J. Math. Anal. Appl. 393 (2012) 177–184

Contents lists available at SciVerse ScienceDirect

Journal of Mathematical Analysis and Applications

journal homepage: www.elsevier.com/locate/jmaa

On the structure of fixed-point sets of asymptotically regular semigroups

Andrzej Wiśnicki

Andrzej Wiśnicki, Institute of Mathematics, Maria Curie-Skłodowska University, 20-031 Lublin, Poland

ARTICLE INFO

Article history: Received 14 January 2012 Available online 13 April 2012 Submitted by T.D. Benavides

Keywords: Asymptotically regular mapping Retraction Fixed point Opial property Bynum's coefficients Weakly null nets

1. Introduction

ABSTRACT

We show that the set of fixed points of an asymptotically regular mapping acting on a convex and weakly compact subset of a Banach space is, in some cases, a Hölder continuous retract of its domain. Our results qualitatively complement the corresponding fixed point existence theorems and extend a few recent results of Górnicki [15–17]. We also characterize Bynum's coefficients and the Opial modulus in terms of nets.

© 2012 Elsevier Inc. All rights reserved.

The notion of asymptotic regularity, introduced by Browder and Petryshyn in [1], has become a standing assumption in many results concerning fixed points of nonexpansive and more general mappings. Recall that a mapping $T : M \to M$ acting on a metric space (M, d) is said to be asymptotically regular if

$$\lim_{n\to\infty} d(T^n x, T^{n+1} x) = 0$$

for all $x \in M$. Ishikawa [2] proved that if *C* is a bounded closed convex subset of a Banach space *X* and $T : C \to C$ is nonexpansive, then the mapping $T_{\lambda} = (1 - \lambda)I + \lambda T$ is asymptotically regular for each $\lambda \in (0, 1)$. Edelstein and O'Brien [3] showed independently that T_{λ} is uniformly asymptotically regular over $x \in C$, and Goebel and Kirk [4] proved that the convergence is even uniform with respect to all nonexpansive mappings from *C* into *C*. Other examples of asymptotically regular mappings are given by the result of Anzai and Ishikawa [5] (see also [6]): if *T* is an affine mapping acting on a bounded closed convex subset of a locally convex space *X*, then $T_{\lambda} = (1 - \lambda)I + \lambda T$ is uniformly asymptotically regular.

In 1987, Lin [7] constructed a uniformly asymptotically regular Lipschitz mapping in ℓ_2 without fixed points which extended an earlier construction of Tingley [8]. Subsequently, Maluta et al. [9] proved that there exists a continuous fixed-point free asymptotically regular mapping defined on any bounded convex subset of a normed space which is not totally bounded (see also [10]). For the fixed-point existence theorems for asymptotically regular mappings we refer the reader to [11–13].

It was shown in [14] that the set of fixed points of a k-uniformly Lipschitzian mapping in a uniformly convex space is a retract of its domain if k is close to 1. In recent papers [15–17], Górnicki proved several results concerning the structure of fixed-point sets of asymptotically regular mappings in uniformly convex spaces. In this paper we continue this work and extend a few results of Górnicki in two aspects: we consider a more general class of spaces and prove that in some cases, the fixed-point set Fix T is not only a (continuous) retract but even a Hölder continuous retract of the domain. We present our results in a more general case of a one-parameter nonlinear semigroup. We also characterize Bynum's coefficients and the Opial modulus in terms of nets.

E-mail address: awisnic@hektor.umcs.lublin.pl.

⁰⁰²²⁻²⁴⁷X/\$ – see front matter S 2012 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2012.03.036

2. Preliminaries

Let *G* be an unbounded subset of $[0, \infty)$ such that t + s, $t - s \in G$ for all $t, s \in G$ with t > s (e.g., $G = [0, \infty)$ or $G = \mathbb{N}$). By a nonlinear semigroup on *C* we shall mean a one-parameter family of mappings $\mathcal{T} = \{T_t : t \in G\}$ from *C* into *C* such that $T_{t+s}x = T_t T_s x$ for all $t, s \in G$ and $x \in C$. In particular, we do not assume in this paper that $\{T_t : t \in G\}$ is strongly continuous. We use a symbol |T| to denote the exact Lipschitz constant of a mapping $T : C \to C$, i.e.,

$$T| = \inf\{k > 0 : ||Tx - Ty|| \le k ||x - y|| \text{ for all } x, y \in C\}.$$

If *T* is not Lipschitzian we define $|T| = \infty$.

A semigroup $\mathcal{T} = \{T_t : t \in G\}$ from *C* into *C* is said to be asymptotically regular if $\lim_t ||T_{t+h}x - T_tx|| = 0$ for every $x \in C$ and $h \in G$.

Assume now that *C* is convex and weakly compact and $\mathcal{T} = \{T_t : t \in G\}$ is a nonlinear semigroup on *C* such that $s(\mathcal{T}) = \liminf_{t \in G} |T_{t_n}| < \infty$. Choose a sequence (t_n) of elements in *G* such that $\lim_{n\to\infty} t_n = \infty$ and $s(\mathcal{T}) = \lim_{n\to\infty} |T_{t_n}|$. By Tikhonov's theorem, there exists a pointwise weakly convergent subnet $(T_{t_{n_\alpha}})_{\alpha \in A}$ of (T_{t_n}) . We denote it briefly by $(T_{t_\alpha})_{\alpha \in A}$. For every $x \in C$, define

$$Lx = w - \lim_{t \to 0} T_{t_{\alpha}} x, \tag{1}$$

i.e., *Lx* is the weak limit of the net $(T_{t_{\alpha}}x)_{\alpha \in A}$. Notice that *Lx* belongs to *C* since *C* is convex and weakly compact. The weak lower semicontinuity of the norm implies

$$\|Lx-Ly\| \leq \liminf_{\alpha} \|T_{t_{\alpha}}x-T_{t_{\alpha}}y\| \leq \limsup_{n\to\infty} \|T_{t_{n}}x-T_{t_{n}}y\| \leq s(\mathcal{T})\|x-y\|.$$

We formulate the above observation as a separate lemma.

