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a b s t r a c t

We show that the set of fixed points of an asymptotically regular mapping acting on
a convex and weakly compact subset of a Banach space is, in some cases, a Hölder
continuous retract of its domain. Our results qualitatively complement the corresponding
fixed point existence theorems and extend a few recent results of Górnicki [15–17]. We
also characterize Bynum’s coefficients and the Opial modulus in terms of nets.
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1. Introduction

The notion of asymptotic regularity, introduced by Browder and Petryshyn in [1], has become a standing assumption
in many results concerning fixed points of nonexpansive and more general mappings. Recall that a mapping T : M → M
acting on a metric space (M, d) is said to be asymptotically regular if

lim
n→∞

d(T nx, T n+1x) = 0

for all x ∈ M . Ishikawa [2] proved that if C is a bounded closed convex subset of a Banach space X and T : C → C is
nonexpansive, then the mapping Tλ = (1− λ)I + λT is asymptotically regular for each λ ∈ (0, 1). Edelstein and O’Brien [3]
showed independently that Tλ is uniformly asymptotically regular over x ∈ C , and Goebel and Kirk [4] proved that the
convergence is even uniform with respect to all nonexpansive mappings from C into C . Other examples of asymptotically
regularmappings are given by the result of Anzai and Ishikawa [5] (see also [6]): if T is an affinemapping acting on a bounded
closed convex subset of a locally convex space X , then Tλ = (1 − λ)I + λT is uniformly asymptotically regular.

In 1987, Lin [7] constructed a uniformly asymptotically regular Lipschitz mapping in ℓ2 without fixed points which
extended an earlier construction of Tingley [8]. Subsequently, Maluta et al. [9] proved that there exists a continuous fixed-
point free asymptotically regular mapping defined on any bounded convex subset of a normed space which is not totally
bounded (see also [10]). For the fixed-point existence theorems for asymptotically regular mappings we refer the reader to
[11–13].

It was shown in [14] that the set of fixed points of a k-uniformly Lipschitzian mapping in a uniformly convex space is a
retract of its domain if k is close to 1. In recent papers [15–17], Górnicki proved several results concerning the structure of
fixed-point sets of asymptotically regular mappings in uniformly convex spaces. In this paper we continue this work and
extend a few results of Górnicki in two aspects: we consider a more general class of spaces and prove that in some cases,
the fixed-point set Fix T is not only a (continuous) retract but even a Hölder continuous retract of the domain. We present
our results in a more general case of a one-parameter nonlinear semigroup. We also characterize Bynum’s coefficients and
the Opial modulus in terms of nets.
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2. Preliminaries

Let G be an unbounded subset of [0, ∞) such that t + s, t − s ∈ G for all t, s ∈ Gwith t > s (e.g., G = [0, ∞) or G = N).
By a nonlinear semigroup on C we shall mean a one-parameter family of mappings T = {Tt : t ∈ G} from C into C such that
Tt+sx = Tt Tsx for all t, s ∈ G and x ∈ C . In particular, we do not assume in this paper that {Tt : t ∈ G} is strongly continuous.
We use a symbol |T | to denote the exact Lipschitz constant of a mapping T : C → C , i.e.,

|T | = inf{k > 0 : ∥Tx − Ty∥ ≤ k∥x − y∥ for all x, y ∈ C}.

If T is not Lipschitzian we define |T | = ∞.
A semigroup T = {Tt : t ∈ G} from C into C is said to be asymptotically regular if limt ∥Tt+hx − Ttx∥ = 0 for every x ∈ C

and h ∈ G.
Assume now that C is convex and weakly compact and T = {Tt : t ∈ G} is a nonlinear semigroup on C such that

s(T ) = lim inft |Tt | < ∞. Choose a sequence (tn) of elements in G such that limn→∞ tn = ∞ and s(T ) = limn→∞

Ttn . By
Tikhonov’s theorem, there exists a pointwise weakly convergent subnet (Ttnα )α∈A of (Ttn). We denote it briefly by (Ttα )α∈A.
For every x ∈ C , define

Lx = w- lim
α

Ttα x, (1)

i.e., Lx is the weak limit of the net (Ttα x)α∈A. Notice that Lx belongs to C since C is convex and weakly compact. The weak
lower semicontinuity of the norm implies

∥Lx − Ly∥ ≤ lim inf
α

∥Ttα x − Ttαy∥ ≤ lim sup
n→∞

∥Ttnx − Ttny∥ ≤ s(T )∥x − y∥.

