JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 59, 278-287 (1977)

Matrices Which Generate Families of Polynomials and Associated Infinite Series

P. R. VEIN

Department of Mathematics, University of Aston in Birmingham, Birmingham, B4 7ET, England

Submitted by W. F. Ames

In 1928, Polya [1] gave a solution of Cauchy's functional equation for matrices (Aczel [2] calls it Bellman's functional equation)

$$\mathbf{M}(x)\,\mathbf{M}(y) = \mathbf{M}(x+y) \tag{1}$$

in the form

$$\mathbf{M}(x) = \begin{bmatrix} 1 & & \\ x & 1 & & \\ x^2 & 2x & 1 & & \\ x^3 & 3x^2 & 3x & 1 & \\ x^4 & 4x^3 & 6x^2 & 4x & 1 \\ ------ \end{bmatrix}.$$
(2)

The elements in row (n + 1) are the terms in the polynomial expansion of $(1 + x)^n$ and the elements in column (n + 1) are the terms in the infinite series expansion of $(1 - x)^{-n-1}$.

In view of the form of Eq. (1) we expect a relation of the form

$$\mathbf{M}(x) = e^{x\mathbf{Q}},\tag{3}$$

where Q is a constant matrix, and it is found that

$$\mathbf{Q} = [q_{ij}],\tag{4}$$

where

 $q_{ij} = j,$ if i = j + 1,= 0, otherwise,

i.e.,

Copyright () 1977 by Academic Press, Inc. All rights of reproduction in any form reserved.

ISSN 0022-247X

The matrix e^{xQ} may be said to generate the family of polynomials $(1 + x)^n$, n = 0, 1, 2, ..., by rows and the associated family of infinite series $(1 - x)^{-n-1}$, n = 0, 1, 2, ..., by columns.

There is another relationship between the exponential and binomial functions, namely the well-known limit

$$e^x = \lim_{n \to \infty} (1 + (x/n))^n.$$
 (6)

These observations suggest an investigation into the families of polynomials and their associated infinite series which are generated by other functions of the constant matrix \mathbf{Q} and other constant matrices and, conversely, the function of some constant matrix which will generate a given family of polynomials or infinite series.

The Pochhammer notation [3] is defined as

$$(z)_0 = 1,$$

 $(z)_r = z(z+1)(z+2)\cdots(z+r-1)$

This notation may be extended to matrices. If Z is a square matrix

$$(\mathbf{Z})_0 = \mathbf{I},$$

 $(\mathbf{Z})_r = \mathbf{Z}(\mathbf{Z} + \mathbf{I}) (\mathbf{Z} + 2\mathbf{I}) \cdots (\mathbf{Z} + \overline{r - 1\mathbf{I}}).$

If **B** is a nonsingular square matrix and the product is commutative,

$$(\mathbf{A} + a\mathbf{B}) (\mathbf{A} + \overline{a+1}\mathbf{B}) (\mathbf{A} + \overline{a+2}\mathbf{B}) \cdots (\mathbf{A} + \overline{a+r-1}\mathbf{B})$$
$$= (\mathbf{A}\mathbf{B}^{-1} + a\mathbf{I}) (\mathbf{A}\mathbf{B}^{-1} + \overline{a+1}\mathbf{I}) \cdots (\mathbf{A}\mathbf{B}^{-1} + \overline{a+r-1}\mathbf{I}) \mathbf{B}^{r},$$

that is,

$$\prod_{s=0}^{r-1} \left(\mathbf{A} + \overline{a+s} \mathbf{B} \right) = (\mathbf{A}\mathbf{B}^{-1} + a\mathbf{I})_r \mathbf{B}^r.$$
 (7)

If **B** is singular and/or the product is not commutative, this relation is no longer valid but it will be convenient in the analysis which follows to continue to use it in a purely symbolic fashion. The validity of Theorem 2 below does not depend on acceptance of this convention which affects only the notation in which the theorem is presented.

