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In 1928, Polya [l] gave a solution of Cauchy’s functional equation for matrices 
(Aczel [2] calls it Bellman’s functional equation) 

M(x) Mb9 = Mb + A (1) 
in the form 

1 
x 1 
x2 2x 1 

M(x) - x3 3x2 3x 1 [-----------I * (2) 

x4 4x3 6x2 4x 1 

The elements in row (rz + 1) are the terms in the polynomial expansion of 
(1 + x)~ and the elements in column (n + 1) are the terms in the infinite series 
expansion of (1 - x)-“-l. 

In view of the form of Eq. (1) we expect a relation of the form 

M(x) = e”Q, 

where Q is a constant matrix, and it is found that 

Q = kiJ, 
where 

Qii =.I7 if ;=j+1, 

(3) 

(4) 

i.e., 
= 0, 

I 
0 
1 

Q- 

- 

otherwise. 

(5) 
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The matrix ezQ may be said to generate the family of polynomials (1 + x)~, 
71 = 0, 1, 2 ,...) by rows and the associated family of infinite series (1 - x)-“-l, 
tl = 0, 1,2 ,..., by columns. 

There is another relationship between the exponential and binomial functions, 
namely the well-known limit 

es = li+i(l + (x/n)p. 

These observations suggest an investigation into the families of polynomials 
and their associated infinite series which are generated by other functions of the 
constant matrix Q and other constant matrices and, conversely, the function 
of some constant matrix which will generate a given family of polynomials or 
infinite series. 

The Pochhammer notation [3] is defined as 

(40 = 1, 
(2$ = z(z + 1) (z + 2) ..* (Gz + Y - 1). 

This notation may be extended to matrices. If Z is a square matrix 

(Z), = I, 

(Z), = Z(Z + I) (Z + 21) *-* (Z + y - 11). 

If B is a nonsingular square matrix and the product is commutative, 

= (AB-l + aI) (AB-l + afl1) a.. (AB-l + a + Y - i1) B’, 

that is, 
7-l 

n (A + a+) = (AB-l + uI)r B’. (7) 
s-0 

If B is singular and/or the product is not commutative, this relation is no 
longer valid but it will be convenient in the analysis which follows to continue 
to use it in a purely symbolic fashion. The validity of Theorem 2 below does not 
depend on acceptance of this convention which affects only the notation in which 
the theorem is presented. 

From (4) it is found that 

where 

*$) = ( j)7 , if i=j+r, 

zz? 0, otherwise. 
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Define a matrix M(x) as the following infinite series: 

M(x) - f b(xQ)‘, A” = 1, Q” = I, 
0 

___----___-----_---- 

The elements in row (n + 1) are the terms in the polynomial 

p,(x) = i A,@ + 1 - r), x7, A, = 1. 
0 

The elements in column (n + 1) are the terms in the infinite series 

f&) = t h,(n + 1)r x+, A, = 1. 
0 

Using the relations 

(n + 1 - r), = (-1y (-n), ) when r < % 
(8) 

= 0, when 7 > n, 

the above observations may be summarized in the following theorem: 

THEOREM 1. The matrix 

M(x) = 2 UXQY, A0 = 1, Q” = I, 
0 

generates the family of polynomials 

P&) = $ b-4, (-xl’, n = 0, 1) 2 )..., 

by rows and the family of associated infinite series 

p-,4(-x) = g h.(n + 117 xr, 72 = 0, 1, 2 ,..., 
0 

by columns. 
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For example, when A, = (r!)-l, we get Polya’s matrix (2) and the binomial 
series. 

When 
A, = (- I )‘/(Y !)” 

we get 

M(x) = f (-xQ>‘/(r!)“) = Jo(2(xQ)““, (9) 
0 

p,(x) = n! f (-x)‘/(n - Y)! (Y!)2 = L,(x), 
0 

giving a new relation between the Bessel function of order zero and the Laguerre 
polynomial. There is a limiting relationship between these two functions 
analogous to (6), viz. 

Jo(2xl’2) = g L&/n). 

This and other relationships between these two functions can be found in [3, 41 
and in tables of Laplace transforms [5J 

More generally, when 

where 0~~ , /Ii are independent of n, then 

Special cases of this result are given in Table I. It will be noticed that there is a 
relationship between the Hermite polynomials and the circular functions. Once 
again there is a limiting relationship between these two functions (see [3, Sect. 
22.151). 

The converse of Theorem I is straightforward: 
The family of polynomials 

p,(x) = i b&l.xr, b,, = 1, 
0 

is generated by the matrix 

M(x) = ii: bnr(-xQ)‘/(-n>r > 
0 

provided that b,,/(-n), is independent of n. 
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The family of infinite series 

is generated by the matrix 

MC4 = g cn,(-xQJW + 1)r 7 
0 

provided that c,,/(n + l)r is independent of n. Should a given family of poly- 
nomials or infinite series not satisfy the appropriate condition, it cannot be 
generated solely by means of the matrix Q but might possibly be generated by 
other constant matrices. A variety of polynomials and infinite series not covered 
by Theorem I can be generated by generalizing Q as follows: 

Qm = U/4 &)I, (13) 

where 

where 

qjy’ = j", if i=j+l, 

= 0, otherwise. 

