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Department of Mathematical Analysis, Faculty of Science, Masaryk University,
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1. Introduction and motivation

Recently, several papers appeared regarding the definiteness of the discrete quadratic func-
tional

F0(x,u) :=
N∑

k=0

{
xT
k CT

k Akxk + 2xT
k CT

k Bkuk + uT
k DT

k Bkuk

}
,

see, for example, [6–8,10,12,15,16], where Ak , Bk , Ck , Dk are n × n matrices and x = {xk}N+1
k=0 ,

u = {uk}Nk=0 are sequences of n-vectors. The standing hypothesis about the coefficients is that

the 2n × 2n matrix Sk := (Ak Bk

Ck Dk

)
is symplectic, that is, ST

k JSk = J where J := ( 0 I
−I 0

)
is the

2n × 2n skew-symmetric matrix.
With the functional F0 we associate a linear system, called the discrete symplectic system,

xk+1 = Akxk +Bkuk, uk+1 = Ckxk +Dkuk, (S)

whose name is derived from the fact that its transition matrix is the symplectic matrix Sk .
Discrete symplectic systems were introduced in [1] and they cover a large variety of linear

difference equations, in particular discrete Hamiltonian systems. The latter are of the form

�xk = Akxk+1 + Bkuk, �uk = Ckxk+1 − AT
k uk (H)

with Ak := I −A−1
k and symmetric Bk := A−1

k Bk and Ck := CkA−1
k , see, e.g., [1, Section 3.4].

That is, system (S) reduces to a Hamiltonian system (H) if (and only if) the matrix Ak is invert-
ible.

The functional above arises as second variation in the discrete calculus of variations and con-
trol problems, so it is important to understand conditions characterizing its nonnegativity and
positivity.

In this paper, we establish new results regarding the positivity and nonnegativity of certain
discrete quadratic functionals F associated with F0 with variable endpoints. In particular, we
solve an open problem pertaining the characterization of the positivity of F in terms of a discrete
Riccati inequality (Section 3)—a result which was known only for the special case of discrete
Hamiltonian systems, see [14, Section 4]. Furthermore, we derive a characterization of the non-
negativity of F with jointly varying endpoints (Section 4), thus extending the fixed and separable
endpoints results in [7,8]. Finally, we establish new perturbation-type inequalities related to the
nonnegativity of F0 when the initially zero endpoint x0 becomes restricted to a subspace (Sec-
tion 5). These inequalities are of the same fashion as inequalities known for the positivity of F0,
where x0 can be taken free. The results of the last two sections are new even for the special case
of discrete Hamiltonian systems.

2. Prerequisities

2.1. Symplectic systems

The property that Sk (and hence ST
k , S−1

k , ST −1
k ) is a symplectic matrix means that the coef-

ficients satisfy

AT
k Dk − CT

k Bk = AkDT
k −BkCT

k = I,

AkBT
k , CkDT

k , CT
k Ak, DT

k Bk symmetric.
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Solutions of (S) are uniquely determined by their values at one index k because any symplectic
matrix is invertible.

A conjoined basis of (S) is a matrix solution (X,U) such that XT
k Uk is symmetric and

rank
( Xk

Uk

) = n at some (and hence at any) index k ∈ [0,N + 1]. The principal solution is the

conjoined basis (X̂, Û ) of (S) starting with the initial values X̂0 = 0 and Û0 = I . According
to [6], a conjoined basis (X,U) of (S) has no focal points in (m,m + 1] if

KerXm+1 ⊆ KerXm, Pm := XmX
†
m+1Bm � 0, (1)

where † stands for the Moore–Penrose generalized inverse of the given matrix. Two conjoined
bases (X,U), (X̃, Ũ ) of (S) are normalized if their (constant) Wronskian matrix is the identity
matrix, that is, XT

k Ũk − UT
k X̃k = I for some (and hence for all) k ∈ [0,N + 1].

A pair (x,u) is admissible (for a quadratic functional) if xk+1 = Akxk + Bkuk for all
k ∈ [0,N ]. We will study the definiteness of quadratic functionals over such admissible pairs sat-
isfying in addition certain boundary conditions. Namely, we will consider separated boundary
conditions M0x0 = 0, M1xN+1 = 0 with n × n projections M0, M1 and the associated (sym-
metric) n × n endpoints cost matrices Γ0, Γ1 satisfying Γi = (I −Mi )Γi(I −Mi ), i = 0,1. In
this context, the principal solution of (S) is replaced by the natural conjoined basis (X,U) of (S)
which is given by the initial conditions X0 = I −M0, U0 = Γ0 +M0. Note that (X,U) = (X̂, Û )

when the left endpoint is fixed, i.e., when M0 = I . Finally, we will deal with general joint
boundary conditions M

( x0
xN+1

) = 0, with 2n × 2n projection M, and the associated (symmetric)
2n × 2n cost matrix Γ satisfying Γ = (I −M)Γ (I −M).

We say that the functional F0 or F is nonnegative if it takes nonnegative values on all admis-
sible pairs (x,u) satisfying the given boundary conditions, while F0 or F is positive (or positive
definite) if it takes positive values on all such admissible pairs (x,u) with x �≡ 0. Considering
the nonnegativity and positivity of F0 or F , we will always assume that the corresponding pairs
(x,u) are admissible without specifying this any further.

System (S) is called (M0 : I )-normal on [0,N + 1] if the only solution of the system uk+1 =
Dkuk , Bkuk = 0, for k ∈ [0,N], with u0 = M0γ0 for some γ0 ∈ R

n, is the zero solution uk ≡ 0
on [0,N + 1].

