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Abstract

A full-rank under-determined linear system of equations Ax = b has in general infinitely
many possible solutions. In recent years there is a growing interest in the sparsest solution of
this equation—the one with the fewest non-zero entries, measured by ‖x‖0. Such solutions find
applications in signal and image processing, where the topic is typically referred to as “sparse
representation”. Considering the columns of A as atoms of a dictionary, it is assumed that a
given signal b is a linear composition of few such atoms. Recent work established that if the
desired solution x is sparse enough, uniqueness of such a result is guaranteed. Also, pursuit
algorithms, approximation solvers for the above problem, are guaranteed to succeed in finding
this solution.

Armed with these recent results, the problem can be reversed, and formed as an implied
matrix factorization problem: Given a set of vectors {bi}, known to emerge from such sparse
constructions, Axi = bi , with sufficiently sparse representations xi , we seek the matrix A. In
this paper we present both theoretical and algorithmic studies of this problem. We establish the
uniqueness of the dictionary A, depending on the quantity and nature of the set {bi}, and the
sparsity of {xi}. We also describe a recently developed algorithm, the K-SVD, that practically
find the matrix A, in a manner similar to the K-Means algorithm. Finally, we demonstrate this
algorithm on several stylized applications in image processing.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Let A ∈ Rn×k be a full rank matrix with more columns than rows (n < k), and
b ∈ Rn a corresponding vector. We assume hereafter that the columns of A are nor-
malized. The under-determined linear system of equations Ax = b has infinitely many
possible solutions x ∈ Rk . In recent years there is a growing interest in finding the
sparsest solution of this equation,

(P0) min
x

‖x‖0 subject to Ax = b, (1)

where ‖ · ‖0 is the l0 semi-norm, counting the non-zero entries of a vector. Another
interesting and related question concerns an approximation of the vector b using a
linear combination of few columns of A, by solving

(P0,ε) min
x

‖x‖0 subject to ‖Ax − b‖2 � ε (2)

for a known ε.
Solving (P0) or (P0,ε) find applications in signal and image processing, where the

topic is typically referred to as “sparse representations”. Considering the vector b as
a signal, and the columns of A as atoms of a dictionary, the solution of (1) leads to
the sparsest decomposition of the signal under this dictionary, which stands for an
efficient overcomplete signal transform. Solving (2) is even more appealing, as those
approximated representations allow sparser and more compact signal description, and
are often efficient in removing noise from the signal.

Exact determination of the solution x for both (1) and (2) proves to be an NP-
hard problem [1]. Therefore, approximating algorithms are often used. Indeed, in
recent years several very efficient such pursuit algorithms were presented for these
problems [2–7], along with an analysis of their behavior. Recent works established
that if the sought solution for (1) is sparse enough, this solution is unique, and pursuit
techniques succeed in recovering it [8–13]. Later work considered the approximated
version (P0,ε) and established similarly that sparsity guarantees a stability in the
recovery of the solution [14,15]. The most recent activity in this field revisits those
questions from a probabilistic standpoint, obtaining more realistic assessments on
uniqueness of solutions, and success rates of pursuit algorithms [16–19]. In all these
works, the properties of the matrix A set the limits on the sparsity that consequently
ensures a successful approximation with those algorithms. More on the uniqueness
properties of sparse representations, the pursuit algorithms, and related theoretical
results is briefly surveyed in Section 2.

As we have already mentioned, sparse representations find applications in sig-
nal and image processing. Compression, regularization in inverse problems, feature
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extraction, and more, are applications that benefit from the sparsity and overcomplete-
ness concepts, as presented above. Indeed, the success of the JPEG2000 compression
method can be attributed to the sparsity of the wavelet coefficients of natural images
[20]. In denoising, shift invariant wavelet methods exploit overcomplete wavelet rep-
resentations, and are among the most effective known algorithms for this task [21–24].
Sparsity and overcompleteness have been successfully used for dynamic range com-
pression in images [25], separation of texture and cartoon content in images [26,27],
inpainting [28], and more.

In all the above-mentioned works, a pre-specified dictionary matrix A is chosen
and used. An overcomplete wavelet, curvelet, contourlet, steerable wavelet, short-
time-Fourier transform, and more, are typically such choices for dictionaries. The
natural question is whether one can find the best dictionary for a signal family in
mind. As we show next, this turns into a beautiful matrix factorization problem that
can be handled successfully.