We formulate the above observation as a separate lemma.

Lemma 2.1. Let C be a convex weakly compact subset of a Banach space X and let T = {Tt : t ∈ G} be a semigroup on C such
that s(T ) = lim inft |Tt | < ∞. Then the mapping L : C → C defined by (1) is s(T )-Lipschitz.

We end this section with the following variant of a well known result which is crucial for our work (see, e.g., [18,
Proposition 1.10]).

Lemma 2.2. Let (X, d) be a complete bounded metric space and let L : X → X be a k-Lipschitz mapping. Suppose there exist
0 < γ < 1 and c > 0 such that d(Ln+1x, Lnx) ≤ cγ n for every x ∈ X. Then Rx = limn→∞ Lnx is a Hölder continuous mapping.

Proof. Wemay assume that diam X = 1. Fix x ≠ y in X and notice that for any n ∈ N,

d(Rx, Ry) ≤ d(Rx, Lnx) + d(Lnx, Lny) + d(Lny, Ry) ≤ 2c
γ n

1 − γ
+ knd(x, y).

Take α < 1 such that k ≤ γ 1−α−1
and put γ n−r

= d(x, y)α for some n ∈ N and 0 < r ≤ 1. Then kn−1
≤ (γ 1−α−1

)n−r and
hence

d(Rx, Ry) ≤ 2c
γ n−r

1 − γ
+ k(γ n−r)1−α−1

d(x, y) =


2c

1 − γ
+ k


d(x, y)α. �

3. Bynum’s coefficients and the Opial modulus in terms of nets

From now on, C denotes a nonempty convex weakly compact subset of a Banach space X . LetA be a directed set, (xα)α∈A

a bounded net in X, y ∈ X and write

r(y, (xα)) = lim sup
α

∥xα − y∥,

r(C, (xα)) = inf{r(y, (xα)) : y ∈ C},

A(C, (xα)) = {y ∈ C : r(y, (xα)) = r(C, (xα))}.

The number r(C, (xα)) and the set A(C, (xα)) are called, respectively, the asymptotic radius and the asymptotic center of
(xα)α∈A relative to C . Notice that A(C, (xα)) is nonempty convex and weakly compact. Write

ra(xα) = inf{lim sup
α

∥xα − y∥ : y ∈ conv({xα : α ∈ A})}

and let

diama(xα) = inf
α

sup
β,γ≥α

∥xβ − xγ ∥

denote the asymptotic diameter of (xα).
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The normal structure coefficient N(X) of a Banach space X is defined by

N(X) = sup {k : k r(K) ≤ diam K for each bounded convex set K ⊂ X} ,

where r(K) = infy∈K supx∈K ∥x− y∥ is the Chebyshev radius of K relative to itself. Assuming that X does not have the Schur
property, the weakly convergent sequence coefficient (or Bynum’s coefficient) is given by

WCS(X) = sup

k : k ra(xn) ≤ diama(xn) for each sequence xn

w
−→ 0


,

where xn
w

−→ 0 means that (xn) is weakly null in X (see [19]). For Schur spaces, we define WCS(X) = 2.
It was proved independently in [20–22] that

WCS(X) = sup

k : k lim sup

n
∥xn∥ ≤ diama(xn) for each sequence xn

w
−→ 0


(2)

and, in [23], that

WCS(X) = sup

k : k lim sup

n
∥xn∥ ≤ D[(xn)] for each sequence xn

w
−→ 0


,

where D[(xn)] = lim supm lim supn ∥xn − xm∥.
Kaczor and Prus [24] initiated a systematic study of assumptions under which one can replace sequences by nets in a

given condition. We follow the arguments from that paper and use the well knownmethod of constructing basic sequences
attributed to Mazur (see [25]). Let us first recall a variant of a classical lemma which can be proved in the same way as for
sequences (see, e.g., [25, Lemma]).