Lemma 2.1. Let C be a convex weakly compact subset of a Banach space X and let $\mathcal{T} = \{T_t : t \in G\}$ be a semigroup on C such that $s(\mathcal{T}) = \liminf_t |T_t| < \infty$. Then the mapping $L : C \to C$ defined by (1) is $s(\mathcal{T})$ -Lipschitz.

We end this section with the following variant of a well known result which is crucial for our work (see, e.g., [18, Proposition 1.10]).

Lemma 2.2. Let (X, d) be a complete bounded metric space and let $L : X \to X$ be a k-Lipschitz mapping. Suppose there exist $0 < \gamma < 1$ and c > 0 such that $d(L^{n+1}x, L^nx) \le c\gamma^n$ for every $x \in X$. Then $Rx = \lim_{n\to\infty} L^nx$ is a Hölder continuous mapping.

Proof. We may assume that diam X = 1. Fix $x \neq y$ in X and notice that for any $n \in \mathbb{N}$,

$$d(Rx, Ry) \leq d(Rx, L^n x) + d(L^n x, L^n y) + d(L^n y, Ry) \leq 2c \frac{\gamma^n}{1-\gamma} + k^n d(x, y).$$

Take $\alpha < 1$ such that $k \le \gamma^{1-\alpha^{-1}}$ and put $\gamma^{n-r} = d(x, y)^{\alpha}$ for some $n \in \mathbb{N}$ and $0 < r \le 1$. Then $k^{n-1} \le (\gamma^{1-\alpha^{-1}})^{n-r}$ and hence

$$d(Rx, Ry) \leq 2c \frac{\gamma^{n-r}}{1-\gamma} + k(\gamma^{n-r})^{1-\alpha^{-1}} d(x, y) = \left(\frac{2c}{1-\gamma} + k\right) d(x, y)^{\alpha}. \quad \Box$$

3. Bynum's coefficients and the Opial modulus in terms of nets

From now on, *C* denotes a nonempty convex weakly compact subset of a Banach space *X*. Let *A* be a directed set, $(x_{\alpha})_{\alpha \in A}$ a bounded net in *X*, $y \in X$ and write

$$r(y, (x_{\alpha})) = \limsup_{\alpha} \|x_{\alpha} - y\|,$$

$$r(C, (x_{\alpha})) = \inf\{r(y, (x_{\alpha})) : y \in C\},$$

$$A(C, (x_{\alpha})) = \{y \in C : r(y, (x_{\alpha})) = r(C, (x_{\alpha}))\}.$$

The number $r(C, (x_{\alpha}))$ and the set $A(C, (x_{\alpha}))$ are called, respectively, the asymptotic radius and the asymptotic center of $(x_{\alpha})_{\alpha \in A}$ relative to *C*. Notice that $A(C, (x_{\alpha}))$ is nonempty convex and weakly compact. Write

$$r_a(x_\alpha) = \inf\{\limsup_{\alpha} \|x_\alpha - y\| : y \in \overline{\operatorname{conv}}(\{x_\alpha : \alpha \in \mathcal{A}\})\}$$

and let

$$\operatorname{diam}_{a}(x_{\alpha}) = \inf_{\alpha} \sup_{\beta, \gamma \ge \alpha} \|x_{\beta} - x_{\gamma}\|$$

denote the asymptotic diameter of (x_{α}) .

The normal structure coefficient N(X) of a Banach space X is defined by

 $N(X) = \sup \{k : kr(K) < \text{diam } K \text{ for each bounded convex set } K \subset X\},\$

where $r(K) = \inf_{y \in K} \sup_{x \in K} ||x - y||$ is the Chebyshev radius of K relative to itself. Assuming that X does not have the Schur property, the weakly convergent sequence coefficient (or Bynum's coefficient) is given by

$$WCS(X) = \sup \left\{ k : k r_a(x_n) \le \operatorname{diam}_a(x_n) \text{ for each sequence } x_n \xrightarrow{w} 0 \right\},\$$

where $x_n \xrightarrow{w} 0$ means that (x_n) is weakly null in X (see [19]). For Schur spaces, we define WCS(X) = 2. It was proved independently in [20-22] that

$$WCS(X) = \sup \left\{ k : k \limsup_{n} ||x_n|| \le \operatorname{diam}_a(x_n) \text{ for each sequence } x_n \xrightarrow{w} 0 \right\}$$
(2)

and, in [23], that

WCS(X) = sup $\left\{ k : k \limsup_{n} ||x_n|| \le D[(x_n)] \text{ for each sequence } x_n \xrightarrow{w} 0 \right\},\$

where $D[(x_n)] = \limsup_{m \to \infty} \sup_{m \to \infty} \sup_{m \to \infty} \|x_n - x_m\|$.

Kaczor and Prus [24] initiated a systematic study of assumptions under which one can replace sequences by nets in a given condition. We follow the arguments from that paper and use the well known method of constructing basic sequences attributed to Mazur (see [25]). Let us first recall a variant of a classical lemma which can be proved in the same way as for sequences (see, e.g., [25, Lemma]).

Lemma 3.1. Let $\{x_{\alpha}\}_{\alpha \in A}$ be a bounded net in X weakly converging to 0 such that $\inf_{\alpha} ||x_{\alpha}|| > 0$. Then for every $\varepsilon > 0$, $\alpha' \in A$ and for every finite dimensional subspace *E* of *X*, there is $\alpha > \alpha'$ such that

$$\|e + tx_{\alpha}\| \ge (1 - \varepsilon)\|e\|$$

for any $e \in E$ and every scalar t.

