81. We claim that 

(Q,H)<(Q,S)“(T, T), 

where < denotes the covering relation. Since (Q, S) 0 ( T, T) 2 (Q x T, ST x 3 T), where 

Y: T+End(Sr)), x3,(sc)=(.xt)r, this is clear from Fig. 1. Here as: T+S, XX,:=~,(S) and 

the transformation ~(s, ~)EH (where p : S x ~ T+H is the canonical homomorphism) is 

covered by (x,, t). 

For the converse, suppose that X is closed under semidirect products, splitting of 

states, adding fixed points, and quotients. Given any (Q, S), (P, T) in X we have to 

show that the wreath product (Q,S)o(P, T) belongs to X. For each PEP define 

a transformation semigroup (Q x P, S,) by 

(4, P’b = 
(4hp’) if P=P’, 
(q, p’) otherwise. 

By adding fixed points, (Q x P, S,) belongs to X. Say P = jpl,. , p,}. Since the direct 

product is a special case of the semidirect product, X contains 

(Q x f’, S,, x ... x SJ. 

Observe that 

(q,P).(S,, . ..>Sn)=(qSi~p). where p=pi. 

Hence, (Q x P, S,, x ... x S,,,)z(Q x P, S’). Furthermore, by splitting of states, 

(Q x P, T), where (q, p)t := (q, pt) belongs to X. Now we conclude by standard argu- 

ment (e.g., [3, V, Proposition 4.11) that the wreath product (Q, S) 3 (P, T) is isomorphic 

to the semidirect product of (Q x P, Sp) and (Q x P, T) with respect to 9: T+End(SP), 

x&(~~)=(xt)c~ and this semidirect product belongs to X. [3 

One of our goals is to find decompositions for classes of transformation semigroups 

that are characterized by algebraic or other properties. The following result is now 

more or less obvious from [3] but it nicely illustrates this idea. 



Proposition 2.2. For transformation semigroups (X, S) properties (a)-(c) are equivalent: 

(a) The relution on X given by, 

is a partial order. 

(b) S is 9Z-trivial where !N denotes Green’s relation in the semigroup S. 

(c) (X, S) is covered by u trarzsjbrmation semigroup which is un iterated semidirect 

product of’semilattice actions on X. 

As usual, (X, S) is covered by (Z, H) iff (X, S) is a homomorphic image of a trans- 

formation subsemigroup of (Z, H). A characterization of semilattice actions by means 

of their transitivity order as defined in (a) is the topic of [2]. The flavor of that 

characterization can also be seen from the following example of a reverse semidirect 

product. 

Example. Let (X, <) be a finite distributive lattice. Define 

s - (x s - , cnj : x++inf(?c, a) 1 aEX} g T(X), 

S~=jr,,,:.YHSUp(X,II)~uEX)~ T(X). 

Because of the distributivity, the set theoretic product S, .Si is a subsemigroup of 

T(X). The transformation semigroup (X,S; Si) is a reverse semidirect product of 

the two semilattice actions (X. S: ) and (X, Sz ) with respect to 

cp:S,+End(S+) r”(.“’ ‘=SI s I [Al [I”f(.~.LIj]. 

S, .Si is an L-trivial band consisting of the projections 

where A = [a, h] is an interval of (X, <). The transformation semigroup (X, ST .Sz) is 

transitive, because it contains the constant mappings. In case (X, <) is a chain, i.e., 

a total order, S,,x,Si 1s a subsemigroup of the bilateral semidirect product 

S- d~,S+. which will be constructed later. 

At a first glance, Propositions 2.1 and 2.2 may raise the question whether nested 

semidirect products offer any advantage over wreath products. This, of course, 

depends on the situation. Here is an application where the smaller size of semidirect 

products is impressive: Given an alphabet C, the set of states of a shift register of 

length k is ,?I’ and its transition semigroup Dz,k consists of the mappings induced by 

feeding input strings of lengths up to k. 