The Riccati operator and the explicit discrete Riccati equation associated with the system (S)
is

R[Q]k := Qk+1(Ak +BkQk) − (Ck +DkQk) = 0. (RE)

For any pair of normalized conjoined bases (X,U), (X̃, Ũ ) of (S) we define on [0,N + 1] the
symmetric n × n matrix

Qk := UkX
†
k + (

UkX
†
kX̃k − Ũk

)(
I − X

†
kXk

)
UT

k . (2)

This matrix then satisfies the identity QkXk = UkX
†
kXk . Furthermore, for any symmetric matrix

Qk we set

Pk := BT
k Dk −BT

k Qk+1Bk.

For any conjoined basis (X,U) of (S) we define the n × n matrices

Mk := (
I − Xk+1X

†
k+1

)
Bk, Tk := I − M

†
k Mk. (3)

It is known [16] that Mk = 0 if and only if the kernel condition KerXk+1 ⊆ KerXk holds, and
that this kernel condition is not necessary for the nonnegativity of F , see [8]. On the other hand,



1086 R. Hilscher, V. Růžičková / J. Math. Anal. Appl. 322 (2006) 1083–1098
it is proven in the same paper and in [7] that the image condition xk ∈ ImXk should be used in
the characterization of the nonnegativity of F . The above matrices satisfy the identities

XT
k+1Mk = 0, MkTk = 0, M

†
k Xk+1 = 0,

BkTk = Xk+1X
†
k+1BkTk, TkXk = TkXkX

†
k+1Xk+1. (4)

Moreover, TkPkTk = TkPkTk is always symmetric, see, e.g., [10, Section 2.5]. Observe that the
last identity in (4) is new and, in view of the equivalence KerV ⊆ KerW ⇔ W = WV †V , see,
e.g., [3, Lemma A.5], it is equivalent to KerXk+1 ⊆ KerTkXk .

2.2. Roundabout and comparison theorems

Next we present main tools which are needed in order to prove the results of this paper.
Consider the quadratic functional with separable endpoints

F(x,u) := xT
0 Γ0x0 + xT

N+1Γ1xN+1 +F0(x,u).

The following result characterizes the positivity of F and can be found in [15, Theorems 6, 7].

Proposition 1 (Roundabout theorem). The following statements are equivalent.

(i) F(x,u) > 0 over M0x0 = 0, M1xN+1 = 0, and x �≡ 0.
(ii) There exists a conjoined basis (X,U) of (S) with no focal points in (0,N + 1] such that Xk

is invertible for all k ∈ [0,N + 1] and satisfying the final endpoint inequality

XT
N+1(Γ1XN+1 + UN+1) > 0 on KerM1XN+1, (5)

and one of the initial endpoint constraints

(I −M0)(Γ0X0 − U0) = 0 if (S) is (M0 : I )-normal on [0,N + 1], (6)

XT
0 (Γ0X0 − U0) > 0 on KerM0X0. (7)

(iii) There exists a symmetric solution Qk on [0,N + 1] of the Riccati equation (RE) with

Ak +BkQk invertible and Pk := (Ak +BkQk)
−1Bk � 0 for all k ∈ [0,N], (8)

and satisfying the final endpoint inequality

Γ1 + QN+1 > 0 on KerM1, (9)

and one of the initial endpoint constraints

(I −M0)Q0 − Γ0 = 0 if (S) is (M0 : I )-normal on [0,N + 1], (10)

Γ0 − Q0 > 0 on KerM0. (11)

Positivity of F above is characterized in [15, Theorem 5] also in terms of the natural conjoined
basis of (S), conjugate intervals, or an implicit Riccati equation. However, these results are not
needed in the present paper.

In the following comparison theorem we use the approach from [12] and [13, Section 3.2]. Let
Ek be any symmetric n × n matrix satisfying DT Bk = BT EkBk , for example, Ek = BkB†DkB†.
k k k k
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Using the admissibility equation Bkuk = xk+1 −Akxk , the quadratic functional F can be written
in the form

F(x,u) =
N∑

k=0

(
xk

xk+1

)T

Gk

(
xk

xk+1

)
,

where Gk is the symmetric 2n × 2n matrix

Gk :=
(AT

k EkAk −AT
k Ck + δk,0Γ0 CT

k −AT
k Ek

Ck − EkAk Ek + δk,NΓ1

)

with δk,j being the Kronecker delta function, that is, δk,k = 1 and δk,j = 0 for k �= j .
Consider another symplectic system (S) with coefficients Ak , Bk , Ck , Dk , Sk and another dis-

crete quadratic functional F with data Γ 0, Γ 1, M0, M1, Ek , Gk satisfying the same assumptions
as the coefficients and data of the system (S) and functional F , respectively.

Proposition 2 (Comparison theorem). Assume that KerM0 ⊆ KerM0, KerM1 ⊆ KerM1, and

Gk � Gk, Im(Ak −Ak Bk) ⊆ ImBk for all k ∈ [0,N]. (12)

Then the following implications hold.

(i) If F(x,u) � 0 over M0x0 = 0, M1xN+1 = 0, then also F(x,u) � 0 over M0x0 = 0,
M1xN+1 = 0.

(ii) If F(x,u) > 0 over M0x0 = 0, M1xN+1 = 0, and x �≡ 0, then also F(x,u) > 0 over
M0x0 = 0, M1xN+1 = 0, and x �≡ 0.

The next result characterizes the nonnegativity of F with separable endpoints and can be
found in [7, Theorem 2].