Recall that a sequence (x_n) is basic if and only if there exists a number c > 0 such that $\|\sum_{i=1}^{q} t_i x_i\| \le c \|\sum_{i=1}^{p} t_i x_i\|$ for any integers $p > q \ge 1$ and any sequence of scalars (t_i) . In the proof of the next lemma, based on Mazur's technique, we follow in part the reasoning given in [24, Corollary 2.6]. Set $D[(x_{\alpha})] = \limsup_{\alpha} \limsup_{\alpha} \lim \sup_{\beta} ||x_{\alpha} - x_{\beta}||$.

Lemma 3.2. Let $(x_{\alpha})_{\alpha \in A}$ be a bounded net in X which converges to 0 weakly but not in norm. Then there exists an increasing sequence (α_n) of elements of A such that $\lim_n \|x_{\alpha_n}\| = \limsup_{\alpha} \|x_{\alpha}\|$, $\dim_a(x_{\alpha_n}) \leq D[(x_{\alpha})]$ and (x_{α_n}) is a basic sequence.

Proof. Since $(x_{\alpha})_{\alpha \in A}$ does not converge strongly to 0 and $D[(x_{\alpha_s})] \leq D[(x_{\alpha})]$ for any subnet $(x_{\alpha_s})_{s \in B}$ of $(x_{\alpha})_{\alpha \in A}$, we can assume, passing to a subnet, that $\inf_{\alpha} ||x_{\alpha}|| > 0$ and the limit $c = \lim_{\alpha} ||x_{\alpha}||$ exists. Write $d = D[(x_{\alpha})]$. Let (ε_n) be a sequence of reals from the interval (0, 1) such that $\prod_{n=1}^{\infty} (1 - \varepsilon_n) > 0$. We shall define the following sequences (α_n) and (β_n) by induction.

Let us put $\alpha_1 < \beta_1 \in A$ such that $|||x_{\alpha_1}|| - c| < 1$ and $\sup_{\beta \ge \beta_1} ||x_{\alpha_1} - x_{\beta}|| < d + 1$. By the definitions of *c* and *d*, there exists $\alpha' > \beta_1$ such that $|||x_{\alpha}|| - c| < \frac{1}{2}$ and $\inf_{\beta'} \sup_{\beta \ge \beta'} ||x_{\alpha} - x_{\beta}|| < d + \frac{1}{2}$ for every $\alpha \ge \alpha'$. It follows from Lemma 3.1 that there exists $\alpha_2 > \alpha'$ such that

$$||t_1 x_{\alpha_1} + t_2 x_{\alpha_2}|| \ge (1 - \varepsilon_2) ||t_1 x_{\alpha_1}||$$

for any scalars t_1 , t_2 . Furthermore, $||x_{\alpha_2}|| - c| < \frac{1}{2}$, and we can find $\beta_2 > \alpha_2$ such that $\sup_{\beta \ge \beta_2} ||x_{\alpha_2} - x_\beta|| < d + \frac{1}{2}$. Suppose now that we have chosen $\alpha_1 < \beta_1 < \cdots < \alpha_n < \beta_n$ (n > 1) in such a way that $|||x_{\alpha_k}|| - c| < \frac{1}{k}$, $\sup_{\beta>\beta_k} \|x_{\alpha_k}-x_{\beta}\| < d+\frac{1}{k}$ and

$$(1 - \varepsilon_k) \| t_1 x_{\alpha_1} + \dots + t_{k-1} x_{\alpha_{k-1}} \| \le \| t_1 x_{\alpha_1} + \dots + t_k x_{\alpha_k} \|$$

for any scalars $t_1, \ldots, t_k, k = 2, \ldots, n$. From the definitions of *c* and *d*, and by Lemma 3.1, we can find $\beta_{n+1} > \alpha_{n+1} > \beta_n$ such that $|\|x_{\alpha_{n+1}}\| - c| < \frac{1}{n+1}$, $\sup_{\beta \ge \beta_{n+1}} \|x_{\alpha_{n+1}} - x_{\beta}\| < d + \frac{1}{n+1}$ and (considering a subspace *E* spanned by the elements $x_{\alpha_1}, \ldots, x_{\alpha_n}$ and putting $e = t_1 x_{\alpha_1} + \cdots + t_n x_{\alpha_n}$),

$$(1 - \varepsilon_{n+1}) \| t_1 x_{\alpha_1} + \dots + t_n x_{\alpha_n} \| \le \| t_1 x_{\alpha_1} + \dots + t_{n+1} x_{\alpha_{n+1}} \|$$

for any scalars t_1, \ldots, t_{n+1} .

Notice that the sequence (x_{α_n}) defined in this way satisfies $\lim_{n\to\infty} \|x_{\alpha_n}\| = c$ and $\operatorname{diam}_a(x_{\alpha_n}) \leq d$. Furthermore,

$$|t_1 \mathbf{x}_{\alpha_1} + \dots + t_p \mathbf{x}_{\alpha_p}|| \ge \prod_{n=q+1}^p (1-\varepsilon_n) ||t_1 \mathbf{x}_{\alpha_1} + \dots + t_q \mathbf{x}_{\alpha_q}||$$

for any integers $p > q \ge 1$ and any sequence of scalars (t_i) . Hence (x_{α_n}) is a basic sequence. \Box

We are now in a position to give a characterization of the coefficient WCS(X) in terms of nets. The abbreviation " $\{x_{\alpha}\}$ is r.w.c." means that the set $\{x_{\alpha} : \alpha \in A\}$ is relatively weakly compact.