Consider the following problem: We are given a sufficiently large set of signals
{bi}Ni=1, each known to be composed as a sparse linear combination over the full rank
matrix A ∈ Rn×k . I.e.,

∀1 � i � N, ∃xi such that bi = Axi ∧ ‖xi‖0 � L (3)

for a known cardinality L � n. Arranging all signals as columns in a matrix B ∈
Rn×N , and similarly gathering the coefficient vectors as columns of X ∈ Rk×N , we
have

B = AX. (4)

Given the matrix B, we are interested in factorizing it into an arbitrary matrix A
with normalized columns, and a sparse matrix X with no more than L non-zeros in
each column.

In this work we address this factorization problem from a theoretical and algorith-
mic points of view. First, we consider the question of uniqueness of such factorizations
B = AX. We prove that under some conditions on the matrices B, A and X, uniqueness
is guaranteed up to a trivial permutation and sign-changes of the columns of A. These
conditions refer to the number of columns in B (i.e., the number of given signals),
the cardinality of the columns in X, and specific properties of the desired dictionary
A. Section 4 of this paper is devoted to this uniqueness theorem and its proof.

A second question that arises with regard to the discussed factorization concerns
the practical ways to achieve it. Interestingly, this problem has been already studied
by several researchers in the context of the study of the human visual system [29–32],
and signal processing in general [33–35]. In this paper we briefly review these works
in Section 3. We then present a recently developed algorithm for this factorization—
the K-SVD algorithm—that outperforms its predecessors. Section 5 is devoted to
the description of the K-SVD algorithm and its relation to the classical K-Means
clustering method. We then show several applications on real images in Section 6
that use the K-SVD and demonstrate its superiority.
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Note: Throughout this paper we refer to matrices over the real field (R). A gen-
eralization to complex numbers exists, but as our interest is in the analysis of real
signals, we choose not to undertake this wider view.

2. Prior art—Sparse representations

2.1. Preliminaries

In order to discuss sparse representations, we first review some basic definitions
and facts commonly known in this field. Those definitions are used throughout this
paper.

Recall that we refer to the columns of the matrix A as atoms that are later used
as building blocks in the construction of b. Such a matrix that holds the atoms as its
columns is referred to as a ‘dictionary’, and the order of its columns, as also their
multiplication by a scalar, is irrelevant. As already said, we often assume that all
atoms are normalized. Thus, in our terminology, given any dictionary A, its right-
multiplication by a permutation matrix and/or its right-multiplication by a diagonal
non-singular matrix, lead to an equivalent dictionary.

The mutual coherence of a dictionary A, denoted by µ(A), is defined as the max-
imal absolute scalar product between two different normalized atoms of A,

µ(A) = max
i /=j

|aT
i aj |

aT
i aiaT

j aj

. (5)

The mutual coherence of a dictionary measures the similarity between the dictio-
nary’s atoms. For an orthogonal matrix A, µ(A) = 0. For an overcomplete matrix
(k > n) we necessarily have µ(A) > 0. As we shall see next, there is an interest in
dictionaries with as small as possible µ{A} for sparse representation purposes. If
µ(A) = 1, it implies the existence of two parallel atoms, and this causes confusion
in the construction of sparse atom compositions. In [36] it was shown that for a full
rank dictionary of size n × k

µ �
√

k − n

n(k − 1)
(6)

and equality is obtained for a family of dictionaries called Grassmannian frames. For
k � n the mutual coherence we can expect to have is thus of the order of 1/

√
n.

The spark of a dictionary A is the smallest number of columns that form a linearly
dependent set [10]. In-spite the similar definition, note that spark is markedly different
from the matrix rank, being the greatest number of linearly independent columns. A
trivial relation between the spark σ {A} and the mutual coherence µ{A} is [10]

σ {A} � 1 + 1

µ{A} . (7)
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Referring to the problem posed in (1), we first quote a result that poses a condition
on its solution x such that it guarantees uniqueness:

Theorem 1 (see [10]). A linear representation over m atoms (i.e., ‖x‖0 = m) is
unique if

m <
σ {A}

2
. (8)

The work in [14] generalizes this theorem for the solution of (2). It shows that,
while exact uniqueness cannot be guaranteed, an approximate one that allows a
bounded deviation can be claimed.

These uniqueness theorems imply that no other solution can be found with the
same or better cardinality for these problems. Still, the question of how to find such
a solution remains unanswered, which leads us to the discussion on pursuit methods.