From (4) it is found that

$$\mathbf{Q}^r = [q_{ij}^{(r)}]$$

. .

where

$$q_{ij}^{(r)} = (j)_r$$
, if $i = j + r$,
= 0, otherwise.

Define a matrix $\mathbf{M}(x)$ as the following infinite series:

$$\mathbf{M}(x) = \sum_{0}^{\infty} \lambda_{r}(x\mathbf{Q})^{r}, \quad \lambda_{0} = 1, \quad \mathbf{Q}^{0} = \mathbf{I},$$

$$= \begin{bmatrix} 1 & & & \\ (1)_{1}\lambda_{1}x & 1 & & \\ (1)_{2}\lambda_{2}x^{2} & (2)_{1}\lambda_{1}x & 1 & \\ (1)_{3}\lambda_{3}x^{3} & (2)_{2}\lambda_{2}x^{2} & (3)_{1}\lambda_{1}x & 1 & \\ (1)_{4}\lambda_{4}x^{4} & (2)_{3}\lambda_{3}x^{3} & (3)_{2}\lambda_{2}x^{2} & (4)_{1}\lambda_{1}x \\ ------- \end{bmatrix}$$

The elements in row (n + 1) are the terms in the polynomial

$$p_n(x) = \sum_{0}^n \lambda_r(n+1-r)_r x^r, \qquad \lambda_0 = 1.$$

The elements in column (n + 1) are the terms in the infinite series

$$f_n(x) = \sum_{0}^{\infty} \lambda_r(n+1)_r x^r, \quad \lambda_0 = 1.$$

Using the relations

$$(n+1-r)_r = (-1)^r (-n)_r, \quad \text{when} \quad r \leq n,$$

= 0, when $r > n,$ (8)

the above observations may be summarized in the following theorem:

THEOREM 1. The matrix

$$\mathbf{M}(x) = \sum_{0}^{\infty} \lambda_r(x\mathbf{Q})^r, \quad \lambda_0 = 1, \quad \mathbf{Q}^0 = \mathbf{I},$$

generates the family of polynomials

$$p_n(x) = \sum_{0}^{\infty} \lambda_r(-n)_r (-x)^r, \quad n = 0, 1, 2, ...,$$

by rows and the family of associated infinite series

$$p_{-n-1}(-x) = \sum_{0}^{\infty} \lambda_r (n+1)_r x^r, \quad n = 0, 1, 2, ...,$$

by columns.

280

For example, when $\lambda_r = (r!)^{-1}$, we get Polya's matrix (2) and the binomial series.

When

$$\lambda_r = (-1)^r / (r!)^2$$

we get

$$\mathbf{M}(x) = \sum_{0}^{\infty} (-x\mathbf{Q})^{r} / (r!)^{2} = J_{0}(2(x\mathbf{Q})^{1/2},$$
(9)

$$p_n(x) = n! \sum_{0}^{\infty} (-x)^r / (n-r)! (r!)^2 = L_n(x), \qquad (10)$$

giving a new relation between the Bessel function of order zero and the Laguerre polynomial. There is a limiting relationship between these two functions analogous to (6), viz.

$$J_0(2x^{1/2}) = \lim_{n \to \infty} L_n(x/n).$$

This and other relationships between these two functions can be found in [3, 4] and in tables of Laplace transforms [5].

More generally, when

$$\lambda_r = \frac{(\alpha_1)_r (\alpha_2)_r \cdots (\alpha_p)_r}{(\beta_1)_r (\beta_2)_r \cdots (\beta_q)_r} \frac{1}{r!},$$

where α_i , β_i are independent of *n*, then

$$\mathbf{M}(\mathbf{x}) = {}_{p}F_{q} \begin{bmatrix} \alpha_{1}, \alpha_{2}, ..., \alpha_{p} \\ \beta_{1}, \beta_{2}, ..., \beta_{q} \end{bmatrix} \mathbf{x}\mathbf{Q} \end{bmatrix},$$
(11)

$$p_{n}(x) = {}_{p+1}F_{q} \begin{bmatrix} -n, \alpha_{1}, \alpha_{2}, ..., \alpha_{p} \\ \beta_{1}, \beta_{2}, ..., \beta_{q} \end{bmatrix} - x \end{bmatrix}.$$
(12)

Special cases of this result are given in Table I. It will be noticed that there is a relationship between the Hermite polynomials and the circular functions. Once again there is a limiting relationship between these two functions (see [3, Sect. 22.15]).