Theorem 3.3. Let X be a Banach space without the Schur property and write

$$w_{1} = \sup \left\{ k : k r_{a}(x_{\alpha}) \leq \operatorname{diam}_{a}(x_{\alpha}) \text{ for each net } x_{\alpha} \xrightarrow{w} 0, \{x_{\alpha}\} \text{ is r.w.c.} \right\},\$$

$$w_{2} = \sup \left\{ k : k \limsup_{\alpha} \|x_{\alpha}\| \leq \operatorname{diam}_{a}(x_{\alpha}) \text{ for each net } x_{\alpha} \xrightarrow{w} 0, \{x_{\alpha}\} \text{ is r.w.c.} \right\},\$$

$$w_{3} = \sup \left\{ k : k \limsup_{\alpha} \|x_{\alpha}\| \leq D[(x_{\alpha})] \text{ for each net } x_{\alpha} \xrightarrow{w} 0, \{x_{\alpha}\} \text{ is r.w.c.} \right\}.$$

Then

$$WCS(X) = w_1 = w_2 = w_3$$

Proof. Fix $k > w_3$ and choose a weakly null net (x_α) such that the set $\{x_\alpha : \alpha \in A\}$ is relatively weakly compact and $k \limsup_{\alpha} ||x_\alpha|| > D[(x_\alpha)]$. Then, by Lemma 3.2, there exists an increasing sequence (α_n) such that

 $k \lim_{\alpha \in \mathcal{X}} \|x_{\alpha_n}\| > D[(x_{\alpha})] \ge \operatorname{diam}_a(x_{\alpha_n})$

and (x_{α_n}) is a basic sequence. Since the set $\{x_{\alpha} : \alpha \in A\}$ is relatively weakly compact, we can assume (passing to a subsequence) that (x_{α_n}) is weakly convergent. Since it is a basic sequence, its weak limit equals zero. It follows from (2) that WCS(X) $\leq k$ and letting k go to w_3 we have

 $WCS(X) \le w_3 \le w_2 \le w_1 \le WCS(X)$. \Box

Notice that a similar characterization holds for the normal structure coefficient.

Theorem 3.4. For a Banach space X,

 $N(X) = \sup \{k : k r_a(x_\alpha) \le \operatorname{diam}_a(x_\alpha) \text{ for each bounded net } (x_\alpha) \text{ in } X\}.$

Proof. Let

 $N_1 = \sup \{k : k r_a(x_\alpha) \le \operatorname{diam}_a(x_\alpha) \text{ for each bounded net } (x_\alpha) \text{ in } X\}.$

Set $k > N_1$ and choose a bounded net (x_α) such that $k r_a(x_\alpha) > \text{diam}_a(x_\alpha)$. Fix $y \in \overline{\text{conv}}(\{x_\alpha : \alpha \in A\})$ and notice that $k \text{ lim sup}_\alpha ||x_\alpha - y|| > \text{diam}_a(x_\alpha)$. In a straightforward way, we can choose a sequence (α_n) such that

$$k \lim_{n} \|x_{\alpha_n} - y\| = k \limsup_{\alpha} \|x_\alpha - y\| > \operatorname{diam}_a(x_\alpha) \ge \operatorname{diam}_a(x_{\alpha_n})$$

It follows from [19, Theorem 1] that $N(X) \le k$ and letting k go to N_1 we have $N(X) \le N_1$. By [26, Theorem 1], $N(X) \ge N_1$ and the proof is complete. \Box

In the next section we shall need a similar characterization for the Opial modulus of a Banach space X, defined for each $c \ge 0$ by

$$r_X(c) = \inf\left\{\liminf_{n\to\infty} \|x_n + x\| - 1\right\},\,$$

where the infimum is taken over all $x \in X$ with $||x|| \ge c$ and all weakly null sequences (x_n) in X such that $\lim \inf_{n\to\infty} ||x_n|| \ge 1$ (see [27]). We first prove the following counterpart of Lemma 3.2.

Lemma 3.5. Let $(x_{\alpha})_{\alpha \in A}$ be a bounded net in X which converges to 0 weakly but not in norm and $x \in X$. Then there exists an increasing sequence (α_n) of elements of A such that $\lim_n ||x_{\alpha_n} + x|| = \liminf_\alpha ||x_{\alpha} + x||$, $\lim_n ||x_{\alpha_n}|| \ge \liminf_\alpha ||x_{\alpha}||$ and (x_{α_n}) is a basic sequence.

Proof. Since $(x_{\alpha})_{\alpha \in A}$ does not converge strongly to 0 and

$$\liminf_{\alpha} \|x_{\alpha_s}\| \ge \lim_{\alpha} \|x_{\alpha}\|$$

for any subnet $(x_{\alpha_s})_{s\in\mathscr{B}}$ of $(x_{\alpha})_{\alpha\in\mathscr{A}}$, it is sufficient (passing to a subnet) to consider only the case that $\inf_{\alpha} ||x_{\alpha}|| > 0$ and the limits $c_1 = \liminf_{\alpha} ||x_{\alpha} + x||$, $c_2 = \liminf_{\alpha} ||x_{\alpha}||$ exist. Let (ε_n) be a sequence of reals from the interval (0, 1) such that $\prod_{n=1}^{\infty} (1 - \varepsilon_n) > 0$. We shall define the sequence (α_n) by induction.

Let us put $\alpha_1 \in A$ such that $|||x_{\alpha_1} + x|| - c_1| < 1$ and $|||x_{\alpha_1}|| - c_2| < 1$. By the definitions of c_1 and c_2 , there exists $\alpha' > \alpha_1$ such that $|||x_{\alpha} + x|| - c_1| < \frac{1}{2}$ and $|||x_{\alpha}|| - c_2| < \frac{1}{2}$ for every $\alpha \ge \alpha'$. It follows from Lemma 3.1 that there exists $\alpha_2 > \alpha'$ such that

$$||t_1 x_{\alpha_1} + t_2 x_{\alpha_2}|| \ge (1 - \varepsilon_2) ||t_1 x_{\alpha_1}||$$

for any scalars t_1 , t_2 . We can now proceed analogously to the proof of Lemma 3.2 to obtain a basic sequence (x_{α_n}) with the desired properties. \Box

Theorem 3.6. For a Banach space *X* without the Schur property and for $c \ge 0$,

$$r_X(c) = \inf \left\{ \liminf_{\alpha} \|x_{\alpha} + x\| - 1 \right\},$$

where the infimum is taken over all $x \in X$ with $||x|| \ge c$ and all weakly null nets (x_{α}) in X such that $\liminf_{\alpha} ||x_{\alpha}|| \ge 1$ and the set $\{x_{\alpha} : \alpha \in A\}$ is relatively weakly compact.