2.2. Pursuit algorithms

Of course, there is hardly any practical interest in problems that cannot be solved,
as seems to be the case for the problems (1) and (2), due to their combinatorial nature.
An extensive research in this area in the past years, led to the development of both
algorithmic tools and theoretical results, enabling us to refer to those problems as
practically solvable, and usable in actual applications. Here we briefly review these
main algorithms and results.

The simplest approximating algorithms are the matching pursuit (MP) [3] and the
orthogonal matching pursuit (OMP) algorithms [2,4,5,13]. These are greedy algo-
rithms that select the indices of the non-zero elements sequentially. At each stage,
the atom with the largest inner product with the residual signal is chosen. In OMP, an
additional projection of the original signal on the already selected atoms is deployed.
Similar methods baring the names step-wise regression, pure greedy algorithm, and
more, are manifestations of the same ideas in different fields. Both (1) and (2) are
easily addressed by changing the stopping rule of the algorithm.

A second well known pursuit approach is the basis pursuit (BP) [6]. It suggests
a convexification of the problems posed in (1) and (2), by replacing the �0 semi-
norm with an �1 norm. The focal under-determined system solver (FOCUSS) is very
similar, using the �p semi-norm with p � 1, as a replacement to the �0 semi-norm
[7,37–39]. Here, for p < 1 the similarity to the true sparsity measure is better, but the
overall problem becomes non-convex, giving rise to local minima that may mislead
in the search for solutions. Lagrange multipliers are used to convert the constraint
into a penalty term, and an iterative method is derived based on the idea of iterated
reweighed least-squares that handles the �p semi-norm as an �2 weighted one.

Both the BP and the FOCUSS can be motivated as maximum a posteriori (MAP)
estimation techniques, and indeed several works used this reasoning directly [29–
32]. MAP estimation can be used to estimate the coefficients as random variables,
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by maximizing the posterior P(x|y, A) ∝ P(y|A, x)P (x). The prior distribution of
the coefficient vector x is assumed to be a super-Gaussian iid distribution that favors
sparsity. For the Laplace distribution this approach is equivalent to BP [31]. A more
thorough summary on pursuit algorithms can be found in [40].

2.3. Theoretical results

The uniqueness theorem mentioned above implies that a representation with less
than σ {A}/2 non-zero elements is the sparsest available one, and therefore, if a pursuit
algorithm retrieves such a solution it is necessarily the one desired. However, in which
cases may we expect the pursuit algorithms to retrieve this exact solution, and when
can we guarantee its success? Those kind of questions, concerning the connection
between the pursuit algorithm’s results and the true solutions to (1) or (2) has been
studied extensively. The following is a central result on the expected behavior of the
MP and BP methods for sparse enough solutions:

Theorem 2 (see [10–13]). If the sought solution, x, for the problem (1), satisfies

‖x‖0 <
1

2

(
1 + 1

µ{A}
)

(9)

then both BP and MP will recover it exactly.

This result suggest that for representations with less thanO(
√

n) non-zeros, pursuit
methods can succeed. Results of similar nature and strength were developed for
structured dictionaries, constructed as a concatenation of several unitary matrices
[9,11,41]. Such a dictionary structure is restrictive, but decomposition under this
kind of dictionaries can be done efficiently using the block coordinate relaxation
(BCR) method [42], being a fast variant of the BP.

Other work considered the approximated version (2) and shown stability in recov-
ery of x [14,15,41], meaning that pursuit algorithms lead to a solution in the proximity
of the true optimal one.

All the above results consider the worst case scenario, and the bounds derived are
therefore too pessimistic. The pursuit algorithms are known (empirically) to succeed
in recovering sparse representations even when the number of non-zero elements is
substantially beyond those bounds. Indeed, the recent front of theoretical activity in
this field revisits the above questions from a probabilistic point of view, obtaining more
realistic assessments on pursuit algorithms performance and success [16–19]. These
works show that even for O(n) non-zeros1 in the representations, pursuit methods are
expected to succeed with probability one.