Proposition 2.3. The transformation semigroup (Ck, LIZ, k) of a sh$t register of length 

k over some ulphuhet z‘ is a transformation suhsemigroup of (C”, Sk) which is an iterated 

semidirect product qj’k ricght zero semigroup uctions (Ck, R, ), . , (I”, Rk). Every dejinite 
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semigroup (i.e., a member of the pseudovariety D, cf. [3, Example 3.71) is homomorphic 

image of a subsemigroup of Sk for suitable k. 

The semigroups Rk consist of certain projections and constant mappings, namely 

xi: Ck+P, (xk,xk-1, . . ..-\.l)+(XirXk-l. ...,xl), 

lc;: Ck+Ck, (xk,xk-I, . . ..-Yl)+(a.xkm x 1 I,...,- 1 3 

for O<i<k and UEC. If ICI=2 we have IR,I=k+l and IDz,kI=2k+1-2, and 

lSkl =(k + l)! compares favorably with the cardinality of the wreath product: 

IRk” . . . ~~~~~~~~~~~ 

Specifically, the 30-element transformation semigroup of a length-4 shift register over 

{a, b} is covered by a semidirect product consisting of 120 mappings while the 

corresponding wreath product needs 215 mappings. 

3. An application to semigroup theory 

First we consider the full transformation semigroup T(X) on a finite set X. 

Proposition 3.1. For any linrur order < on X whatsoever, T(X) is a canonical komo- 

morphic image of a bilateral semidirect product 

SxgxqEnd(X, <) 

of the symmetric group Sx on X and the semigroup End(X, <) qf‘isotonic mappings. 

Proof (Outline). For XE T(X) define a derived linear order (X, <,) by 

x<,y - 
i 

xccdya if xcrfyz, 

xdy otherwise. 

Let [T, be the permutation of X that rearranges the order (X, <) into (X, <,) by 

sorting with respect to <,. This means that 

x d,y 0 xcr,<yoz. 

As a consequence, G,‘X is isotonic with respect to the original order (X, <): 

x<y 0 (xo,‘)o,<(ya;‘)a, 0 xa,‘<,yo,’ 

* xa,‘cldya,‘r. 

Therefore, G! = ca. a; ’ c(ES*. End(X, G). So, T(X)=S,.End(X, <). Now define 

6 : End(X, <)- T(S,) and cp : Sx+ T(End(X, < )) by 

d,(n) = grn and P’“)=gz;l~~ 



for tEEnd(X,<) and 7r~S~. One has to verify that 6,cp give rise to a bilateral 

semidirect product Sx 6x m End(X, G). Obviously, 

p:Sx,x,End(X, <)-T(X), /~(z,~)=~cc~T, 

where c denotes the composition of mappings, is a homomorphism. 0 

The semigroup End(X, < ) of isotonic mappings has been studied extensively in the 

context of semigroups acting on graphs [lo]. Here our interest in End(X, <) orig- 

inates from Proposition 3.1. Looking for decompositions of End( X, <), we first study 

its subsemigroup 

End(X, <)-= (xEEnd(X, <)lxx<.u for every XEX) 

of monotone decreasing mappings. End(X,<)+ is defined dually. 

For an interval Ai of (X, <) with least element i we consider the transformation 

i A; :x+x, 
if XEAL7 ..(- 

x otherwise 

and dually we define Bf , where j is the greatest element in the interval Bj. For every 

icX we have subsemilattices 

S;=jA;(Ai=[i,a]c_X)c_End(X, <)), 

s+=(B+ /Bi=[b,i]cX)sEnd(X, <)+, 

For notational convenience let us assume X= {O, 1, . . ..n) with the usual order 

0~ 1 <...<II. Then 

because any a~End(X, <)- can be written as a composition of mappings 

x=A, - . ..<‘A.;-,, where Ai=[i,max([O,i]K’)], 

and similarly for x~End(X, <)‘. The unique minimal set of idempotent generators of 

End(X,d)\{id} givenin [l] is [0,1]~,[1,2]~ ,..., [n-l,n]-,[n-l,n]+ ,..., [O,l]‘. 