Proof. Let $r_1(c) = \inf \{ \liminf_{\alpha} ||x_{\alpha} + x|| - 1 \}$, where the infimum is taken as above. Fix $c \ge 0$ and take $k > r_1(c)$. Then there exist $x \in X$ with $||x|| \ge c$ and a weakly null net $(x_{\alpha})_{\alpha \in A}$ such that $\liminf_{\alpha} ||x_{\alpha}|| \ge 1$, $\{x_{\alpha} : \alpha \in A\}$ is relatively weakly compact and

 $\liminf \|x_\alpha + x\| - 1 < k.$

By Lemma 3.5, there exists an increasing sequence (α_n) of elements of \mathcal{A} such that $\lim_n ||x_{\alpha_n}|| \ge 1$, $\lim_n ||x_{\alpha_n} + x|| - 1 < k$ and (x_{α_n}) is a basic sequence. Since $\{x_\alpha : \alpha \in \mathcal{A}\}$ is relatively weakly compact, we can assume (passing to a subsequence) that (x_{α_n}) is weakly null. Hence $r_X(c) < k$ and since k is an arbitrary number greater than $r_1(c)$, it follows that $r_X(c) \le r_1(c)$. The reverse inequality is obvious. \Box

4. Fixed-point sets as Hölder continuous retracts

The following lemma may be proved in a similar way to [28, Theorem 7.2].

Lemma 4.1. Let *C* be a nonempty convex weakly compact subset of a Banach space *X* and $\mathcal{T} = \{T_t : t \in G\}$ an asymptotically regular semigroup on *C* such that $s(\mathcal{T}) = \lim_{\alpha} |T_{t_{\alpha}}|$ for a pointwise weakly convergent subnet $(T_{t_{\alpha}})_{\alpha \in A}$ of $(T_t)_{t \in G}$. Let $x_0 \in C, x_{m+1} = w - \lim_{\alpha} T_{t_{\alpha}} x_m, m = 0, 1, \dots, and$

$$B_m = \limsup \|T_{t_\alpha} x_m - x_{m+1}\|.$$

Assume that

(a) $s(\mathcal{T}) < \sqrt{WCS(X)}$ or,

(b) $s(\mathcal{T}) < 1 + r_X(1)$.

Then, there exists $\gamma < 1$ such that $B_m \leq \gamma B_{m-1}$ for any m = 1, 2, ...

Proof. It follows from the asymptotic regularity of $\{T_t : t \in G\}$ that

$$\limsup_{\alpha} \|T_{t_{\alpha}-l}x-y\| = \limsup_{\alpha} \|T_{t_{\alpha}}x-y\|$$

for any $l \in G$ and $x, y \in C$. Thus

$$D[(T_{t_{\alpha}}x_{m})] = \limsup_{\beta} \sup_{\alpha} \left\| T_{t_{\alpha}}x_{m} - T_{t_{\beta}}x_{m} \right\|$$

$$\leq \limsup_{\beta} \left| T_{t_{\beta}} \right| \limsup_{\alpha} \left\| T_{t_{\alpha}-t_{\beta}}x_{m} - x_{m} \right\| = s(\mathcal{T}) \limsup_{\alpha} \left\| T_{t_{\alpha}}x_{m} - x_{m} \right\|.$$

Hence, from Theorem 3.3 and from the weak lower semicontinuity of the norm,

$$B_{m} \leq \frac{D[(T_{t_{\alpha}}x_{m})]}{\mathsf{WCS}(X)} \leq \frac{s(\mathcal{T})}{\mathsf{WCS}(X)} \limsup_{\alpha} \|T_{t_{\alpha}}x_{m} - x_{m}\|$$

$$\leq \frac{s(\mathcal{T})}{\mathsf{WCS}(X)} \limsup_{\alpha} \lim_{\beta} \sup_{\beta} \|T_{t_{\alpha}}x_{m} - T_{t_{\beta}}x_{m-1}\|$$

$$\leq \frac{s(\mathcal{T})}{\mathsf{WCS}(X)} \limsup_{\alpha} |T_{t_{\alpha}}| \limsup_{\beta} \|x_{m} - T_{t_{\beta} - t_{\alpha}}x_{m-1}\| = \frac{(s(\mathcal{T}))^{2}}{\mathsf{WCS}(X)}B_{m-1}.$$

This gives (a). For (b), we can use Theorem 3.6 and proceed analogously to the proof of [28, Theorem 7.2] (see also [17, Theorem 5]). \Box

We are now in a position to prove a qualitative semigroup version of [28, Theorem 7.2 (a) (b)] which is in turn based on the results given in [11,12] (see also [29]). It also extends, in a few directions, [17, Theorem 5].

Theorem 4.2. Let C be a nonempty convex weakly compact subset of a Banach space X and $\mathcal{T} = \{T_t : t \in G\}$ an asymptotically regular semigroup on C. Assume that

(a)
$$s(\mathcal{T}) < \sqrt{WCS(X)}$$
 or,
(b) $s(\mathcal{T}) < 1 + r_X(1)$.

Then \mathcal{T} has a fixed point in C and Fix $\mathcal{T} = \{x \in C : T_t x = x, t \in G\}$ is a Hölder continuous retract of C.