Proposition 3 (Roundabout theorem). The functional F(x,u) � 0 over M0x0 = 0 and
M1xN+1 = 0 if and only if the natural conjoined basis (X,U) of (S) satisfies the P -condition

TkPkTk � 0 for all k ∈ [0,N], (13)

the image condition

xk ∈ ImXk for all k ∈ [0,N + 1],
for all admissible (x,u) with M0x0 = 0, M1xN+1 = 0,

and the final endpoint inequality

XT
N+1(Γ1XN+1 + UN+1) � 0 on KerM1XN+1. (14)

Remark 1. Condition (14) is equivalent to the inequality

QN+1 + Γ1 � 0 on KerM1 ∩ ImXN+1,

where the matrix Qk is defined by (2) via the natural conjoined basis (X,U).
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3. Riccati inequality and positivity

In this section we establish one of the main results of this paper—a characterization of the
positivity of F with separable endpoints in terms of the Riccati inequality

R[Q]k(Ak +BkQk)
−1 � 0, k ∈ [0,N]. (RI)

This result generalizes the Hamiltonian Riccati inequality in [14, Section 4] to discrete symplec-
tic systems. A specific difficulty in this extension lies in finding the system (S) to which the
comparison theorem (Proposition 2) can be applied. Once we derive the correct form of the co-
efficients A, B, C, D, E (see the proof of Theorem 1 below), the application of the comparison
theorem for symplectic systems yields the result in a similar way as in the Hamiltonian systems
case.

Theorem 1 (Riccati inequality). The functional F is positive definite, that is, conditions (i)–(iii)
in Proposition 1 hold, if and only if either of the following equivalent conditions is satisfied.

(iv) The system

Xk+1 = AkXk +BkUk,

Nk := XT
k+1(Uk+1 − CkXk −DkUk) � 0, (15)

k ∈ [0,N ], has a solution (X,U) such that XT
k Uk is symmetric and Xk is invertible for all

k ∈ [0,N +1], Pk = XkX
−1
k+1Bk � 0 on [0,N], condition (5) holds, and one of the conditions

(6) or (7) is satisfied.
(v) The discrete Riccati inequality (RI), k ∈ [0,N], has a symmetric solution Qk on [0,N + 1]

such that conditions (8) and (9) hold, and one of the conditions (10) or (11) is satisfied.

Riccati inequality is often used in nonoscillation criteria for differential and difference equa-
tions, since it is easier to find a solution of the inequality (which corresponds to a solution of
some majorant equation) than a solution to the equality. In the following examples we show a
situation when a symmetric Qk solves the Riccati inequality (RI) and satisfies condition (v) in
Theorem 1, but it does not solve the Riccati equation (R) so that condition (iii) in Proposition 1
is not satisfied with this Qk .

Example 1.

(a) Let Ak ≡ 0, Bk ≡ −CT −1, Ck ≡ C, Dk ≡ −CT −1 −C−K , where C is a constant nonsingular
matrix, K �= 0, and CKT = KCT � 0, and consider the zero endpoints, i.e. Mi = I and Γi =
0 (i = 0,1). Then Qk ≡ I satisfies condition (v) in Theorem 1, since Ak +BkQk = −CT −1 is
invertible, Pk ≡ I > 0, and R[Q]k(Ak +BkQk)

−1 = −KCT � 0, while the Riccati equation
is R[Q]k = K �= 0. Another (more specific) example can be obtained when we take, e.g.,
C = K = I . Note also that since Ak is not invertible, the Hamiltonian Riccati inequality in
[14, Corollary 4.1] cannot be applied to this setting.

(b) Let Ak and Ck be invertible, Bk ≡ 0, and Dk = AT −1
k , with CT

k Ak > 0, and with free end-
points, i.e. Mi = 0 and Γi > 0 (i = 0,1). Then Qk ≡ 0 satisfies condition (v) in Theorem 1,
since Ak + BkQk = Ak is invertible, Pk ≡ 0, and R[Q]k(Ak + BkQk)

−1 = −CkA−1
k < 0,

while the Riccati equation is R[Q]k = −Ck �= 0. However, in this simple example we can
directly verify that F > 0 over free endpoints.
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The proof of Theorem 1 is shown below after some auxiliary identities. In these identities, we
do not work with solutions of (S), but instead with arbitrary matrices Xk , Uk satisfying the given
properties. However, it is still assumed that the coefficients Ak , Bk , Ck , Dk fulfill the requirement
that the matrix Sk is symplectic.

Lemma 1. Let k ∈ [0,N] be fixed and assume that, for j ∈ [k, k + 1], Xj and Uj are n × n

matrices such that Xk+1 = AkXk +BkUk . Then the following conditions hold.

(i) If XT
j Uj is symmetric for j ∈ [k, k + 1], then the matrix

XT
k+1(Uk+1 − CkXk −DkUk)

= �
(
XT

k Uk

) − (
XT

k CT
k AkXk + 2XT

k CT
k BkUk + UT

k DT
k BkUk

)
is symmetric as well.

(ii) If XT
k+1Uk+1 is symmetric and if Qj is symmetric with QjXj = UjX

†
jXj for j ∈ [k, k + 1],

then

XT
k+1R[Q]kXk = XT

k+1(Uk+1 − CkXk −DkUk)X
†
kXk.

(iii) If XT
j Uj and Qj are symmetric with QjXj = UjX

†
jXj for j ∈ [k, k + 1] and if Xk is

invertible, then the matrix

XT
k+1R[Q]kXk = XT

k+1(Uk+1 − CkXk −DkUk)

is symmetric.