Lemma 3.1. Let {xα}α∈A be a bounded net in X weakly converging to 0 such that infα ∥xα∥ > 0. Then for every ε > 0, α′
∈ A

and for every finite dimensional subspace E of X, there is α > α′ such that

∥e + txα∥ ≥ (1 − ε)∥e∥

for any e ∈ E and every scalar t.

Recall that a sequence (xn) is basic if and only if there exists a number c > 0 such that ∥
q

i=1 tixi∥ ≤ c∥
p

i=1 tixi∥ for
any integers p > q ≥ 1 and any sequence of scalars (ti). In the proof of the next lemma, based on Mazur’s technique, we
follow in part the reasoning given in [24, Corollary 2.6]. Set D[(xα)] = lim supα lim supβ

xα − xβ

.
Lemma 3.2. Let (xα)α∈A be a bounded net in X which converges to 0 weakly but not in norm. Then there exists an increasing
sequence (αn) of elements of A such that limn ∥xαn∥ = lim supα ∥xα∥, diama(xαn) ≤ D[(xα)] and (xαn) is a basic sequence.

Proof. Since (xα)α∈A does not converge strongly to 0 and D[(xαs)] ≤ D[(xα)] for any subnet (xαs)s∈B of (xα)α∈A, we can
assume, passing to a subnet, that infα ∥xα∥ > 0 and the limit c = limα ∥xα∥ exists. Write d = D[(xα)]. Let (εn) be a sequence
of reals from the interval (0, 1) such that Π∞

n=1(1 − εn) > 0. We shall define the following sequences (αn) and (βn) by
induction.

Let us put α1 < β1 ∈ A such that
∥xα1∥ − c

 < 1 and supβ≥β1
∥xα1 − xβ∥ < d + 1. By the definitions of c and d, there

exists α′ > β1 such that |∥xα∥ − c| < 1
2 and infβ ′ supβ≥β ′ ∥xα − xβ∥ < d +

1
2 for every α ≥ α′. It follows from Lemma 3.1

that there exists α2 > α′ such that

∥t1xα1 + t2xα2∥ ≥ (1 − ε2)∥t1xα1∥

for any scalars t1, t2. Furthermore,
∥xα2∥ − c

 < 1
2 , and we can find β2 > α2 such that supβ≥β2

∥xα2 − xβ∥ < d +
1
2 .

Suppose now that we have chosen α1 < β1 < · · · < αn < βn (n > 1) in such a way that
∥xαk∥ − c

 < 1
k ,

supβ≥βk
∥xαk − xβ∥ < d +

1
k and

(1 − εk)∥t1xα1 + · · · + tk−1xαk−1∥ ≤ ∥t1xα1 + · · · + tkxαk∥

for any scalars t1, . . . , tk, k = 2, . . . , n. From the definitions of c and d, and by Lemma 3.1, we can find βn+1 > αn+1 > βn
such that

∥xαn+1∥ − c
 < 1

n+1 , supβ≥βn+1
∥xαn+1 − xβ∥ < d +

1
n+1 and (considering a subspace E spanned by the elements

xα1 , . . . , xαn and putting e = t1xα1 + · · · + tnxαn ),

(1 − εn+1)∥t1xα1 + · · · + tnxαn∥ ≤ ∥t1xα1 + · · · + tn+1xαn+1∥

for any scalars t1, . . . , tn+1.
Notice that the sequence (xαn) defined in this way satisfies limn→∞ ∥xαn∥ = c and diama(xαn) ≤ d. Furthermore,

∥t1xα1 + · · · + tpxαp∥ ≥ Π
p
n=q+1(1 − εn)∥t1xα1 + · · · + tqxαq∥

for any integers p > q ≥ 1 and any sequence of scalars (ti). Hence (xαn) is a basic sequence. �
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We are now in a position to give a characterization of the coefficient WCS(X) in terms of nets. The abbreviation ‘‘{xα} is
r.w.c.’’ means that the set {xα : α ∈ A} is relatively weakly compact.