Proof. Choose a sequence (t_n) of elements in *G* such that $\lim_{n\to\infty} t_n = \infty$ and $s(\mathcal{T}) = \lim_{n\to\infty} |T_{t_n}|$. Let $(T_{t_{n_{\alpha}}})_{\alpha\in A}$ (denoted briefly by $(T_{t_{\alpha}})_{\alpha\in A}$) be a pointwise weakly convergent subnet of (T_{t_n}) . Define, for every $x \in C$,

$$Lx = w - \lim T_{t_{\alpha}} x$$

Fix $x_0 \in C$ and put $x_{m+1} = Lx_m$, m = 0, 1, ... Let

$$B_m = \limsup_{\alpha} \|T_{t_\alpha} x_m - x_{m+1}\|.$$

By Lemma 4.1, there exists $\gamma < 1$ such that $B_m \leq \gamma B_{m-1}$ for any $m \geq 1$. Since the norm is weak lower semicontinuous and the semigroup is asymptotically regular,

$$\begin{aligned} \|L^{m+1}x_0 - L^m x_0\| &= \|x_{m+1} - x_m\| \le \liminf_{\alpha} \|T_{t_{\alpha}}x_m - x_m\| \\ &\le \liminf_{\alpha} \liminf_{\beta} \|T_{t_{\alpha}}x_m - T_{t_{\beta}}x_{m-1}\| \le \limsup_{\alpha} |T_{t_{\alpha}}| \limsup_{\beta} \|x_m - T_{t_{\beta}-t_{\alpha}}x_{m-1}\| \\ &= s(\mathcal{T})B_{m-1} \le s(\mathcal{T})\gamma^{m-1} \text{diam } C \end{aligned}$$

for every $x_0 \in C$ and $m \ge 1$. Furthermore, by Lemma 2.1, the mapping $L : C \to C$ is $s(\mathcal{T})$ -Lipschitz. It follows from Lemma 2.2 that $Rx = \lim_{n \to \infty} L^n x$ is a Hölder continuous mapping on C. We show that R is a retraction onto Fix \mathcal{T} . It is clear that if $x \in \text{Fix } \mathcal{T}$, then Rx = x. Furthermore, for every $x \in C$, $m \ge 1$ and $\alpha \in A$,

$$\|T_{t_{\alpha}}Rx - Rx\| \le \|T_{t_{\alpha}}Rx - T_{t_{\alpha}}L^{m}x\| + \|T_{t_{\alpha}}L^{m}x - L^{m+1}x\| + \|L^{m+1}x - Rx\|$$

and hence

$$\lim_{\alpha} \|T_{t_{\alpha}}Rx - Rx\| \le s(\mathcal{T}) \|Rx - L^m x\| + B_m + \|L^{m+1}x - Rx\|$$

Letting *m* go to infinity, $\limsup_{\alpha} \|T_{t_{\alpha}}Rx - Rx\| = 0$. Since $s(\mathcal{T}) = \lim_{\beta} |T_{t_{\beta}}| < \infty$, there exists $\beta_0 \in A$ such that $|T_{t_{\beta}}| < \infty$ for every $\beta \ge \beta_0$. Then, the asymptotic regularity of \mathcal{T} implies

$$\|T_{t_{\beta}}Rx - Rx\| \leq \left|T_{t_{\beta}}\right| \limsup_{\alpha} \|Rx - T_{t_{\alpha}}Rx\| + \lim_{\alpha} \|T_{t_{\beta}+t_{\alpha}}Rx - T_{t_{\alpha}}Rx\| + \limsup_{\alpha} \|T_{t_{\alpha}}Rx - Rx\| = 0.$$

Hence $T_{t_{\beta}}Rx = Rx$ for every $\beta \ge \beta_0$ and, from the asymptotic regularity again,

$$||T_t Rx - Rx|| = \lim_{\rho} ||T_{t+t_{\beta}} Rx - T_{t_{\beta}} Rx|| = 0$$

for each $t \in G$. Thus $Rx \in Fix \mathcal{T}$ for every $x \in C$ and the proof is complete. \Box

It is well known that the Opial modulus of a Hilbert space H,

$$r_H(c) = \sqrt{1+c^2} - 1,$$

and the Opial modulus of ℓ_p , p > 1,

$$r_{\ell_p}(c) = (1+c^p)^{1/p} - 1$$

for all $c \ge 0$ (see [27]). The following corollaries are sharpened versions of [15, Theorem 2.2] and [17, Corollary 8].

Corollary 4.3. Let C be a nonempty bounded closed convex subset of a Hilbert space H. If $\mathcal{T} = \{T_t : t \in G\}$ is an asymptotically regular semigroup on C such that

 $\liminf_t |T_t| < \sqrt{2},$

then Fix \mathcal{T} is a Hölder continuous retract of C.

Corollary 4.4. Let C be a nonempty bounded closed convex subset of ℓ_p , $1 . If <math>\mathcal{T} = \{T_t : t \in G\}$ is an asymptotically regular semigroup on C such that

$$\liminf_{t \to \infty} |T_t| < 2^{1/p},$$

then Fix T is a Hölder continuous retract of C.

Let $1 \le p, q < \infty$. Recall that the Bynum space $\ell_{p,q}$ is the space ℓ_p endowed with the equivalent norm $||x||_{p,q} = (||x^+||_p^q + ||x^-||_p^q)^{1/q})$, where x^+, x^- denote, respectively, the positive and the negative part of x. If p > 1, then

$$r_{\ell_{p,q}}(c) = \min\{(1+c^p)^{1/p} - 1, (1+c^q)^{1/q} - 1\}$$

for all $c \ge 0$ (see, e.g., [30]). The following corollary extends [17, Corollary 10].