Proof. Part (i) is a simple calculation. For part (ii), we first derive

R[Q]kXk = [
Qk+1Xk+1 − (CkXk +DkUk)

]
X

†
kXk

= [
Uk+1 − CkXk −DkUk − Uk+1

(
I − X

†
k+1Xk+1

)]
X

†
kXk.

Then, after multiplying by XT
k+1 from the left and by using the symmetry of XT

k+1Uk+1 we obtain
the required identity. Part (iii) follows directly from (i) and (ii). �
Proof of Theorem 1. In this proof, conditions (i)–(iii) refer to Proposition 1 unless otherwise
specified. Condition (ii) implies (iv) trivially, since (X,U) satisfying part (ii) is a solution of (S).
Condition (iv) implies (v) by the Riccati substitution Qk := UkX

−1
k on [0,N +1]. Next, we show

that condition (v) implies (iv). Let Fk := R[Q]k(Ak + BkQk)
−1 � 0 be the matrix defining the

inequality (RI), where Qk satisfies condition (v). Let X be the solution of the equation Xk+1 =
(Ak + BkQk)Xk , k ∈ [0,N], given by the initial condition X0 = I . Then Xk is invertible on
[0,N +1]. If we set Uk := QkXk on [0,N +1], then (X,U) satisfies Xk+1 = AkXk +BkUk and

Nk = XT
k+1

[
Qk+1 − (Ck +DkQk)XkX

−1
k+1

]
Xk+1 = XT

k+1FkXk+1 � 0

for all k ∈ [0,N ], that is, (X,U) solves system (15). Note that the matrices Nk and Fk =
XT −1

k+1 NkX
−1
k+1 are symmetric, by Lemma 1(iii).

The rest of the proof is about showing that condition (iv) implies (i). With Nk as in (15) we
put Fk := XT −1

k+1 NkX
−1
k+1 � 0. Define Ak := Ak , Bk := Bk , Ck := Ck + FkAk , Dk := Dk + FkBk ,

and

Sk :=
(
Ak Bk

C D

)
= Sk +Rk with Rk :=

(
0 0

F A F B

)
. (16)
k k k k k k
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The proof will be finished by showing the following claims.

Claim 1. The matrix Sk is symplectic.

This follows from the observation that ST
k JRk = (Ak Bk )T Fk (Ak Bk ) is symmetric,

RT
k JRk = 0, and from the calculation

ST
k JSk = (Sk +Rk)

T J (Sk +Rk) = ST
k JSk + ST

k JRk +RT
k JSk +RT

k JRk

= J +RT
k J T Sk +RT

k JSk = J .

Claim 2. The pair (X,U) solves the system (S), hence it is a conjoined basis of (S) with no focal
points in (0,N + 1].

This follows from the invertibility of X, the calculations

AkXk +BkUk = AkXk +BkUk = Xk+1,

CkXk +DkUk = CkXk +DkUk + Fk(AkXk +BkUk)

= CkXk +DkUk + XT −1
k+1 Nk = Uk+1,

and from P k := XkX
−1
k+1Bk = XkX

−1
k+1Bk � 0.

Claim 3. F(x,u) > 0 over M0x0 = 0, M1xN+1 = 0, and x �≡ 0, that is, condition (i) holds.

We have by Proposition 1 applied to (S) that the functional F(x,u) > 0 over M0x0 = 0,
M1xN+1 = 0, and x �≡ 0, where M0 := M0, M1 := M1, Γ 0 := Γ0, and Γ 1 := Γ1. Next,
the definition of Ak and Bk implies that Im(Ak − Ak Bk) = ImBk = ImBk . Furthermore,
the symmetric matrix Ek := Ek + Fk satisfies DT

k Bk = DT
k Bk + BT

k FkBk = BT
k (Ek + Fk)Bk =

BT
k EkBk , and

Gk − Gk

=
(
AT

k EkAk −AT
k Ck + δk,0Γ0 CT

k −AT
k Ek

Ck − EkAk Ek + δk,NΓ1

)

−
(AT

k (Ek + Fk)Ak −AT
k (Ck + FkAk) + δk,0Γ0 CT

k +AT
k Fk −AT

k (Ek + Fk)

Ck + FkAk − (Ek + Fk)Ak Ek + Fk + δk,NΓ1

)

=
(

0 0
0 −Fk

)
� 0.

Consequently, assumption (12) is satisfied and Proposition 2(ii) yields the statement of Claim 3.
Hence, the proof of this theorem is now complete. �
Remark 2. In the proof above we used a matrix S of the form S = S +R with R = ( 0 0

G H

)
. This

matrix S is symplectic if and only if GT A and HT B are symmetric, and the identity HT A =
BT G holds. The choice G := FA and H := FB with symmetric F is then natural, which was
first observed in [9] in connection with an eigenvalue problem associated with system (S).
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4. Nonnegativity for joint endpoints

In this section we present a characterization of the nonnegativity of the quadratic functional

F(x,u) :=
(

x0
xN+1

)T

Γ

(
x0

xN+1

)
+F0(x,u)

with general jointly varying endpoints, namely the endpoints constraint M
( x0

xN+1

) = 0. The
properties of the 2n × 2n matrices Γ , M are given in Section 2. The following result is a gener-
alization of [8, Theorem 1.1], where the functional F has fixed endpoints, i.e. it has the form of
F0 over x0 = 0 = xN+1. Its proof is displayed after some auxiliary results.