Q,,,’ = (l/m’) [&“*“], 

4ij bw) = {( j)T}m, if i=j+r, 

= 0, otherwise. 

The polynomials of Legendre and Chebyshev, among others, can be expressed 
in the hypergeometric form [3] 

-n, n + 2a 
u424 [ b 1 g(x)] * 

These polynomials can be generated by means of Qr , Qz , where 

Q1 = Q 

Qz = 4 

0 
1 0 

4 0 
9 0 

16 
_------ I* 
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Let 

I44 = f C-n), (n + 24, f4.XT, (A, independent of n). 
0 

The matrix which generates these polynomials by rows is 

M(x)= (-2),(2!2a),h,r 
(-3),(3+2a),h,x2 (-3),(3:2a),X,s 

(--4)a(4+2a)J,x* (-4),(4+2a),W (-4),(4$2a),h& (-4),(4:2a),Q ------------------------------------------- 
= f PA( -2xy, 

0 

where 

P, = & 

--------- 

= QZ + aQ1, 

P, = (l/27 [pi’], 

where 

A’ = (jh (i + r - 1 + 24, if i=j+r, 

= 0, otherwise. 

It may be verified by elementary processes that 

T-l 

Pr = I-I (Qz + a + SQd 
S=O 

If we now put 

A, = {(!I), r!}-1 

(14) 

we may summarize the above result in the following theorem: 
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THEOREM 2. The family of polynomials 

p,(x) = f C-4 (n + 24 x’ 
(b), r! =A [ -n, n + 2a 

0 
b 1 x] 

is generated by rows by the matrix 

M(x) = t $$ E (Qs + aQsQ1). 
* s-o 

Using the convention defined in (7), the matrix M can be expressed purely 
symbolically in the form 

M@) = 2 (QzQ? + a& (--2@d 
0 (4, ~1 

= lFl 

[ 
QsQ? + aI 

b I 1 -2xQ, . 

Special cases of Theorem 2 are given in Table II. 

TABLE II 

Illustrations of Theorem 2 

Family of polynomials 

Pn(4 Name Hypergeometric form Generating matrix 

(- 1)” 22”(n!)S 

(24! Pm(x) Legendre 2Fl[-n.;+t 1 x2] lFl[Q,a;+al 1 -&‘Q1] 

(- 1)” 2*“(72!)* 

(2n+ l)! x 
P,,+&x) Legendre &[-;+’ 1 x2] ~Fl[Q2Q~+fr 1 -2.x’Q,] 

P”( 1-2x) Legendre zF,[-n’ln+l 1 x] lFl[Q2Q;‘+t1 1 -2xQ,] 

Tn(l--24 Chebyshev %F~[-;’ n [ x] I&,,‘~~ 1 -bQ,] 

& U”(l -q Chebyshev &[-n’;f2 1 x] lFl[QaQ;+l 1 -2xQ,] 

Piessens [6j ,F&;b” 1 x] .&[a;:;’ 1 -zyP~] 
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The next theorem can be proved in a similar manner. 

THE~REM’~. The family of polynomials 

p,(x, a) = zFI [-n’ -; - 2a 1 x] 

is generated by rows by the matrix 

=01 F [, 1 (Q2 + aQJ 2x1, 

which also generates by columns the family of infinite series 

p-,&, --a) = f (n + 1L (n + 1 + 24 Gx’. 
0 

Theorems 2 and 3 cover between them nine of the polynomials given by 
Abramowitz and Stegun [3, in the section “Orthogonal Polynomials as Hyper- 
geometric Functions”]. 

The matrix 

M(x) = f &(xQ-l)'> 
0 

where QW1 is defined by (13), generates by columns the family of infinite series 

m q-x)’ -- f&) = ; @ + 1)7 ’ n = 0, 1, 2 ).... 

If A,. = (Y!)-l we get a relation between the exponential function and Bessel’s 
function JJx) . 

M(x) = ezQ-l 

f&) = .!x-n’“J,(2x”“), n = 0, 1, 2 ,.... 

If x, = (-I)‘(- )r/ m Y! we get a relation between the binomial function and the 
generalized Laguerre polynomials which appear as columns of finite length. 

M(x) = (I + xQ-l)", 

f&) = (mmJ;)! &?(4~ n = 0, 1, 2 ,.... 
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Finally the matrix 

287 

M(x) = 2 UQo + Q-J" x's 
0 

where, from (13), 

Qo+Q-I= 

generates by columns the infinite series 

f&)‘p&, n=0,1,2 ,.... 
7 

If A, = (-I>‘/Y! we get a relation between the exponential function and the 
incomplete gamma function. 

M@) = &Qo+Q-I), 

fn(4 = ~-v% 4. 
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