For an n-tuple A- = (A, , . . , Ai_ 1 ) and ui = max( A i), i = 0, . . . , n - 1, we sometimes use 

the sequence notation A-=(a,-,,...,~,,-~)~ or, equivalently, the function notation 

Am(i)=ai. 

Proposition 3.2. End(X, <)) is cooered by tlze,following nested semidirect product qj 

n = 1 X I- 1 semilattices: 

qx, <)- =((S, xg, SF) x,,s, ‘.‘) X&_, s,;_,. 
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More precisely, End(X, <)- is the homomorphic image of S(X, <)- under the canonical 

homomorphism p:(A,, . . . . A;_l)~AG 0 ... CA, 1. Alternatively, End(X, <)- is also 

isomorphic to the subsemigroup 

S-=(A-ES(X, <)PIA-(0)<A-(l)< ... < A-(n-l)} 

of monotone sequences qf S(X, <)- 

Proof. For i <j we form a semidirect product Sip x d,, Sy with respect to Fuji: SIT + 

End(S;), where 

(AiUBj); if A,ClBj#0, 

otherwise. 

One observes Bj 0 Ai- =sji(B/)[A,~] 0 Bj and verifies that dij is a homomorphism 

and sji(si)EEnd(S,~). In order to obtain an iterated semidirect product 

S(X,6)P=((S; x,,S;)x,,S2...)~~,~~S,_~,wecheck that 

~~~~~~~C~~~~~~~~C~~~II~~~~~~~~~~~~C~/l~C~~~~~~~C~~II 

for i < j< k and A; ES,:, B/ES/, CL ES;. Now the following lemma completes the 

proof. 

Lemma (On nested semidirect products). Let HI, . . ., H, be semigroups and 

bji: Hj-tEnd(Hi) for i<j be anti-homomorphisms. Let 6ji(B)[A] denote the image of 

AEH~ under the endomorphism cSji(B)eEnd(Hi) induced bll BEHj. Suppose thefollowing 

condition (AA) holds for AEH,, BEH~, CEH,, i<j<k: 

(AA) ~~~~~~C~~~~~~C~Il~~~~~~~~~~~C~l~C~~~~~~C~Il~ 

Then((H, ~,,Hz) x,,ff3) xa4... x d,, H, is an iterated semidirect product with respect 

to 

dj:Hj+End(((H, x,,Hz) x,,H,) Xa1”’ X6,_1Hj-~), 

where 

dj(B)I(A,, ...,Aj~1)1=(Gj.,(B)[A,I, ...>~j,j~1(B)[Aj~,]) 

Proof (by induction). For ~=2 the statement holds vacuously. By induction hypo- 

thesis assume it holds for n = k and CEH,, 1. We have to show that 

&+,(C)EE~~((H, x,,H,)x ... xhkHk), 

i.e., 

~,+,~~~C~~~1=~,+,~~~C~I~~,+,~~~C~I, 

for A=(A,,...,A,), B=(B,,...,B,)E(H, x~~H~)x...x~,H~. The ith component of 

the left-hand side is 

6 k+l.i(C)CAi.di+l,i (A,*,)[ “. 6k.i(Ak)CBilll 
=6 k+l,i(C)CAil~~k+l,i (C)CS,+,,i(Ai+,)I...6,,i(Ak)IB,lll. 
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Evaluating the right-hand side, we obtain 

~k+,~~~c~l~~k+,~~~c~l 

and the ith component of this is 

6 kt l.i(c)c~il’ 

6. ,+,.i(~k+~.i+~(C)CAi+~l)C..~6k,i(~k+~.k(C)CAkl)C~k+~.i(C)CBilll. 

from (i+ 1)st component from kth component 

Applying (AA) to the second factor yields the desired equality of the ith component on 

both sides: 

6 k+l,i(C)[6i+l,i(Ai+l)[“.~k,i(Ak)CBilll 

Finally, since ci,, i, 1, , Sk+ l,k are anti-homomorphisms, 6,+ 1 is obviously an 

anti-homomorphism. 0 

This completes the proof of Proposition 3.2. 

Corollary. Every z-tricialjinite transfiwmation semigroup is cocered by a direct product 

of transformation semiyroups qfthe,form S(X, <)- which are nested semidirect products 

of semilattice actions on linear orders. 

Proof. The standard automata (cf. Section 4) given in [6] for piecewise testable 

languages (i.e., the languages corresponding to J-trivial monoids by Eilenberg/ 

Schiitzenberger’s l-1 correspondence, [3]) are direct products of machines, each of 