Let (X̂, Û ) be the principal solution of (S), i.e. X̂0 = 0 and Û0 = I . Let (X̃, Ũ ) be the con-
joined basis of (S) given by the initial conditions (X̃0, Ũ0) = (I,0), so that (X̃, Ũ ) and (X̂, Û )

are normalized, and define the 2n × 2n matrices

X̂∗
k :=

(
0 I

X̂k X̃k

)
, Û∗

k :=
(−I 0

Ûk Ũk

)
. (17)

In the theorem below, the matrices Pk , Mk , and Tk are defined via the principal solution (X̂, Û )

of (S), i.e. Pk := X̂kX̂
†
k+1Bk , Mk := (I − X̂k+1X̂

†
k+1)Bk , and Tk := I − M

†
k Mk .

Theorem 2. The functional F(x,u) � 0 over M
( x0

xN+1

) = 0 if and only if the principal solution

(X̂, Û ) of (S) satisfies the P -condition (13), the image condition

xk − X̃kx0 ∈ Im X̂k for all k ∈ [0,N + 1],
for all admissible (x,u) with M

( x0
xN+1

) = 0, (18)

and the final endpoint inequality(
X̂∗

N+1

)T (
Γ X̂∗

N+1 + Û∗
N+1

)
� 0 on KerMX̂∗

N+1. (19)

Remark 3. Condition (19) is equivalent to the inequality

Q̂∗
N+1 + Γ � 0 on KerM∩ Im X̂∗

N+1,

where the symmetric matrix Q̂∗
k is defined by (skipping the index k)

Q̂∗ :=
(

X̂†X̃X̂†X̂ −X̂† + X̂†X̃(I − X̂†X̂)ÛT

� ÛX̂† − (ÛX̂†X̃ − Ũ )(I − X̂†X̂)ÛT

)
. (20)

The proof of Theorem 2 is based on transforming the quadratic functional F and system (S)
into a problem in dimension 2n, see, e.g., [15] modified to the setting of this paper or [5]. Hence,
introduce the 2n × 2n matrices A∗

k := ( I 0
0 Ak

)
, B∗

k := ( 0 0
0 Bk

)
, C∗

k := ( 0 0
0 Ck

)
, D∗

k := ( I 0
0 Dk

)
, and

the 4n × 4n symplectic matrix S∗
k := (A∗

k B∗
k

C∗
k D∗

k

)
, which defines a new symplectic system denoted

here by (S∗). Now with the 2n × 2n projections M∗
0 := 1

2

(
I −I

−I I

)
and M∗

1 := M, and with the
symmetric 2n × 2n matrices Γ ∗

0 := 0 and Γ ∗
1 := Γ we consider the quadratic functional

F∗(x∗, u∗) := (
x∗

0

)T
Γ ∗

0 x∗
0 + (

x∗
N+1

)T
Γ ∗

1 x∗
N+1 +F∗

0 (x∗, u∗)

over the separated endpoints M∗x∗ = 0 and M∗x∗ = 0.
0 0 1 N+1



1092 R. Hilscher, V. Růžičková / J. Math. Anal. Appl. 322 (2006) 1083–1098
Now as in (1) and (3) in Section 2, for any matrix solution (X∗,U∗) of (S∗) we can define the
2n×2n matrices P ∗

k := X∗
k (X

∗
k+1)

†B∗
k , M∗

k := [I −X∗
k+1(X

∗
k+1)

†]B∗
k , and T ∗

k := I − (M∗
k )†M∗

k .
In particular, for

X∗
k :=

(
0 I

Xk X̃k

)
, U∗

k :=
(−I 0

Uk Ũk

)
, (21)

where (X,U) and (X̃, Ũ ) are arbitrary solutions of (S), we have

M∗
k =

(0 −(I + X̃T
k+1X̃k+1)

−1X̃T
k+1Mk

0 [I − X̃k+1(I + X̃T
k+1X̃k+1)

−1X̃T
k+1]Mk

)
. (22)

The next lemma displays a formula for the Moore–Penrose generalized inverse of this M∗
k . It is

given via its full-rank factorization, see, e.g., [2, pp. 26, 48].

Lemma 2. Let (X,U) and (X̃, Ũ ) be any solutions of (S) and let the matrices Pk , Mk , and Tk

be defined by (1), (3). Let Mk = FkRk be a full rank factorization of Mk , i.e., Fk ∈ R
n×rk and

Rk ∈ R
rk×n with rk := rankMk = rankFk = rankRk . Let X∗

k , U∗
k , and M∗

k be as in (21), (22).
Then the Moore–Penrose inverse of M∗

k is given by

(
M∗

k

)† =
(

0 0
−RT

k
(RkRT

k
)−1HkX̃k+1(I + X̃T

k+1X̃k+1)−1 RT
k

(RkRT
k

)−1Hk(I + X̃k+1X̃T
k+1)−1

)
,

where Hk := [FT
k (I + X̃k+1X̃

T
k+1)

−1Fk]−1FT
k ∈ R

rk×n. Consequently, we have

(
M∗

k

)†
M∗

k =
(

0 0
0 M

†
k Mk

)
, T ∗

k =
(

I 0
0 Tk

)
, T ∗

k P ∗
k T ∗

k =
(

0 0
0 TkPkTk

)
.

(23)

Proof. The proof of the formula for (M∗
k )† consists from a number of calculations, which are

summarized in the following claims.

Claim 1. For any matrix A, the following identity holds (we shall use this identity with A :=
X̃k+1)(

I + AAT
)−1 = I − A

(
I + AT A

)−1
AT . (24)

This follows from [11] or by a direct calculation.