Theorem 3.3. Let X be a Banach space without the Schur property and write

w1 = sup

k : k ra(xα) ≤ diama(xα) for each net xα

w
−→ 0, {xα} is r.w.c.


,

w2 = sup

k : k lim sup

α

∥xα∥ ≤ diama(xα) for each net xα
w

−→ 0, {xα} is r.w.c.


,

w3 = sup

k : k lim sup

α

∥xα∥ ≤ D[(xα)] for each net xα
w

−→ 0, {xα} is r.w.c.


.

Then

WCS(X) = w1 = w2 = w3.

Proof. Fix k > w3 and choose a weakly null net (xα) such that the set {xα : α ∈ A} is relatively weakly compact and
k lim supα ∥xα∥ > D[(xα)]. Then, by Lemma 3.2, there exists an increasing sequence (αn) such that

k lim
n

∥xαn∥ > D[(xα)] ≥ diama(xαn)

and (xαn) is a basic sequence. Since the set {xα : α ∈ A} is relatively weakly compact, we can assume (passing to a
subsequence) that (xαn) is weakly convergent. Since it is a basic sequence, its weak limit equals zero. It follows from (2)
that WCS(X) ≤ k and letting k go to w3 we have

WCS(X) ≤ w3 ≤ w2 ≤ w1 ≤ WCS(X). �

Notice that a similar characterization holds for the normal structure coefficient.

Theorem 3.4. For a Banach space X,

N(X) = sup {k : k ra(xα) ≤ diama(xα) for each bounded net (xα) in X} .

Proof. Let

N1 = sup {k : k ra(xα) ≤ diama(xα) for each bounded net (xα) in X} .

Set k > N1 and choose a bounded net (xα) such that k ra(xα) > diama(xα). Fix y ∈ conv({xα : α ∈ A}) and notice that
k lim supα ∥xα − y∥ > diama(xα). In a straightforward way, we can choose a sequence (αn) such that

k lim
n

∥xαn − y∥ = k lim sup
α

∥xα − y∥ > diama(xα) ≥ diama(xαn).

It follows from [19, Theorem 1] that N(X) ≤ k and letting k go to N1 we have N(X) ≤ N1. By [26, Theorem 1], N(X) ≥ N1
and the proof is complete. �

In the next section we shall need a similar characterization for the Opial modulus of a Banach space X , defined for each
c ≥ 0 by

rX (c) = inf

lim inf
n→∞

∥xn + x∥ − 1


,

where the infimum is taken over all x ∈ X with ∥x∥ ≥ c and all weakly null sequences (xn) in X such that lim infn→∞ ∥xn∥
≥ 1 (see [27]). We first prove the following counterpart of Lemma 3.2.

Lemma 3.5. Let (xα)α∈A be a bounded net in X which converges to 0 weakly but not in norm and x ∈ X. Then there exists an
increasing sequence (αn) of elements of A such that limn ∥xαn + x∥ = lim infα ∥xα + x∥, limn ∥xαn∥ ≥ lim infα ∥xα∥ and (xαn)
is a basic sequence.

Proof. Since (xα)α∈A does not converge strongly to 0 and

lim inf
s

∥xαs∥ ≥ lim inf
α

∥xα∥

for any subnet (xαs)s∈B of (xα)α∈A, it is sufficient (passing to a subnet) to consider only the case that infα ∥xα∥ > 0 and the
limits c1 = lim infα ∥xα + x∥, c2 = lim infα ∥xα∥ exist. Let (εn) be a sequence of reals from the interval (0, 1) such that
Π∞

n=1(1 − εn) > 0. We shall define the sequence (αn) by induction.
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Let us put α1 ∈ A such that
∥xα1 + x∥ − c1

 < 1 and
∥xα1∥ − c2

 < 1. By the definitions of c1 and c2, there exists
α′ > α1 such that |∥xα + x∥ − c1| < 1

2 and |∥xα∥ − c2| < 1
2 for every α ≥ α′. It follows from Lemma 3.1 that there exists