which has a transition monoid contained in some End(X, <)-. Furthermore, every 

z-trivial monoid is homomorphic image of the transition monoid of such a standard 

automaton, cf. [3, VIII, 91. U 

Proposition 3.3. End(X, <) is canonical homomorphic image of a bilateral semidirect 

product S-8xaSt, where S, S+ are the subsemiyroups of nested semidirect products qj 

semilattices given in Proposition 3.2. 
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b 

a 

Ii 

expansion: 

&transition 

takes place 

Fig. 2. 

contraction: 
q--operation 

takes place 

Proof. We are going to construct this bilateral semidirect product step by step. First 

we define 6 and 9 (see Fig. 2) for single components [i, a] - ES,: and [b, j] + ES; : 

s[b.j]+(Ci>al-)= 
[i,max(i,b-l)]- if b<a<j, 

cc al - otherwise, 

Cbdl 
+pp([i.n]m,_ Cmin(i,b),ilt if jcCCa1, 

lkil’ otherwise. 

Observe that 

[b,j]+ ~[;,a =s,,~jl+([i,u]~)~[b,j]f”[““]~‘. 

The case where the S-transition is nontrivial describes an expansion type mapping 

unless the downwards action is void (i.e., b<i), the case where the q-operation is 

nontrivial describes a contraction type mapping unless the upwards action is void 

(i.e., i < b). 

For A-=(a,,,...,~,_,) ES and B’=(b,,...,b,)+ES+ define s,+(K) by giving 

its ith component 

~B+(A-)[i]=max(i,min(ui,b,,+,-l)), where b,+r=n+l 

is assumed for the case ai=n. Since (uO, . . . . a,,_ r)- is monotone increasing, we have 

that 

In particular, dB+ (A-)ES. A good way oflooking at it is to imagine the f-arrows and 

J-arrows as symbols of a semi-Thue system (Fig. 3) with alphabet S; u ... uSi_ r 

u Sz v ... u ST and derivation rules 

Since (b,, . . . . bl ) is sorted in decreasing order and (uo, . . , a, _ 1 ) is sorted in increasing 

order, the cp ([i, a] -)-operation on [b, j] + takes place before [i, a] - is affected by 
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moving right moving left 

M - r-l 

Fig. 3. 

nontrivial 6(d.kl+ -transitions for k #j, and similarly for the 6,h,j1+ -transition of [i, u] -. 

Therefore, the final result of the derivation is of the form 

The point is that the mapping induced on (X, <) by B+A- is invariant under this 

derivation, so that we will get a homomorphism ~1: S- R~C S+ +End(X, d ): 

~(A-,B+)=[O,a,]P’ . ..“[n-l.a,_,]- [hn,n]+,-..,-[h,,l]+. 

To see that ,U is surjective, pick any rEEnd(X, <) and set 

i 

max([O,i]cc-‘) 
a, := 

if [O,i]r-‘n[i,n]#@, 

i otherwise, 

bj := 

i 

min([j,rr]a-‘) if [j,n]C’n[O,j]#0, 

.i otherwise. 

This representation is almost precisely the canonical form given in [l]. According to 

the notation used in [ 11, we are working on the problem of finding the canonical form 

of the composition of two mappings. 

A technical problem with the q-operation is that the arrow heads are altered, so 

that the result B+‘p(to,““l- ) M”~ ‘.+ II- ) of the derivation is not an element of S+, 

even after applying additional rules to compute the products in Sz, . , ST, which 

amounts to merging arrows with identical heads. For a partial monotone function 

f:(l,..., n } + { 1, , 12) satisfying f( i) < i whenever ie Dom( f), we define a monotone 

extension Monex(f):jl,..., rl}+(l,..., ?I) by 

~t~~~~n(.f)’ 

’ 
if iEDom(f), 

Monex(f)[i+ 11) otherwise. 