Claim 2. M∗
k = F ∗

k R∗
k is a full rank factorization of M∗

k , where the matrices F ∗
k ∈ R

2n×rk and
R∗

k ∈ R
rk×2n are defined by

F ∗
k :=

( −(I + X̃T
k+1X̃k+1)

−1X̃T
k+1Fk

[I − X̃k+1(I + X̃T
k+1X̃k+1)

−1X̃T
k+1]Fk

)
, R∗

k := (0 Rk ) .

Clearly, F ∗
k R∗

k = M∗
k , rk = rankR∗

k = rankM∗
k , while rankF ∗

k = rk follows from the invert-
ibility of the matrix on the right-hand side of (24).

Claim 3. (M∗)† has the form as in the lemma above and identities (23) hold.
k
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Since for any matrix M with a full rank factorization M = FR we have M† = RT (RRT )−1 ×
(F T F )−1FT and M†M = RT (RRT )−1R, see [2, p. 48], the results follow by applying these
identities to the matrices M∗

k , F ∗
k , and R∗

k . �
The next result shows that the multiplication of a solution (X,U) of (S) by a constant nonsin-

gular matrix does not change the associated matrices TkPkTk , Mk , and Tk .

Lemma 3. Let (X,U) be any solution of (S) and let Pk , Mk , Tk be defined by (1), (3). Then for
any constant nonsingular n × n matrix E and the solution (X̃, Ũ ) := (XE,UE) of (S) we have

(i) X̃kX̃
†
k = XkX

†
k ,

(ii) M̃k = Mk and T̃k = Tk , where M̃k := (I − X̃k+1X̃
†
k+1)Bk and T̃k := I − M̃

†
k M̃k ,

(iii) T̃kP̃k = TkPk , where P̃k := X̃kX̃
†
k+1Bk .

Proof. Part (i) follows by a direct calculation or from [3, p. 93]. Part (ii) is a consequence of (i)
at the index k + 1. To show part (iii), we use the last identity in (4), T̃k = Tk , and part (i) at the
index k + 1 to get

T̃kP̃k = TkXkEX̃
†
k+1Bk = TkXkX

†
k+1Xk+1EX̃

†
k+1Bk = TkXkX

†
k+1X̃k+1X̃

†
k+1Bk

= TkXkX
†
k+1Xk+1X

†
k+1Bk = TkXkX

†
k+1Bk = TkPk.

Thus, this lemma is proven. �
Proof of Theorem 2. Since the nonnegativity of the functional F over M

( x0
xN+1

) = 0 is equiv-
alent to the nonnegativity of F∗ over M∗

0x
∗
0 = 0 and M∗

1x
∗
N+1 = 0, see, e.g., [15, Lemma 4],

we can apply Proposition 3 to this transformed augmented functional. Thus, we get that the
augmented natural conjoined basis (X∗,U∗) of (S∗) given by the initial conditions

X∗
0 = I −M∗

0 = 1

2

(
I I

I I

)
and U∗

0 = Γ ∗
0 +M∗

0 = 1

2

(
I −I

−I I

)

satisfies the P ∗-condition

T ∗
k P ∗

k T ∗
k � 0 for all k ∈ [0,N], (25)

the image∗ condition

x∗
k ∈ ImX∗

k for all k ∈ [0,N + 1],
for all admissible (for F∗) pairs (x∗, u∗) with M∗

0x
∗
0 = 0 and M∗

1x
∗
N+1 = 0, (26)

and the corresponding augmented final endpoint inequality.
Now take the nonsingular 2n× 2n matrix E := ( −I I

I I

)
and consider the solution (X∗E,U∗E)

of (S∗) that has
(( 0 I

0 I

)
,
( −I 0

I 0

))
as initial conditions. Then, by (17), (X∗E,U∗E) = (X̂∗, Û∗)

and, by Lemma 3 applied to this setting, the P ∗-condition (25) for (X∗,U∗) is equivalent to the
P̂ ∗-condition for (X̂∗, Û∗). In turn, Lemma 2 applied to the conjoined basis (X̂∗, Û∗) yields
that 0 � T̂ ∗

k P̂ ∗
k T̂ ∗

k = diag{0, TkPkTk}, where the matrices Tk and Pk are defined via the principal
solution (X̂, Û ) of (S).

Next, since ImX∗
k = Im X̂∗

k , the image∗ condition (26) for X∗
k is equivalent to the image∗

condition for X̂∗, while the latter one is equivalent to (18).
k
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Finally, the final endpoint inequality(
X∗

N+1

)T (
Γ ∗

1 X∗
N+1 + U∗

N+1

)
� 0 on KerM∗

1X
∗
N+1

for (X∗,U∗) is equivalent to (19) in terms of (X̂∗, Û∗). The proof is now complete. �
At the end of this section we show that under certain conditions the Riccati quotient Qk in (2)

is invariant under the multiplication by a constant nonsingular matrix. Although this result is not
directly needed in this paper, it fits well into the global theory of discrete symplectic systems.

Lemma 4. Let (X,U), (X̃, Ũ ) be any normalized conjoined bases of (S) and let Qk be defined
by (2). Let E be any nonsingular n×n matrix with E−1 = cET for some c ∈ R and set (X,U) :=
(XE,UE) and (X̃, Ũ ) := (cX̃E, cŨE). Then (X,U) and (X̃, Ũ ) are also normalized conjoined
bases of (S) and the matrix

Qk := UkX
†
k + (

UkX
†
kX̃k − Ũ k

)(
I − X

†
kXk

)
UT

k

satisfies Qk = Qk on [0,N + 1].