1 And a proper, somewhat small, constant.
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3. Prior art—Seeking the dictionary

We now turn to briefly describe the work done on the matrix factorization problem
presented earlier. We are given a matrix B ∈ Rn×N (n � N ), containing N signals
as its columns. We assume that B is composed as the multiplication B = AX, where
A ∈ Rn×k (n < k � N ), and X ∈ Rk×N is sparse, such that no more than L non-
zeros are found in each of its columns. Given such B, we desire a factorization
that retrieves A and X. Obviously, an arbitrary matrix B does not necessarily admit
such a factorization. Thus, this problem can be rephrased, considering the nearest
factorization (using ‖B − AX‖2

F or similar measures) that satisfy the sparsity and the
dimensions conditions.

In the language of signal processing, this problem is often referred to as finding
the optimal overcomplete dictionary for sparse representation. The matrix B contains
a large set of training signals, for which the dictionary is supposed to enable sparse
representations. The methods that have been proposed so far consider this problem
as an estimation problem, taking into account the factorization error as an additive
white noise. A more thorough summary on these method can be found in [40].

The pioneering work by Field and Olshausen suggested to use a maximum-likeli-
hood (ML) based approach [29]. They tried to maximize the conditional probability
of the signals B with respect to the desired dictionary A,

max
A

P(B|A). (10)

Two assumptions are required in order to proceed: First, it is assumed that the training
signals are drawn independently, thus providing

P(B|A) =
N∏

i=1

P(bi |A). (11)

Secondly, the formulation should be using the so far “hidden variable” x. It is incor-
porated to the likelihood function using the relation

P(bi |A) =
∫

P(bi , x|A) dx =
∫

P(bi |x, A) · P(x) dx. (12)

From this expression it is implied that given the dictionary A and a specific training
signal bi , the representation xi that satisfies bi = Axi is not the sparsest determinis-
tically, but rather probabilistically. The prior distribution of the representation vector
x is assumed to be such that the entries of x are zero-mean iid, with a super Gaussian
distribution (the Cauchy function [30] or the Laplace [29,31]), promoting (but not
enforcing) sparsity. An integration over the vector x is required, which is difficult.
Indeed, Olshausen and Field [29] handled this by replacing it with the extremal value
of P(bi , x|A). This leads to a minimization problem of the form

min
A,{xi }Ni=1

N∑
i=1

‖bi − Axi‖2
2 + λ

N∑
i=1

ρ(xi ). (13)
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Here ρ(·) stands for a the −log summation of the super-Gaussian distribution assumed
earlier.

In a continuing work, Lewicki, Olshausen and Sejnowski suggested to approximate
this integral over the distribution by a Gaussian [30–32], and thus provided a more
reliable evaluation of it.

Other important contributions on training of dictionaries for sparse representations
has been made by the creators of the FOCUSS algorithm, Rao and Kreutz–Delgado,
together with Engan [33,34]. In their work, they pointed out the connection between
the sparse coding dictionary design and the vector quantization problem, and proposed
some type of generalization of the well known K-Means algorithm. They suggested an
iterative algorithm that switches between two main stages—A sparse coding stage, in
which sparse representations under a fixed dictionary are found, and dictionary update
stage, in which the dictionary is changed in order to better represent the signals, given
their known representations. As we shall see next in Section 5, we present a similar
approach of the same flavor, but one that is faster due to a boosted update of the
dictionary along-side with the representation coefficients.

A very recent work on the topic of dictionary training is the work by Lesage
et al. [35]. They suggest a training algorithm for a dictionary composed as a union of
ortho-bases [35]. The benefit of such structure is the fact that the obtained dictionary
is a tight frame. However, in forcing this structure, one necessarily loses performance.

None of the above works considered the problem as a matrix factorization one, and
none considered the consequent questions regarding the uniqueness of such decom-
position. We now turn to discuss those issues in depth.

4. Uniqueness of the factorization

We consider first the factorization problem, namely, given the matrix B ∈ Rn×N

(n � N ) known to be formed as B = AX, we desire a factorization that retrieves A
and X, under the conditions we have already specified earlier. Our focus in this section
is whether such decomposition is unique. We did not find any explicit reference to
this uniqueness question, and yet such uniqueness is implicitly assumed in previous
works (e.g., the synthetic experiments in [39,40]).

We now pose a set of assumptions that are mandatory for the uniqueness result we
are about to prove. We assume the following:

1. Support: The support of all representation vectors in X (its columns) satisfy

∀1 � i � N, ‖xi‖0 = L <
σ {A}

2
. (14)

Furthermore, we assume that L is known. Both the knowledge of L, and the fact
that the representations are assumed to have exactly L non-zeros (and not less)
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can be easily relaxed. Still, these assumptions are posed for the sake of simplicity
of the proof.