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With that concept in mind, we are ready to define 

Bf’p’A_)(,)= 
h, if ~,~,=n-1, 

I7 otherwise, 

: 

6 if uiPl =i- 1, 

B+GV)(j)= min(i, b,,- I + I 1 if ai>Uj_,3i, 

min(i,B+q’A-)(i+l)) if ai=ai_,. 

Lemma 3.4. B’~‘A~)=Monex(reduced(B”P’[o~““l~” (p(tnP1.nP1~I1-‘)), &ere the re- 

duced sequence is obtuined by computing the products in S,’ , , ST, i.e., applying rules 

[c,j]+[d,j]‘+[min(c,d),j]+. 

Proof. Caseai-,=i-l:ThenLI,di-1 foreveryk<i.Hence,nocp([k,aJ)fork<i 

can affect [hi, i] + and cp ([ k, ok] -) for k 2 i will not affect it anyway. So [bi, i] + 

remains as it is. Also note that t-arrows only can get shortened from the top (Fig. 4). 

Since (b,, . . . . h,) is monotone, no shortened [bj,j]’ forj>i has a longer tail than 

[bi, i] +. 

Otherwise we have Ui-1 >i. Then [h,,i]+ gets its head cut by cp([i- l,ui_,]-) and 

does not make a contribution to the ith component of B+~(tO~all]- ) -N[~- l.+ I]- ). The 

same is true for [hj,j]’ satisfyingj<ai_, Hence, the first [b,, j]’ that may contrib- 

ute is [b,,_,+r,ai-r+l]+, and [bj,j]’ for j>ni- 1 + 1 will not contribute any 

more. 

Cuseai>ai_,: Thenui>ai_,+l andweactuallyget [h,,~,+l,ui_,+l]‘~‘P[i.all~‘= 

Chz-,+I>~l+ as long as h,,z_ I + 1 d i, and we obtain [i, i]’ otherwise. 

If~fiP7UllJ’ C7i=Uiml, 
then B+‘P([O.aol~)...~P([n-l.o,,~11~) d oes not contain an arrow with 

head i, and some value at i is provided from values at i + 1, i + 2, . . . , n by monotone 

extension. 0 

Fig. 4. 



The following two lemmata will complete the proof of Proposition 3.3. 

Lemma 3.5. For A-=(+ ,..., u,_,)~ES, Cp=(cO ,..., cn_l)-~S-, B+= (h, ,..., 

bI)+ES+, 

(a) B 
+VP(,‘- c ),(B+‘p’“-‘)‘p’?‘, 

(b) dLl+(Am ‘C~)=~,+(A-)‘~(~,+,~~I i(C). 

Proof. First note that A-. C~=(U,,,....,U,,,~,)-ES-. 

(a): c~(CQa,l-L..., cp([n- I,u,_ ,I-) act on the heads of B+ like p(A-). Thereafter, 

cp([O,c,]-), . . ..q([n- l,c,_r]-) act on the heads of the result, joined by the mono- 

tone extension arrows, like p(C). Finally, monotone extension arrows are added 

again (Fig. 5). The same effect on the heads of B+ is achieved by applying the 

composition ,u(A-) p(C)=p(A- 0 C-) and filling the result with monotone exten- 

sion arrows afterwards: Arrows resulting from the intermediate monotone extension 

in B+‘p’A-’ do have identical base as some original arrow to the left. After applying 

cp( [0, c,] ), . . , cp( [n - 1, c,, _ 1 ] ) this original arrow causes monotone extension 

arrows in the final step to be added that supersede those arrows from the intermediate 

extension in B+ylcAm). 

(b): We want to show that the ith component of the right-hand side equals that of 

the left-hand side, namely dR+(Am ~C-)[i]=S,,,l,,,,+( . ..(S.,,.,,.([i,u,,]~))). Those 

[hi, j]’ with j<ci do not make any contribution to either side by the definition of 6, 

because the cp(A-)-operation can only shorten the T-arrows by cutting their heads. 

Those [hj,j]’ with j in the range ci <,j <a,, do not affect the left-hand side, nor the 

c,th component of A -. But they would act on [i ci] in case hj<ci, if that would not 

be taken care of by the cp-operation: [hj,j]+‘P’tC1.n~,l~)= [h,, ei]’ which is too short to 

be able to act on [i,ci]-. Also, T-arrows added by monotone extension in B+qp(Am) 