Corollary 4.5. Let C be a nonempty convex weakly compact subset of $\ell_{p,q}$, $1 , <math>1 \le q < \infty$. If $\mathcal{T} = \{T_t : t \in G\}$ is an asymptotically regular semigroup on C such that

 $\liminf_{t} |T_t| < \min\{2^{1/p}, 2^{1/q}\},\$

then Fix T is a Hölder continuous retract of C.

Let us now examine the case of *p*-uniformly convex spaces. Recall that a Banach space *X* is *p*-uniformly convex if $\inf_{\varepsilon>0} \delta(\varepsilon)\varepsilon^{-p} > 0$, where δ denotes the modulus of uniform convexity of *X*. If *X* is *p*-uniformly convex, then (see [31])

$$\|\lambda x + (1 - \lambda)y\|^{p} \le \lambda \|x\|^{p} + (1 - \lambda) \|y\|^{p} - c_{p}W_{p}(\lambda) \|x - y\|^{p}$$
(3)

for some $c_p > 0$ and every $x, y \in X, 0 \le \lambda \le 1$, where $W_p(\lambda) = \lambda(1-\lambda)^p + \lambda^p(1-\lambda)$. A Banach space X satisfies the Opial property if

 $\liminf_{n\to\infty} \|x_n - x\| < \liminf_{n\to\infty} \|x_n - y\|$

for every sequence $x_n \xrightarrow{w} x$ and $y \neq x$.

The following theorem is an extension of [17, Theorem 7], and a partial extension of [16, Theorem 9].

Theorem 4.6. Let *C* be a nonempty bounded closed convex subset of a *p*-uniformly convex Banach space *X* with the Opial property and $\mathcal{T} = \{T_t : t \in G\}$ an asymptotically regular semigroup on *C* such that

$$\liminf_{t} |T_t| < \max\left\{ (1+c_p)^{1/p}, \left(\frac{1}{2} \left(1+(1+4c_p \mathsf{WCS}(X)^p)^{1/2}\right)\right)^{1/p} \right\}.$$

Then \mathcal{T} has a fixed point in C and Fix \mathcal{T} is a Hölder continuous retract of C.

Proof. Choose a sequence (t_n) of elements in G, $\lim_{n\to\infty} t_n = \infty$, such that $s(\mathcal{T}) = \lim_{n\to\infty} |T_{t_n}|$ and let $(T_{t_\alpha})_{\alpha\in A}$ denotes a pointwise weakly convergent subnet of (T_{t_n}) . Define, for every $x \in C$,

$$Lx = w - \lim_{\alpha} T_{t_{\alpha}} x.$$

Fix $x_0 \in C$ and put $x_{m+1} = Lx_m$, $m \ge 0$. Let $B_m = \limsup_{\alpha} ||T_{t_{\alpha}}x_m - x_{m+1}||$. Since X satisfies the Opial property, it follows from [24, Proposition 2.9] that

 $\limsup_{\alpha} \|T_{t_{\alpha}} x_m - x_{m+1}\| < \limsup_{\alpha} \|T_{t_{\alpha}} x_m - y\|$

for every $y \neq x_{m+1}$, i.e., x_{m+1} is the unique point in the asymptotic center $A(C, (T_{t_{\alpha}}x_m)), m \ge 0$. Applying (3) yields

$$c_{p}W_{p}(\lambda) \|x_{m} - T_{t_{\alpha}}x_{m}\|^{p} + \|\lambda x_{m} + (1-\lambda)T_{t_{\alpha}}x_{m} - T_{t_{\beta}}x_{m-1}\|^{l} \leq \lambda \|x_{m} - T_{t_{\beta}}x_{m-1}\|^{p} + (1-\lambda) \|T_{t_{\alpha}}x_{m} - T_{t_{\beta}}x_{m-1}\|^{p}$$

for every α , $\beta \in A$, $0 < \lambda < 1$, m > 0. Following [16, Theorem 9] (see also [32]) and using the asymptotic regularity of \mathcal{T} , we obtain

$$\limsup_{\alpha} \left\| T_{t_{\alpha}} x_m - x_m \right\|^p \le \frac{s(\mathcal{T})^p - 1}{c_p} (B_{m-1})^p \tag{4}$$

for any m > 0. By Theorem 3.3 and the weak lower semicontinuity of the norm, we have

$$B_m \le \frac{D[(T_{t_\alpha} x_m)]}{\mathsf{WCS}(X)} \le \frac{s(\mathcal{T})}{\mathsf{WCS}(X)} \limsup_{\alpha} \|T_{t_\alpha} x_m - x_m\|.$$
(5)

Furthermore, by the Opial property,

$$B_m \leq \limsup \|T_{t_\alpha} x_m - x_m\|$$
.

Combining (4) with (5) and (6) we see that

$$(B_m)^p = \limsup_{\alpha} \|T_{t_{\alpha}} x_m - x_{m+1}\|^p \leq \gamma^p (B_{m-1})^p,$$

where

$$\gamma^{p} = \max\left\{\frac{s(\mathcal{T})^{p} - 1}{c_{p}}, \frac{s(\mathcal{T})^{p} - 1}{c_{p}}\left(\frac{s(\mathcal{T})}{\mathsf{WCS}(X)}\right)^{p}\right\} < 1,$$

by assumption. Hence $B_m \le \gamma B_{m-1}$ for every $m \ge 1$ and, proceeding in the same way as in the proof of Theorem 4.2, we conclude that Fix \mathcal{T} is a nonempty Hölder continuous retract of *C*. \Box