Proof. The conjoined bases (X,U) and (X̃, Ũ ) satisfy

XT
k Ũk − UT

k X̃k = cET
(
XT

k Ũk − UT
k X̃k

)
E = cET E = I,

so that they are normalized. Next, the properties of the Moore–Penrose inverses imply that X
†
k =

cET X
†
k . Using cEET = I , a simple calculation then yields Qk = Qk . �

5. Inequalities and nonnegativity

In this section we derive some inequalities related to the nonnegativity of discrete quadratic
functionals. First result says that the nonnegativity of F0 (where x0 = 0) is equivalent to the
nonnegativity of a certain perturbed functional where x0 is a restricted to a subspace. Its proof is
shown below after some comments and auxiliary lemmas.

In this section (as in Theorem 2), we shall denote by (X̃, Ũ ) the conjoined basis of (S) given
by the initial conditions (X̃0, Ũ0) = (I,0). Also, recall that (X̂, Û ) denotes the principal solution
of (S), i.e. (X̂0, Û0) = (0, I ), and that (X̃, Ũ ) and (X̂, Û ) are normalized.

Theorem 3. The functional F0(x,u) � 0 over x0 = 0 = xN+1 if and only if there exists α > 0
such that the functional F(x,u) := α‖x0‖2 +F0(x,u) � 0 over X̃N+1x0 = xN+1.

This result has a simple but important consequence.

Corollary 1. The following statements are equivalent.

(i) F0(x,u) � 0 over x0 = 0 = xN+1.
(ii) There exists α > 0 such that the functional F(x,u) := α‖x0‖2 + F0(x,u) � 0 over

X̃N+1x0 = 0 = xN+1.
(iii) There exists α > 0 such that the conjoined basis (X,U) of (S) given by the initial conditions

X0 = I − X̃
†

X̃N+1, U0 = αI + X̃
†

X̃N+1
N+1 N+1
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satisfies P -condition (13) and the image condition

xk ∈ ImXk for all k ∈ [0,N + 1],
for all admissible (x,u) with X̃N+1x0 = 0 = xN+1.

Proof. The equivalence of (i) and (ii) follows directly from Theorem 3, while the equivalence
of (ii) and (iii) follows from Proposition 3 with M0 := X̃

†
N+1X̃N+1, M1 := I , Γ0 := αI , and

Γ1 := 0. Note that in this case KerM0 = Ker X̃N+1. �
The equivalence of (i) and (ii) in Corollary 1 is an analog of the corresponding result for the

positivity of F0, namely

F0(x,u) > 0 over x0 = 0 = xN+1 and x �≡ 0 if and only if there exists α > 0 such that
F(x,u) := α‖x0‖2 +F0(x,u) > 0 over x0 free, xN+1 = 0, and x �≡ 0,

which is a part of the proof of [13, Theorem 7] or [4, Theorem 4]. We see that in case of the non-
negativity of F0, the endpoint x0 cannot free, but must be restricted to a subspace (= Ker X̃N+1).
This is also shown in the following example where F0 � 0 over x0 = 0 = xN+1, but there is no
α > 0 such that F(x,u) = α‖x0‖2 +F0(x,u) � 0 over xN+1 = 0.

Example 2. Consider the coefficients Sk ≡ J , that is, Ak = Dk ≡ 0 and Bk = −Ck ≡ I for all
k ∈ [0,N ]. Then the solution X̃k is

{X̃k}N+1
k=0 = {I,0,−I,0, I,0,−I,0, . . .},

and the functional F0 takes the form

F0(x,u) = −2

{
xT

0 u0 +
N−1∑
k=1

uT
k−1uk

}

for admissible (x,u), i.e. xk+1 = uk on [0,N], with xN+1 = 0.
If we take N = 1, then F0(x,u) = −2xT

0 u0 for admissible (x,u) with x2 = 0 and, in particu-
lar, F0(x,u) = 0 (� 0) when also x0 = 0. Note that in this case F0 is not positive definite. On the
other hand, F(x,u) = α‖x0‖2 − 2xT

0 u0 �� 0 over x2 = 0 and x0 free, which follows for example
by choosing u0 := αx0 �= 0, so that F(x,u) = −α‖x0‖2 < 0. Note that, by Corollary 1, the initial
endpoint x0 cannot be in the kernel of X̃2, which is verified by observing that X̃2 = −I .

Finally, observe that when N � 2, then F0(x,u) �� 0 over x0 = 0 = xN+1, which can be
shown, e.g., by choosing u1 := u0 �= 0 and u2 = · · · = uN := 0, so that F0(x,u) = −2‖u0‖2 < 0.

For the proof of Theorem 3 we will need the following results.

Lemma 5. The image condition x̄k ∈ Im X̂k on [0,N + 1] holds for all admissible (x̄, ū) with
x̄0 = 0 = x̄N+1 if and only if the image condition xk − X̃kx0 ∈ Im X̂k on [0,N + 1] holds for all
admissible (x,u) with xN+1 = X̃N+1x0.