may be disregarded for further d-transition anyway. It remains to consider [hj, j]’ 

q-opmtionof [Ci cc, 1. 

I 

B+ A’ C- 

Fig. 5. 
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with j > u,~ and, in order to have any influence, bj < act. These [bj, j] + are not altered 

by the q-operations cp( [0, a,,-), . . . , Cp( [Ci, u,~]- ), because the corresponding J- 

arrows are too short. Although these [bj,j]’ may possibly have cut their heads by 

cp(Cci+l,a,,+,l~),..., cp( [n - 1, a,,_ 1]-), they still remain tall enough (i.e., with 

head>ci) to be able to act on [O,C,]~, . . ..[i.~~]- the same way as [bj,j]’ would. 

Because of the monotone order in Bf the final result is determined by [bj, j]’ with 

j= u,~ + 1. So, we may assume that j = a,, + 1. Cf. Fig. 5. 

C~sebj<i: Then6,+(A~0C~),S,+(A~),6,+~ll 1 (C-) all have trivial ith component. 

Cuse i<bj<ct: Then ~,+(A-~C-)[i]=6,+~~~(C-)[i]=b~-l and 

8,+(Ap)[bj -l]=bj-1, because either bj_l=Ub,_1 to start with or bj6uh,~1duc, 

<j and d-transition takes place. 

Case ci < bj < u,, : Then 6s+(A- oC-)[i]=bj-l=6~+(A-)[ct] and 

6 B+“lA~‘(C~)[i]=Ci. n 

Lemma 3.6. For .K=(q, ,..., u~_~)-ES-, B+=(b, ,..., bI)+ES+, D’=(d, ,..., 

dl)+ ES+, 

(4 6 B+oD+(A_)=Sg+(~D+(A~)), 
(b) (Bf oD+)C(A~)=B+‘p(d~+(A~)).D+s(A~) 

Proof. First note B+ CD+ =(bd,,, . . ..bdl)+ES+. 

(a) is obvious from the definition of 6. 

(b): We apply Lemma 3.4 and study the operation of cp( [O,a,]-), . . . . 

cp([n- l,u,_r]-) on B+ oD+. Consider the jth component [bd,, j]’ of B’ 3 D+ 

(Fig. 6). Since dD+ shortens the J-arrows of A- at their tails, only those cp([i, ai]-) 

satisfying bd,<i<j may act nontrivially on [bd,,j]+, [bd,, dj]+, or [dj, j]‘. 

Case Ui <j: Then the q-operation of [i, Ui]- on [bd,, j] + and [dj,j]’ is trivial. For 

the q-operation of [i, ai] on [bd,, dj] + to be nontrivial, we must have i < dj < ui. But 

in that case 6,+ (A-)[i] ~c?,,~.j,+ (A-)[i] <dj, SO that the djth component of BC is 

B+ D+ A- 

Fig. 6. 
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not affected either by the cp-operation of the J-arrow of 6”+ (A -) that results from 

[i,ai]-. Thus, only the following case is of interest: 

CUse,j~ui: Define I, ={iIhdJ<i<rlj and j<cri), I,=(ild,<i<j and j<aij. 

Suhcuse Ii =@: If I2 =8, too, then no action takes place. Otherwise let i2 =min(lz). 

Then Chd,, .i 1 +~(A~)=[hd,,j]+~([ir.u,,l )=[hd,, iz]+, [~~j,,i]+“(“~)=[dj,j]+t’P([i~.~,,l~)= 

Cd,, jZl+, and Ch,. d,l +‘dd,r(~~ “+,&J+ b ecause of the discussion above. 

Suhcase I1 #@: Let il =min(l,). Then [hd,, j]‘“‘“~‘=[hd,,,j]‘c’[il.ol,l~)= [hd,,il]+. 

It may happen that hd,=hd,_ 1. However, in that case we may drop [hd,, j]’ 

from its consideration as a component of B + ‘7 Df altogether, because its contribution 

to (B+ D+ )Vp(Am) will be superseded by monotone extension arrows anyway. 

Now assuming hd, #h,, + , . d,, I >dj follows. Since for k<,j the &transition of 

[iI, (I~,] induced by [d,, k] + is trivial and d,, , >dj, d~~([il,~~i,]-) has a tail at least 

as long as dj. Therefore, the p-operation of a,+( [il.ai,]-) on [hd,,dj]+ yields 

[t&l,, i,]‘. 

Regarding D+V’” -), we note in this case: For li < j the r-arrows of DtqtA ) which are 

based at il or below cannot extend their heads beyond ii (even after monotone 