α2 > α′ such that

∥t1xα1 + t2xα2∥ ≥ (1 − ε2)∥t1xα1∥

for any scalars t1, t2. We can now proceed analogously to the proof of Lemma 3.2 to obtain a basic sequence (xαn) with the
desired properties. �

Theorem 3.6. For a Banach space X without the Schur property and for c ≥ 0,

rX (c) = inf

lim inf

α
∥xα + x∥ − 1


,

where the infimum is taken over all x ∈ X with ∥x∥ ≥ c and all weakly null nets (xα) in X such that lim infα ∥xα∥ ≥ 1 and the
set {xα : α ∈ A} is relatively weakly compact.

Proof. Let r1(c) = inf {lim infα ∥xα + x∥ − 1}, where the infimum is taken as above. Fix c ≥ 0 and take k > r1(c). Then
there exist x ∈ X with ∥x∥ ≥ c and a weakly null net (xα)α∈A such that lim infα ∥xα∥ ≥ 1, {xα : α ∈ A} is relatively weakly
compact and

lim inf
α

∥xα + x∥ − 1 < k.

By Lemma 3.5, there exists an increasing sequence (αn) of elements of A such that limn ∥xαn∥ ≥ 1, limn ∥xαn + x∥ − 1 < k
and (xαn) is a basic sequence. Since {xα : α ∈ A} is relatively weakly compact, we can assume (passing to a subsequence)
that (xαn) is weakly null. Hence rX (c) < k and since k is an arbitrary number greater than r1(c), it follows that rX (c) ≤ r1(c).
The reverse inequality is obvious. �

4. Fixed-point sets as Hölder continuous retracts

The following lemma may be proved in a similar way to [28, Theorem 7.2].

Lemma 4.1. Let C be a nonempty convex weakly compact subset of a Banach space X and T = {Tt : t ∈ G} an asymptotically
regular semigroup on C such that s(T ) = limα

Ttα  for a pointwise weakly convergent subnet (Ttα )α∈A of (Tt)t∈G. Let
x0 ∈ C, xm+1 = w- limα Ttα xm, m = 0, 1, . . . , and

Bm = lim sup
α

Ttα xm − xm+1
 .

Assume that

(a) s(T ) <
√
WCS(X) or,

(b) s(T ) < 1 + rX (1).

Then, there exists γ < 1 such that Bm ≤ γ Bm−1 for anym = 1, 2, . . . .

Proof. It follows from the asymptotic regularity of {Tt : t ∈ G} that

lim sup
α

Ttα−l x − y
 = lim sup

α

Ttα x − y


for any l ∈ G and x, y ∈ C . Thus

D[(Ttα xm)] = lim sup
β

lim sup
α

Ttα xm − Ttβ xm


≤ lim sup
β

Ttβ  lim sup
α

Ttα−tβ xm − xm
 = s(T ) lim sup

α

Ttα xm − xm
 .

Hence, from Theorem 3.3 and from the weak lower semicontinuity of the norm,

Bm ≤
D[(Ttα xm)]

WCS(X)
≤

s(T )

WCS(X)
lim sup

α

Ttα xm − xm


≤
s(T )

WCS(X)
lim sup

α

lim inf
β

Ttα xm − Ttβ xm−1


≤
s(T )

WCS(X)
lim sup

α

Ttα  lim sup
β

xm − Ttβ−tα xm−1
 =

(s(T ))2

WCS(X)
Bm−1.

This gives (a). For (b), we can use Theorem 3.6 and proceed analogously to the proof of [28, Theorem 7.2] (see also [17,
Theorem 5]). �



182 A. Wiśnicki / J. Math. Anal. Appl. 393 (2012) 177–184

We are now in a position to prove a qualitative semigroup version of [28, Theorem 7.2 (a) (b)] which is in turn based on
the results given in [11,12] (see also [29]). It also extends, in a few directions, [17, Theorem 5].

Theorem 4.2. Let C be a nonempty convex weakly compact subset of a Banach space X and T = {Tt : t ∈ G} an asymptotically
regular semigroup on C. Assume that

(a) s(T ) <
√
WCS(X) or,

(b) s(T ) < 1 + rX (1).