The converse of Theorem I is straightforward:

The family of polynomials

$$p_n(x) = \sum_{0}^{n} b_{nr} x^r, \qquad b_{n0} = 1,$$

is generated by the matrix

$$\mathbf{M}(x) = \sum_{0}^{\infty} b_{nr}(-x\mathbf{Q})^{r}/(-n)_{r} ,$$

provided that $b_{nr}/(-n)_r$ is independent of n.

	Generating matrix	Special function	o ^z o	$J_0(2(x\mathbf{Q})^{1/2})$	$\Gamma(\alpha + 1)(x\mathbf{Q})^{-\alpha/2} \int_{x} (2(x\mathbf{Q})^{1/2})^{*}$	$\cos(2x\mathbf{Q}^{1/2})$	$(2xQ^{1/2})^{-1}\sin(2xQ^{1/2})^*$
		Hypergeometric form	$_{0}F_{0}\begin{bmatrix} -\\ -\end{bmatrix} x\mathbf{Q}$	$_{0}F_{1}\left[egin{array}{c} - \\ 1 \end{array} ight]-x{ m Q}$	$_{_{0}}F_{1}\left[rac{-}{lpha+1}\left -x\mathrm{Q} ight] ight.$	$_{0}F_{1}\left[rac{1}{2}\left -x^{2}\mathrm{Q} ight]$	$_{0}F_{1}\left[rac{-}{2}\left -x^{2}\mathbf{Q} ight]$
	ily of polynomials	Hypergeometric form	${}_{\lambda}F_{0}\begin{bmatrix} -\pi \\ -\end{bmatrix} \begin{bmatrix} -x \end{bmatrix}$	${}_{\mathrm{t}}F_{\mathrm{t}}\begin{bmatrix}-\pi\\1\end{bmatrix}x$	$_{1}F_{1}\left[\left. $	$_{1}F_{1}\left[egin{array}{c} -n\\ rac{1}{2} \end{array} \middle egin{array}{c} x^{2} \end{array} ight]$	$_{1}F_{1}\begin{bmatrix} -\pi \\ rac{3}{2} & x^{2} \end{bmatrix}$
		Name	Binomial	Laguerre	Generalized Laguerre	Hermite	Hermite
	Fam	$p_n(x)$	$(1+\chi)^n$	$L_n(x)$	$rac{n!}{\Gamma(n+lpha+1)}L_n^{(a)}(x)$	$\frac{(-1)^n n!}{(2n)!} H_{2n}(x)$	$\frac{(-1)^n n!}{2(2n+1)! x} H_{2n+1}(x)$

TABLE I Illustrations of Theorem 1

282

* Symbolically.

The family of infinite series

$$f_n(x) = \sum_{0}^{\infty} c_{nr} x^r, \qquad c_{n0} = 1,$$

is generated by the matrix

$$\mathbf{M}(x) = \sum_{0}^{\infty} c_{nr} (-x\mathbf{Q})^r / (n+1)_r ,$$

provided that $c_{nr}/(n + 1)_r$ is independent of *n*. Should a given family of polynomials or infinite series not satisfy the appropriate condition, it cannot be generated solely by means of the matrix **Q** but might possibly be generated by other constant matrices. A variety of polynomials and infinite series not covered by Theorem I can be generated by generalizing **Q** as follows:

$$\mathbf{Q}_{m} = (1/m) \, [q_{ij}^{(m)}], \tag{13}$$

where

$$q_{ij}^{(m)} = j^m$$
, if $i = j + 1$,
= 0, otherwise.
 $Q_m^r = (1/m^r) [q_{ij}^{(m,r)}]$,

where

$$q_{ij}^{(m,r)} = \{(j)_r\}^m$$
, if $i = j + r$,
= 0, otherwise.