2. Richness: The set of examples in B includes at least L + 1 signals for every possible
combination of L dictionary elements from A. Thus, we assume that B includes
at least (L + 1)

(
k
L

)
signals. This assumption will later be relaxed, and again, it is

posed mainly for simplifying the later analysis.
3. Non-degeneracy: Given a group of L + 1 signals that are built of the same L

atoms, their rank is expected to be L or less. We assume that any such set leads
to a rank L and not less. Similarly, for any group of L + 1 signals that are built of
different support, we assume that the rank of such set is necessarily L + 1. Both
these assumptions mean that no degeneracies in the construction of the signals is
allowed. These requirements, although seem complicated, only reflects the fact that
there are no degenerate ‘coincidences’ in the signals construction. Analogously,
considering the signals to be generated with L randomly chosen coefficients in X,
these degeneracies are of zero probability.

Based on these assumptions we have the following result:

Theorem 3. Under the above assumptions, the factorization of B is unique, i.e., the
factorization B = AX for which (i) A ∈ Rn×k with normalized columns; and (ii)
X ∈ Rk×N with L non-zeros in each column, is unique. This uniqueness is up to a
right-multiplication of A by a signed permutation matrix, which does not change the
desired properties of A and X.

Proof. The proof we provide is constructive (although far from being a practical
method to deploy in practice), leading to a pair Â and X̂. Clearly, it is sufficient to
prove an equivalence between Â and A (up to a signed permutation) to guarantee
a unique factorization. Given the vector bi and a dictionary A, our assumptions
imply that a solution to bi = Axi exists with exactly L non-zeros. Since L <

σ {A}
2 ,

this is the sparsest possible solution and as such it is unique, due to Theorem 1.
Thus, having found A, solving the problem (P0) we necessarily recover the original
X. Permutations and sign changes do not impact this property, and only change
the locations and signs of the entries in X, to match the columns in A. Thus, it is
sufficient to consider the relation between the original dictionary A and the recovered
one, Â.

Next, we describe a coherent process with three stages that leads to Â, and show
that it necessarily matches the original A. The basic steps of this process are (i)
Divide the columns of B into J = (

k
L

)
sets—{G1, G2, . . . , GJ }—each includes all

the signals that share the same support (i.e., use the same L atoms from A, denoted
as �j for j = 1, 2, . . . , J ); (ii) Detect pairs of sets Gi and Gj that share exactly

one mutual atom; and (iii) Extract this mutual atom and form Â, which necessarily
matches the original A. We now turn to expand on each of those steps.
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Stage 1: Clustering the signals

Due to our earlier support assumption, L < σ {A}/2, and the definition of the
spark, every group of L atoms from A is necessarily linearly independent and as

such spans an L-dimensional subspace. In this stage we identify those

(
k

L

)
sub-

spaces, and divide the signals (columns) in B according to their embedding subspac-
es.

The clustering of the columns of B can be done by first testing the rank of all(
k

L + 1

)
= (k − L) · J/(L + 1) > J groups of L + 1-tuples from B. If the rank of

such group is L + 1, it implies that this group of signals do not belong to the same
subspace, and as such it is discarded from further consideration. If the rank equals
L, it means we have found L + 1 signals that belong to one of the subspaces related
to a set of atoms Sj . The richness assumption assures that such L + 1 signals exist
per each of the J subspaces, and the non-degeneracy assumption prevents a group of
L + 1 signals that do not belong to the same subspace to give a rank L, and impose
as a feasible subspace. Thus, we expect to detect exactly J such successful sets of
signals from B, and those, denoted by {Gj }Jj=1, will serve as the seeds for the overall
clustering. Note that the non-degeneracy assumption also implies that the rank of an
arbitrary group of L + 1 columns cannot be smaller than L.

Having found the seed for each of J groups, {Gj }Jj=1, we now sweep through all
the columns in B that are not assigned yet, and combine them to each of these J sets,
testing again the rank. Due to the non-degeneracy assumption, only one group will
give a rank L, implying that the tested column belongs to this subspace. All other
tests necessarily lead to a rank L + 1.

Using the above procedure, we divide all signals in B into
(
k
L

)
sets, each includes

signals that are generated by the same group of L atoms in the original dictionary A.
The support and richness assumptions ensures that each such subspace will eventually
be identified (when testing its corresponding L + 1 signals). The non-degeneracy
assumption ensures that no L + 1 signals will be mapped into the same set if they
were not initially generated by the same L atoms.