References

- [1] F.E. Browder, W.V. Petryshyn, The solution by iteration of nonlinear functional equations in Banach spaces, Bull. Amer. Math. Soc. 72 (1966) 571–575.
- [2] S. Ishikawa, Fixed points and iteration of a nonexpansive mapping in a Banach space, Proc. Amer. Math. Soc. 59 (1) (1976) 65–71.
- [3] M. Edelstein, R.C. O'Brien, Nonexpansive mappings, asymptotic regularity and successive approximations, J. Lond. Math. Soc. (2) 17 (3) (1978) 547–554.
 [4] K. Goebel, W.A. Kirk, Iteration processes for nonexpansive mappings, in: S.P. Singh, S. Thomeier, B. Watson (Eds.), Topological Methods in Nonlinear
- [4] K. Goeber, W.A. Kirk, Relation processes for nonexpansive mappings, in: s.P. singit, S. Fhomeler, B. Watson (Eds.), ropological methods in Kommean Functional Analysis, AMS, Providence, R.I, 1983, pp. 115–123.
- [5] K. Anzai, S. Ishikawa, On common fixed points for several continuous affine mappings, Pacific J. Math. 72 (1977) 1-4.
- [6] H.K. Xu, I. Yamada, Asymptotic regularity of linear power bounded operators, Taiwanese J. Math. 10 (2006) 417-429.
- [7] P.K. Lin, A uniformly asymptotically regular mapping without fixed points, Canad. Math. Bull. 30 (1987) 481–483.
- [8] D. Tingley, An asymptotically nonexpansive commutative semigroup with no fixed points, Proc. Amer. Math. Soc. 97 (1986) 107-113.
- [9] E. Maluta, S. Prus, J. Wosko, Fixed point free mappings which satisfy a Darbo type condition, in: H. Fetter Nathansky (Ed.), Fixed Point Theory and its Applications, Yokohama Publ., Yokohama, 2006, pp. 171–184.
- [10] N.A. Erzakova, Asymptotically regular mappings, Izv. Vyssh. Uchebn. Zaved. Mat. (2006) 17–21 (in Russian), translation in Russian Math. (Iz. VUZ) 50 (2006), 15–19 (2007).
- [11] T. Domínguez Benavides, M.A. Japón Pineda, Opial modulus, moduli of noncompact convexity and fixed points for asymptotically regular mappings, Nonlinear Anal. 41 (2000) 617–630.
- [12] T. Domínguez Benavides, H.K. Xu, A new geometrical coefficient for Banach spaces and its applications in fixed point theory, Nonlinear Anal. 25 (3) (1995) 311–325.
- [13] J. Górnicki, Fixed point theorems for asymptotically regular mappings in L^p spaces, Nonlinear Anal. 17 (2) (1991) 153–159.
- [14] E. Sędłak, A. Wiśnicki, On the structure of fixed-point sets of uniformly Lipschitzian mappings, Topol. Methods Nonlinear Anal. 30 (2007) 345–350.
- [15] J. Górnicki, On the structure of fixed point sets of asymptotically regular mappings in Hilbert spaces, Topol. Methods Nonlinear Anal. 34 (2009) 383–389.
- [16] J. Górnicki, Structure of the fixed-point set of asymptotically regular mappings in uniformly convex Banach spaces, Taiwanese J. Math. 15 (2011) 1007-1020.
- [17] J. Górnicki, Geometrical coefficients and the structure of the fixed-point set of asymptotically regular mappings in Banach spaces, Nonlinear Anal. 74 (2011) 1190–1199.
- [18] Y. Benyamini, J. Lindenstrauss, Geometric Nonlinear Functional Analysis, Vol. 1, American Mathematical Society, Providence, RI, 2000.
- [19] W.L. Bynum, Normal structure coefficients for Banach spaces, Pacific J. Math. 86 (1980) 427-436.
- [20] T. Domínguez Benavides, G. López Acedo, Lower bounds for normal structure coefficients, Proc. Roy. Soc. Edinburgh Sect. A 121 (1992) 245-252.
- [21] S. Prus, On Bynum's fixed point theorem, Atti Semin. Mat. Fis. Univ. Modena 38 (1990) 535–545.
- [22] G.L. Zhang, Weakly convergent sequence coefficient of product space, Proc. Amer. Math. Soc. 117 (1993) 637-643.
- [23] T. Domínguez Benavides, G. López Acedo, H.K. Xu, Weak uniform normal structure and iterative fixed points of nonexpansive mappings, Colloq. Math. 68 (1995) 17–23.
- [24] W. Kaczor, S. Prus, Asymptotical smoothness and its applications, Bull. Aust. Math. Soc. 66 (3) (2002) 405–418.
- [25] A. Pełczyński, A note on the paper of I. Singer 'Basic sequences and reflexivity of Banach spaces', Studia Math. 21 (1961–1962) 371–374.
- [26] T.C. Lim, On the normal structure coefficient and the bounded sequence coefficient, Proc. Amer. Math. Soc. 88 (1983) 262–264.
- [27] P.K. Lin, K.K. Tan, H.K. Xu, Demiclosedness principle and asymptotic behavior for asymptotically nonexpansive mappings, Nonlinear Anal. 24 (1995) 929–946.
- [28] T. Domínguez, M.A. Japón, G. López, Metric fixed point results concerning measures of noncompactness, in: W.A. Kirk, B. Sims (Eds.), Handbook of Metric Fixed Point Theory, Kluwer Acad. Publ., Dordrecht, 2001, pp. 239–268.
- [29] T. Kuczumow, Opial's modulus and fixed points of semigroups of mappings, Proc. Amer. Math. Soc. 127 (1999) 2671–2678.
- [30] J.M. Ayerbe Toledano, T. Domínguez Benavides, G. López Acedo, Measures of Noncompactness in Metric Fixed Point Theory, Birkhäuser Verlag, Basel, 1997.
- [31] H.K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1991) 1127-1138.
- [32] H.K. Xu, Fixed point theorems for uniformly Lipschitzian semigroups in uniformly convex spaces, J. Math. Anal. Appl. 152 (1990) 391–398.

184

(6)