Then T has a fixed point in C and Fix T = {x ∈ C : Ttx = x, t ∈ G} is a Hölder continuous retract of C .

Proof. Choose a sequence (tn) of elements in G such that limn→∞ tn = ∞ and s(T ) = limn→∞

Ttn . Let (Ttnα )α∈A (denoted
briefly by (Ttα )α∈A) be a pointwise weakly convergent subnet of (Ttn). Define, for every x ∈ C ,

Lx = w- lim
α

Ttα x.

Fix x0 ∈ C and put xm+1 = Lxm,m = 0, 1, . . . . Let

Bm = lim sup
α

Ttα xm − xm+1
 .

By Lemma 4.1, there exists γ < 1 such that Bm ≤ γ Bm−1 for any m ≥ 1. Since the norm is weak lower semicontinuous and
the semigroup is asymptotically regular,

∥Lm+1x0 − Lmx0∥ = ∥xm+1 − xm∥ ≤ lim inf
α

Ttα xm − xm


≤ lim inf
α

lim inf
β

Ttα xm − Ttβ xm−1
 ≤ lim sup

α

Ttα  lim sup
β

xm − Ttβ−tα xm−1


= s(T )Bm−1 ≤ s(T )γ m−1diam C

for every x0 ∈ C and m ≥ 1. Furthermore, by Lemma 2.1, the mapping L : C → C is s(T )-Lipschitz. It follows from
Lemma 2.2 that Rx = limn→∞ Lnx is a Hölder continuous mapping on C . We show that R is a retraction onto Fix T . It is clear
that if x ∈ Fix T , then Rx = x. Furthermore, for every x ∈ C,m ≥ 1 and α ∈ A,

∥TtαRx − Rx∥ ≤
TtαRx − Ttα L

mx
 +

Ttα Lmx − Lm+1x
 +

Lm+1x − Rx


and hence

lim
α

∥TtαRx − Rx∥ ≤ s(T )
Rx − Lmx

 + Bm +
Lm+1x − Rx

 .

Letting m go to infinity, lim supα ∥TtαRx − Rx∥ = 0. Since s(T ) = limβ

Ttβ  < ∞, there exists β0 ∈ A such that
Ttβ  < ∞

for every β ≥ β0. Then, the asymptotic regularity of T implies

∥TtβRx − Rx∥ ≤
Ttβ  lim sup

α

∥Rx − TtαRx∥ + lim
α

∥Ttβ+tαRx − TtαRx∥ + lim sup
α

∥TtαRx − Rx∥ = 0.

Hence TtβRx = Rx for every β ≥ β0 and, from the asymptotic regularity again,

∥TtRx − Rx∥ = lim
β

Tt+tβRx − TtβRx
 = 0

for each t ∈ G. Thus Rx ∈ Fix T for every x ∈ C and the proof is complete. �

It is well known that the Opial modulus of a Hilbert space H ,

rH(c) =


1 + c2 − 1,

and the Opial modulus of ℓp, p > 1,

rℓp(c) = (1 + cp)1/p − 1

for all c ≥ 0 (see [27]). The following corollaries are sharpened versions of [15, Theorem 2.2] and [17, Corollary 8].

Corollary 4.3. Let C be a nonempty bounded closed convex subset of a Hilbert space H. If T = {Tt : t ∈ G} is an asymptotically
regular semigroup on C such that

lim inf
t

|Tt | <
√
2,

then Fix T is a Hölder continuous retract of C.
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Corollary 4.4. Let C be a nonempty bounded closed convex subset of ℓp, 1 < p < ∞. If T = {Tt : t ∈ G} is an asymptotically
regular semigroup on C such that

lim inf
t

|Tt | < 21/p,

then Fix T is a Hölder continuous retract of C.

Let 1 ≤ p, q < ∞. Recall that the Bynum space ℓp,q is the space ℓp endowed with the equivalent norm ∥x∥p,q =

(∥x+
∥
q
p + ∥x−

∥
q
p)

1/q, where x+, x− denote, respectively, the positive and the negative part of x. If p > 1, then

rℓp,q(c) = min{(1 + cp)1/p − 1, (1 + cq)1/q − 1}

for all c ≥ 0 (see, e.g., [30]). The following corollary extends [17, Corollary 10].