Stage 2: Detecting pairs with mutual atom

Given the J sets of signals {Gj }Jj=1, we now test the rank of all J (J − 1)/2 merged
pairs (order plays no role). Every two such merged groups, Gj1 and Gj2 , are leaning
on two sets of atoms from A, �j1 and �j2 . If the intersection between these two sets is
empty, |�j1 ∩ �j2 | = 0, then the rank is necessarily 2L. It cannot be higher as each of
the sets have a rank L, and cannot be smaller due to the non-degeneracy assumption
and the fact that 2L < σ {A}. If the intersection includes one atom, |�j1 ∩ �j2 | = 1,
the rank is necessarily 2L − 1 for the same reasons. Getting a rank smaller than 2L − 1
means a larger intersection. Thus, we take only those pairs that lead to rank 2L − 1.
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Let us consider the first atom as the single interaction between pairs {Gj1 , Gj2}.
How many such pairs will be found? Putting this atom aside, we remain with k − 1
atoms from which we have to choose 2L − 2 atoms to participate in the construction
of the two sets. These should be divided to two groups of L − 1 atoms each, and only
half count (order, as before, is redundant). Therefore, we have 0.5 · (

k−1
2L−2

)(2L−2
L−1

)
such

pairs that intersect only on the first atom. Thus, every atom in the original dictionary
A can and will be found many times, calling for a pruning. Both the evaluation of this
atom from the intersection and the pruning are parts of the next and last stage.

Stage 3: Extracting the mutual atom

Assume that we have the pair of groups {Gj1 , Gj2} known to intersect on one atom.
Taking an arbitrary L signals from Gj1 , they span the same L-dimensional subspace
as the atoms in �j1 . Thus, gathering these L signals into a matrix Bj1 ∈ Rn×L, there
exists a vector v1 ∈ RL×1 such that Bj1 v1 is parallel to the desired intersection atom.
Similarly, taking L arbitrary members from Gj2 and forming the matrix Bj2 ∈ Rn×L,
there exists a vector v2 ∈ RL×1 such that Bj2 v2 is parallel to the same intersection
atom. Thus, we have the relationship

Bj1 v1 = Bj2 v2, (15)

or posed differently, this relationship leads to the homogeneous linear system of
equations

[Bj1 , −Bj2 ]v = 0, (16)

where v is a vertical concatenation of v1 and v2. The constructed matrix has n rows
and 2L columns, but we already know that its rank is 2L − 1 due to the intersection.
A vector v in its null-space leads to the desired v1 and v2, and they can be obtained
as the last right singular vector in an SVD operation [43]. Having found v1, the term
Bj1 v1 stands for the desired intersection atom, being parallel to a true atom found in
A up to a scalar multiplication.

Repeating the above process for each pair with a single atom intersection, we
obtain J1 · k candidate atoms. Starting with the first, we sweep through this set and
seek all others that are parallel to it, pruning them. This process proceeds for the
second, third, and till we remain with only k atoms. These are the desired atoms,
being the columns of the original dictionary A.

Up until now we have presented a constructive algorithm for the extraction of
the dictionary A that was used in the construction of B. Indeed, in the described
algorithm there are multiple possibilities of choosing the pairs in the second stage,
as also choosing the L elements that construct the matrices Bj1 and Bj2 in the third
stage. Nevertheless, all possible choices lead to the the same solution A up to simple
transformations. Thus, the matrix B, created as the product AX, is factorized as
desired.
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Could there be a different feasible factorization? Let us assume that there exists
such a second different factorization B = ÃX̃. Executing the above algorithm on B
must lead to the matrix Ã, due to the constructive method we have developed. On
the other hand, this algorithm must also lead to A for the same reasons. Thus, we
necessarily conclude that Ã must be equivalent to A, and therefore the factorization
is unique. �

Let us now return and revisit the assumptions made earlier, and in particular the
daunting number of signals required to guarantee the success of the algorithm we have
described. While

(
k
L

)
(L + 1) examples indeed suffice to guarantee uniqueness, far less

examples could be used in practice. We have seen that in the developed algorithm
there are severe redundancies in building the atoms. How much lower could this
number of example go and still lead to successful factorization? As an example that
illustrates the possibilities, we could take exactly L + 1 examples per each group,
but consider only 2k such groups. If those groups are chosen smartly to divide into
pairs that overlap on each of the k atoms, this would be sufficient for the success of
the algorithm. Thus, 2k(L + 1) signal examples could in principle be used. In fact,
even such set could be found redundant, due to the ability to cross pairs differently
and exploit other overlaps.