extension). For k>j the f-arrows of D+q(“-’ are already based at values > dj> ii, 

Thus, forming the product on the right-hand side of (b) still gives iist component 

Chd,> ii] +. Monotone extension does not make a difference for the value of the 

product. c 

This completes the proof of Proposition 3.3. 

For efficiency considerations it is interesting to note that 

IEnd(X, d)l:‘IEnd(X, G)+1=(lX/+l);2. 

To this end one determines / End(X, < )’ 1 to be the / X 1 th Catalan number, which is 

conveniently done by a counting technique discussed in 141. 

When investigating the structure of a finite semigroup S, a usual approach is to 

study the idempotent elements of S. Our idea is to elaborate that approach by 

involving part of the semigroup structure and to study subsemilattices and their 

products. While a complete survey of all subsemilattices and their products is most 

likely an unrealistic goal (e.g., just think of the full transformation semigroup T(X)), it 

is probably sensible to single out certain subsemilattices that provide some insight, 

such as a bilateral semidirect decomposition. This is what we did for End(X, <) in 

Fig. 7, the upper part illustrating Propositions 3.2 and 3.3. The part below S, Sz is 

merely included to exhibit the relationship to the Example in Section 2. Since the 

general bilateral semidirect product is a very powerful operation, it may be interesting 

to observe that both Propositions 3.1 and 3.3 require only one application of that 

product, independently of the size of X. This is in contrast to the bilateral semidirect 

decomposition of the symmetric group on X where nested application is necessary, 

indicating once more that a complex scmigroup structure is often related to nontrivial 

subgroups. 
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4. Applications to formal languages 

Since automata theory forms a link between semigroups on one side and formal 

languages on the other side, and studying distinguished classes of objects is one of the 

most fruitful concepts for both of them, let us try an analogous approach to automata. 

We start with a definition of Jang [6] explaining what it means that a class of 

automata recognizes a class of languages: 

Definition. A class ‘,I of initialized finite automata (i.e., with initial state fixed, but the 

set of final states left open) is a class of standard automata for a class of formal 

languages, if 

(1) for given alphabet C, the automata in with input alphabet C form a chain with 

respect to the covering relation of automata, 

(2) every language in is recognized by some automaton in ‘,‘, and 

(3) every automaton in ‘,I accepts only languages in whatever subset of states is 

chosen to be final. 

If the class (.I happens to be a one- or two-parameter family of machines, then this 

concept enables us to study the entire corresponding class of languages by inves- 

tigating the properties of so to speak a single machine, with those parameters as 

variables. This concept is a generalization of McNaughton and Papert’s [9] approach 

to locally testable languages via counter-free automata. It turns out to be useful 

in formal language theory, even if one is not interested in automata in their own 

right. 