Corollary 4.5. Let C be a nonempty convex weakly compact subset of ℓp,q, 1 < p < ∞, 1 ≤ q < ∞. If T = {Tt : t ∈ G} is an
asymptotically regular semigroup on C such that

lim inf
t

|Tt | < min{21/p, 21/q
},

then Fix T is a Hölder continuous retract of C.

Let us now examine the case of p-uniformly convex spaces. Recall that a Banach space X is p-uniformly convex if
infε>0 δ(ε)ε−p > 0, where δ denotes the modulus of uniform convexity of X . If X is p-uniformly convex, then (see [31])

∥λx + (1 − λ)y∥p
≤ λ ∥x∥p

+ (1 − λ) ∥y∥p
− cpWp(λ) ∥x − y∥p (3)

for some cp > 0 and every x, y ∈ X, 0 ≤ λ ≤ 1, whereWp(λ) = λ(1− λ)p + λp(1− λ). A Banach space X satisfies the Opial
property if

lim inf
n→∞

∥xn − x∥ < lim inf
n→∞

∥xn − y∥

for every sequence xn
w

−→ x and y ≠ x.
The following theorem is an extension of [17, Theorem 7], and a partial extension of [16, Theorem 9].

Theorem 4.6. Let C be a nonempty bounded closed convex subset of a p-uniformly convex Banach space X with the Opial property
and T = {Tt : t ∈ G} an asymptotically regular semigroup on C such that

lim inf
t

|Tt | < max


(1 + cp)1/p,


1
2


1 + (1 + 4cpWCS(X)p)1/2

1/p


.

Then T has a fixed point in C and Fix T is a Hölder continuous retract of C.

Proof. Choose a sequence (tn) of elements in G, limn→∞ tn = ∞, such that s(T ) = limn→∞

Ttn  and let (Ttα )α∈A denotes
a pointwise weakly convergent subnet of (Ttn). Define, for every x ∈ C ,

Lx = w- lim
α

Ttα x.

Fix x0 ∈ C and put xm+1 = Lxm,m ≥ 0. Let Bm = lim supα

Ttα xm − xm+1
. Since X satisfies the Opial property, it follows

from [24, Proposition 2.9] that

lim sup
α

Ttα xm − xm+1
 < lim sup

α

Ttα xm − y


for every y ≠ xm+1, i.e., xm+1 is the unique point in the asymptotic center A(C, (Ttα xm)),m ≥ 0. Applying (3) yields

cpWp(λ)
xm − Ttα xm

p
+

λxm + (1 − λ)Ttα xm − Ttβ xm−1
p

≤ λ
xm − Ttβ xm−1

p
+ (1 − λ)

Ttα xm − Ttβ xm−1
p

for every α, β ∈ A, 0 < λ < 1,m > 0. Following [16, Theorem 9] (see also [32]) and using the asymptotic regularity of T ,
we obtain

lim sup
α

Ttα xm − xm
p

≤
s(T )p − 1

cp
(Bm−1)

p (4)

for any m > 0. By Theorem 3.3 and the weak lower semicontinuity of the norm, we have

Bm ≤
D[(Ttα xm)]

WCS(X)
≤

s(T )

WCS(X)
lim sup

α

Ttα xm − xm
 . (5)
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Furthermore, by the Opial property,

Bm ≤ lim sup
α

Ttα xm − xm
 . (6)

Combining (4) with (5) and (6) we see that

(Bm)p = lim sup
α

Ttα xm − xm+1
p

≤ γ p(Bm−1)
p,

where

γ p
= max


s(T )p − 1

cp
,
s(T )p − 1

cp


s(T )

WCS(X)

p
< 1,

by assumption. Hence Bm ≤ γ Bm−1 for every m ≥ 1 and, proceeding in the same way as in the proof of Theorem 4.2, we
conclude that Fix T is a nonempty Hölder continuous retract of C . �
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