The polynomials of Legendre and Chebyshev, among others, can be expressed in the hypergeometric form [3]

$$d_n(x)_2 F_1 \begin{bmatrix} -n, n+2a \\ b \end{bmatrix} g(x) \end{bmatrix}$$

These polynomials can be generated by means of Q_1 , Q_2 , where

$$\mathbf{Q}_{1} = \mathbf{Q}$$
$$\mathbf{Q}_{2} = \frac{1}{2} \begin{bmatrix} 0 & & \\ 1 & 0 & \\ & 4 & 0 & \\ & & 9 & 0 \\ & & & 16 \\ - - - - - - \end{bmatrix}.$$

Let

$$p_n(x) = \sum_{0}^{\infty} (-n)_r (n+2a)_r \lambda_r x^r, \quad (\lambda_r \text{ independent of } n).$$

The matrix which generates these polynomials by rows is.

$$\mathbf{M}(x) = \begin{bmatrix} 1 & & & \\ (-1)_1(1+2a)_1\lambda_1x & 1 & & \\ (-2)_2(2+2a)_2\lambda_2x^2 & (-2)_1(2+2a)_1\lambda_1x & 1 & \\ (-3)_3(3+2a)_2\lambda_3x^3 & (-3)_2(3+2a)_2\lambda_2x^2 & (-3)_1(3+2a)_1\lambda_1x & 1 & \\ (-4)_4(4+2a)_4\lambda_4x^4 & (-4)_3(4+2a)_3\lambda_3x^3 & (-4)_2(4+2a)_2\lambda_2x^2 & (-4)_1(4+2a)_1\lambda_1x & \\ & \\ \end{array} \\ = \sum_{0}^{\infty} \mathbf{P}_r \lambda_r (-2x)^r,$$

where

$$\mathbf{P}_{1} = \frac{1}{2} \begin{bmatrix} 0 \\ (1)_{1} (1+2a)_{1} & 0 \\ (2)_{1} (2+2a)_{1} & 0 \\ (3)_{1} (3+2a)_{1} & 0 \\ (4)_{1} (4+2a)_{1} \\ (4)_{1} (4+2a)_{1} \end{bmatrix}$$
$$= \mathbf{Q}_{2} + a\mathbf{Q}_{1},$$
$$\mathbf{P}_{r} = (1/2^{r}) [p_{ij}^{(r)}],$$

where

$$p_{ij}^{(r)} = (j)_r (j + r - 1 + 2a)_r$$
, if $i = j + r$,
= 0, otherwise.

It may be verified by elementary processes that

$$\mathbf{P}_r = \prod_{s=0}^{r-1} \left(\mathbf{Q}_2 + \overline{a+s} \mathbf{Q}_1 \right). \tag{14}$$

If we now put

$$\lambda_r = \{(b)_r r!\}^{-1}$$

we may summarize the above result in the following theorem:

284

THEOREM 2. The family of polynomials

$$p_n(x) = \sum_{0}^{\infty} \frac{(-n)_r (n+2a)_r x^r}{(b)_r r!} = {}_2F_1 \begin{bmatrix} -n, n+2a \\ b \end{bmatrix} x$$

is generated by rows by the matrix

$$\mathbf{M}(x) = \sum_{\mathbf{0}}^{\infty} \frac{(-2x)^r}{(b)_r r!} \prod_{s=0}^{r-1} (\mathbf{Q}_2 + \overline{a+s} \mathbf{Q}_1).$$