So, let us have a look at the variety of locally testable languages. The corresponding 

semigroup variety is LJ1 = J, * D, the pseudo-variety generated by semidirect prod- 

ucts of semilattices and definite semigroups. The original proof of that was not easy 

(cf. Eilenberg [3], Straubing [13], and further development by Tilson [ 141) and relies 

on Simon’s theorem on graphs. Indeed, Simon’s theorem carries essentially the main 

workload of the proof, as Jang [6] showed by comparing two classes of standard 

automata for locally testable languages. Both of them are built around a shift register 

scanning the length-k segments of an input string: one is a straightforward formaliz- 

ation of McNaughton and Papert’s machine motivating the concept of k-testability, 

while the other is closer to the graph theoretic setting of Simon’s theorem. 

As an exercise in semidirect decompositions, one may try to find a natural de- 

composition of the transition semigroup of these machines, in particular because their 

existence is already guaranteed by membership in L J I = J 1 * D. This can be done, but 

may require an embedding of the transition semigroup into a larger semigroup. 

A natural solution is the following semigroup which actually gives rise to a third class 

of standard automata for locally testable languages. This class of automata is closer to 

the semigroup theoretic point of view, and the equivalence of all three classes of 

machines can be seen by adjustment of the length parameter k. 
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Using the shift-register semigroup of Section 2, define the semidirect product 

where 2DA.k denotes the power set of D,,,, together with the union of sets as semigroup 

multiplication and 

6,(A)=(u.12’q11’Er4), for UGD,,, and AsD,,,. 

Here, elements of D,., are conveniently denoted by the string fed to the shift register. 

To obtain an automaton DLTZ,k, just take S Z,k as the set of states with ( (i),i) being 

the initial state (i. denotes the empty string), and the multiplication as transition 

function: For input UEC multiply the current state with ({u) ,a) from the right. The 

transition semigroup of DLT_r,k, obviously, is isomorphic to a subsemigroup of SZ.k. 

and the class of all DLT,,k’s is a class of standard automata for locally testable 

languages. It may be interesting to see how that semidirect decomposition can be 

visualized in the state diagram of DLTI,k. Fig. 8 is for k = 2 and z‘= (u,h ). The shaded 

boxes indicate the past history of length-k segments of the input string. These 

segments are represented by their location in a copy of the shift register state diagram. 

For the pseudo-variety LJI this approach yields a set of generators without making 

use of the direct product as a variety operation: we just need homomorphic images of 

subsemigroups of SI,k. 

Proposition 4.1. Ewry semiyroup in L J 1 is covered hq‘ a semidirect product of the,form 

2D) k xh D,,,. 

Proof. Given a semigroup S in L J 1, find a syntactic semigroup S’ of some language 

L such that S c S’EL J 1. L is locally testable. Thus, S’ is a homomorphic image of the 

transition semigroup of some DLT,,k for suitable C and k. L: 
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