Proof. “⇒” Let (x,u) be admissible with xN+1 = X̃N+1x0 and set (x̄k, ūk) := (xk, uk) −
(X̃k, Ũk)x0 on [0,N + 1]. Then, because X̃0 = I , we have x̄0 = 0 = x̄N+1 and (x̄k, ūk) is ad-
missible, so that the assumption implies xk − X̃kx0 = x̄k ∈ Im X̂k on [0,N + 1].
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“⇐” Let (x̄, ū) be admissible with x̄0 = 0 = x̄N+1. Then x̄N+1 = 0 = X̃N+1x̄0, so that x̄k =
x̄k − X̃N+1x̄0 ∈ Im X̂k on [0,N + 1]. �
Lemma 6. The image condition x̄k ∈ Im X̂k on [0,N + 1] holds for all admissible (x̄, ū) with
x̄0 = 0 = x̄N+1 if and only if the image condition xk − X̃kx0 ∈ Im X̂k on [0,N + 1] holds for all
admissible (x,u) with M̃

( x0
xN+1

) = 0, where M̃ is the 2n × 2n projection

M̃ :=
(

X̃T
N+1(I + X̃N+1X̃

T
N+1)

−1X̃N+1 −X̃T
N+1(I + X̃N+1X̃

T
N+1)

−1

−(I + X̃N+1X̃
T
N+1)

−1X̃N+1 (I + X̃N+1X̃
T
N+1)

−1

)
. (27)

Proof. By Lemma 5, it suffices to show that M̃
( x0

xN+1

) = 0 if and only if xN+1 = X̃N+1x0.

However, this follows trivially since KerM̃ = Im
( I

X̃N+1

)
. �

Proof of Theorem 3. Part “⇐” is trivial. Let us prove “⇒.” Since F0 � 0, we have from Propo-
sition 3 that the image condition xk ∈ Im X̂k on [0,N + 1] holds for all admissible (x,u) with
x0 = 0 = xN+1, and the P -condition (13) holds for the principal solution (X̂, Û ). From Lemma 6,
we get that the image condition xk − X̃kx0 ∈ Im X̂k on [0,N + 1] holds for all admissible (x,u)

with M̃
( x0

xN+1

) = 0, where M̃ is given by (27). Put Γ := (
αI 0
0 0

)
, where α > 0 will be specified

later. Then the functional F(x,u) can be regarded as being with jointly varying endpoints, that
is, of the form in Theorem 2. Hence, by the same theorem, F(x,u) will be nonnegative over
M̃

( x0
xN+1

) = 0, hence over xN+1 = X̃N+1x0, once we show that the final endpoint inequality

Γ + Q̂∗
N+1 � 0 on KerM̃∩ Im X̂∗

N+1 (28)

is satisfied, where the (symmetric) matrix Q̂∗
N+1 is defined by (20) and X̂∗

N+1 is given by (17).

To prove (28), note that KerM̃ ⊆ Im X̂∗
N+1, because any

( c
d

) ∈ KerM̃ has d = X̃N+1c,

so that
( c

d

) = X̂∗
N+1

( 0
c

)
. Denote by λ0 the smallest eigenvalue of the symmetric matrix( I

X̃N+1

)T
Q̂∗

N+1

( I

X̃N+1

)
. Then for any

( c
d

) ∈ KerM̃ and for α := 1/ε we have

(
c

d

)T (
Γ + Q̂∗

N+1

)(
c

d

)
= (1/ε)‖c‖2 + cT

(
I

X̃N+1

)T

Q̂∗
N+1

(
I

X̃N+1

)
c

� (1/ε)(1 + ελ0)‖c‖2 � (1/ε)
(
1 − ε|λ0|

)‖c‖2 � 0,

where ε > 0 is small enough, e.g., ε = 1/(2|λ0|). Thus, the proof is complete. �
Next we wish to present a result regarding the nonnegativity of F0 in a parallel way to The-

orem 1. In order to establish this statement, we shall use the associated symplectic system (S),
defined in the proof of Theorem 1, and the results of Corollary 1(iii) and Proposition 2(i).

Theorem 4. The functional F0(x,u) � 0 over x0 = 0 = xN+1 if and only if there exist α > 0,
symmetric matrices Fk � 0, k ∈ [0,N], and a solution (X,U) of the system

Xk+1 = AkXk +BkUk,

FkXk+1 = Uk+1 − CkXk −DkUk,

k ∈ [0,N ], satisfying the initial conditions

X0 = I − X̃
†

X̃N+1, U0 = αI + X̃
†

X̃N+1,
N+1 N+1
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such that XT
k Uk is symmetric for all k ∈ [0,N + 1], the P -condition (13) holds, and the image

condition

xk ∈ ImXk for all k ∈ [0,N + 1]
for all admissible (x,u) with X̃N+1x0 = 0 = xN+1

holds, where (X̃, Ũ ) is the conjoined basis of the system (S), which has the coefficient matrix Sk

defined in (16), with the initial conditions (X̃0, Ũ0) = (I,0).

Proof. Assume F0(x,u) � 0 over x0 = 0 = xN+1. Then the conclusion follows from Corol-
lary 1(iii) upon taking Fk ≡ 0. Note that in this case (X̃, Ũ ) ≡ (X̃, Ũ ), because system (S) is
identical with (S).

Conversely, assume that (X,U) satisfies the conditions of this theorem. Then

CkXk +DkUk = CkXk +DkUk + Fk(AkXk +BkUk) = Uk+1,

that is, (X,U) is a conjoined basis of the system (S), where the coefficient matrix Sk is defined
in (16). Note that rank

( X0
U0

) = n because XT
0 X0 + UT

0 U0 = (α2 + 1)I + 2αX̃
†
N+1X̃N+1 > 0.

Thus, by Corollary 1 applied to the system (S), we get that the functional F0(x,u) � 0 over
x0 = 0 = xN+1. Now with the same data Ek , Ek , Gk , Gk as in Claim 3 in the proof of Theorem 1
and with Mi = Mi = I , Γi = Γ i = 0 (i = 0,1), we obtain from Proposition 2(i) that F0(x,u) �
0 over x0 = 0 = xN+1. The proof is now complete. �
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