Using the convention defined in (7), the matrix \mathbf{M} can be expressed purely symbolically in the form

$$\mathbf{M}(x) = \sum_{0}^{\infty} \frac{(\mathbf{Q}_{2}\mathbf{Q}_{1}^{-1} + a\mathbf{I})_{r} (-2x\mathbf{Q}_{1})^{r}}{(b)_{r} r!}$$
$$= {}_{1}F_{1} \begin{bmatrix} \mathbf{Q}_{2}\mathbf{Q}_{1}^{-1} + a\mathbf{I} \\ b \end{bmatrix} \begin{bmatrix} -2x\mathbf{Q}_{1} \end{bmatrix}.$$

Special cases of Theorem 2 are given in Table II.

TABLE II

Illustrations of Theorem 2

Family of polynomials							
$p_n(x)$	Name	Hypergeometric form	Generating matrix				
$\frac{(-1)^n 2^{2n} (n!)^2}{(2n)!} P_{2n}(x)$	Legendre	$_{2}F_{1}\left[\begin{array}{c} -n, n+\frac{1}{2} \\ \frac{1}{2} \end{array} \middle x^{2}\right]$	$_{1}F_{1}\left[\frac{Q_{2}Q_{1}^{-1}+\frac{1}{4}I}{\frac{1}{2}}\right]-2x^{2}Q_{1}$				
$\frac{(-1)^n 2^{2n} (n!)^2}{(2n+1)! x} P_{2n+1}(x)$	Legendre	$_{2}F_{1}\left[\begin{smallmatrix} -n,n+rac{3}{2} \\ rac{3}{2} \end{smallmatrix} \middle x^{2} ight]$	$_{1}F_{1}\left[\begin{array}{c} \mathbf{Q}_{2}\mathbf{Q}_{1}^{-1}+\frac{3}{4}\mathbf{I}\\ \frac{3}{2} \end{array} \right -2x^{2}\mathbf{Q}_{1} \right]$				
$P_n(1-2x)$	Legendre	$_{2}F_{1}\begin{bmatrix}-n,n+1\\1\end{bmatrix}x$	${}_{1}F_{1}\begin{bmatrix} Q_{2}Q_{1}^{-1}+\frac{1}{2}I\\ I \end{bmatrix}-2xQ_{1}\end{bmatrix}$				
$T_n(1-2x)$	Chebyshev	$_{2}F_{1}\left[\begin{array}{c}-n,n\\\frac{1}{2}\end{array}\right]$	$_{1}F_{1}\left[\begin{array}{c} Q_{2}Q_{1}^{-1} \\ \frac{1}{2} \end{array} \middle -2xQ_{1} \right]$				
$\frac{1}{n+1} U_n(1-2x)$	Chebyshev	$_{2}F_{1}\left[\begin{smallmatrix} -n, n+2\\ \frac{3}{2} \end{smallmatrix} \middle x \right]$	$_{1}F_{1}\left[egin{matrix} \mathbf{Q}_{2}\mathbf{Q}_{1}^{-1}+\mathbf{I} \\ rac{3}{2} \end{array} ight -2x\mathbf{Q}_{1} ight]$				
	Piessens [6]	$_{2}F_{2}\begin{bmatrix}-n,n\\\frac{1}{2},b\end{bmatrix}$	${}_{1}F_{2}\left[\begin{array}{c} \mathbf{Q}_{2}\mathbf{Q}_{1}^{-1} \\ \frac{1}{2}, b \end{array}\right] - 2x\mathbf{Q}_{1}$				

The next theorem can be proved in a similar manner.

THEOREM 3. The family of polynomials

$$p_n(x, a) = {}_2F_1 \begin{bmatrix} -n, -n-2a \\ b \end{bmatrix} x$$

is generated by rows by the matrix

$$\begin{split} \mathbf{M}(x) &= \sum_{0}^{\infty} \frac{\{(\mathbf{Q}_2 + a\mathbf{Q}_1) \ 2x\}^r}{(b)_r \ r!}, \\ &= {}_0F_1\left[\frac{-}{b} \ \left| \left(\mathbf{Q}_2 + a\mathbf{Q}_1\right) \ 2x\right], \end{split}$$

which also generates by columns the family of infinite series

$$p_{-n-1}(x, -a) = \sum_{0}^{\infty} (n+1)_r (n+1+2a)_r \lambda_r x^r.$$

Theorems 2 and 3 cover between them nine of the polynomials given by Abramowitz and Stegun [3, in the section "Orthogonal Polynomials as Hypergeometric Functions"].

The matrix

$$\mathbf{M}(x) = \sum_{0}^{\infty} \lambda_{r} (x \mathbf{Q}_{-1})^{r},$$

where Q_{-1} is defined by (13), generates by columns the family of infinite series

$$f_n(x) = \sum_{\bullet}^{\infty} \frac{\lambda_r(-x)^r}{(n+1)_r}$$
, $n = 0, 1, 2,$

If $\lambda_r = (r!)^{-1}$ we get a relation between the exponential function and Bessel's function $\int_n (x)$.

$$\mathbf{M}(x) = e^{x\mathbf{Q}_{-1}}$$

$$f_n(x) = n! x^{-n/2} J_n(2x^{1/2}), \qquad n = 0, 1, 2, \dots$$

If $\lambda_r = (-1)^r (-m)_r/r!$ we get a relation between the binomial function and the generalized Laguerre polynomials which appear as columns of finite length.

$$\mathbf{M}(x) = (\mathbf{I} + x\mathbf{Q}_{-1})^m,$$

 $f_n(x) = rac{m!n!}{(m+n)!} L_m^{(n)}(x), \qquad n = 0, 1, 2,....$

Finally the matrix

$$\mathbf{M}(x) = \sum_{0}^{\infty} \lambda_r (\mathbf{Q}_0 + \mathbf{Q}_{-1})^r x^r,$$

where, from (13),

$$\mathbf{Q_0} + \mathbf{Q_{-1}} = egin{bmatrix} 0 & 0 & 0 \ rac{1}{2} & 0 & 0 \ rac{3}{3} & 0 & 0 \ rac{3}{4} & 0 & 0 \ rac{-1}{2} & rac{3}{4} & 0 \ rac{-1}{2} & rac{-1}{2} & rac{1}{2} & r$$

generates by columns the infinite series

$$f_n(x) = \sum_{0}^{\infty} \frac{(n)_r \lambda_r x^r}{(n+1)_r}, \qquad n = 0, 1, 2, \dots.$$

If $\lambda_r = (-1)^r/r!$ we get a relation between the exponential function and the incomplete gamma function.

$$\mathbf{M}(x) = e^{-x(\mathbf{Q}_0+\mathbf{Q}_{-1})},$$

 $f_n(x) = nx^{-n}\gamma(n, x).$

ACKNOWLEDGMENT

The basic ideas in this paper were formulated while the author was on a year's leave of absence at the South Australian Institute of Technology, Adelaide, South Australia.

References

- 1. G. POLYA, Über die Funktionalgleichung der Exponentialfunktion im Matrixkalkul, Sitzber. Preuss. Akad. Wiss. (1928), 96–99.
- 2. J. Aczel, "Lectures on Functional Equations and Their Applications," Academic Press, New York, 1966.
- 3. M. ABRAMOWITZ AND I. A. STEGUN, (Eds.), "Handbook of Mathematical Functions," Dover, New York, 1964.
- 4. E. D. RAINVILLE, "Special Functions," Macmillan, New York, 1960.
- 5. A. ERDELYI et al., Tables of integral transforms, in "Bateman Manuscript Project," McGraw-Hill, New York, 1954.
- R. PIESSENS, A new numerical method for the inversion of the Laplace transform, J. Inst. Math. Appl. 10 (1972), 185-192.