5. The K-SVD algorithm

The algorithm for extracting the underlying sparse factorization described in the
previous sections is impractical, as it requires unreasonable computational effort
(searching over all subsets of L + 1 input signals). Hence, we now leave the theo-
retical discussion and present a different, more practical, algorithm. In this section
we introduce the K-SVD algorithm for sparse matrix factorization. This algorithm
aims to extract the dictionary matrix A and the sparse coefficient matrix X. The K-
SVD algorithm is flexible, and works in conjunction with any pursuit algorithm. It
is simple, and designed to be a truly direct generalization of the K-Means clustering
algorithm. As such, when forced to work with one atom per signal, and have a unit
coefficient for this atom, it exactly reproduces the K-Means algorithm. Of course,
it suffers from all the shortcomings of the K-Means, and in particular, it might be
trapped into a local minimum solution.

We start our discussion with a short description of the vector quantization (VQ)
problem and the K-Means algorithm. In VQ, a codebook C that includes k codewords
is used to represent a wide family of signals B = {bi}Ni=1 (N � k) by a nearest
neighbor assignment. This leads to an efficient compression or description of those
signals, as clusters in Rn surrounding the chosen codewords. The VQ problem can
be formally described by
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min
C,X

‖B − CX‖2
F subject to {‖xi‖0 = 1}Ni=1 ∧ X ∈ {0, 1}k×N. (17)

The K-Means algorithm [44] is an iterative method used for solving the above problem.
At each iteration there are two stages—one for sparse coding that essentially evaluates
X by mapping each signal to its closest atom in the current C, and a second stage
for updating the codebook, changing sequentially each column ci in order to better
represent the signals mapped to it. At each such stage, the penalty in (17) is minimized,
squeezing the best out of the given conditions. As this error is bounded from below
by zero, and the algorithm ensures a monotonic decrease of this value, convergence
to at least a local minimum solution is guaranteed.

The sparse representation problem can be viewed as a generalization of VQ objec-
tive (17), in which we allow each input signal to be represented by a linear combi-
nation of codewords, which we now call atoms. As a consequence, the minimization
described in Eq. (17) converts to

min
A,X

‖B − AX‖2
F subject to {‖xi‖0 � L}Ni=1. (18)

In the K-SVD algorithm we solve (18) iteratively, using two stages, parallel to
those in the K-Means. In the sparse coding stage, we compute the coefficients matrix
X, using any pursuit method, while allowing each coefficient vector to have no more
than L non-zero elements. Referring to (18) and assuming that A is known, we should
solve a set of N independent problems of the form{

min
xi

‖bi − Axi‖2
F subject to ‖xi‖0 � L

}N

i=1
. (19)

Returning to our discussion from Section 2, pursuit algorithms such as the basis
pursuit or matching pursuit could approximate a solution for these problems.

In the second stage we update each dictionary element sequentially, changing its
content, along with the values of its coefficients, so as to better represent the signals
that use this column. This sequential update of the columns and its relevant coefficients
results in a Gauss–Seidel-like acceleration, since the subsequent columns to consider
for updating are based on more relevant coefficients. The process of updating each
column ak has a straight forward solution based on the SVD [43]. Assume that the
sub-matrix Bk contains in its columns the signal examples that use the kth atom ak .
We start by computing the residual matrix

Ek = Bk − (AXk − akxk). (20)

The sub-matrix Xk holds the representation coefficients for the examples in Bk . The
row vector xk contains the coefficients that multiply the kth atom. We seek a new
pair {ak, xk} that will best approximate this residual, namely minimizing the error
‖Ek − akxk‖F. This is a rank-1 approximation of Ek that can be found by the singular
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value decomposition [43]. Note that in using SVD we necessarily have that (i) the col-
umns of A are obtained already normalized; and (ii) the support of all representations
either stays the same or get smaller by possible nulling of terms.

We called this algorithm “K-SVD” to parallel the name K-Means. While K-Means
applies k mean calculations to evaluate the codebook, the K-SVD obtains the updated
dictionary by k SVD operations, each producing one column. A more thorough dis-
cussion concerning variations of the K-SVD, implementation details and validation
tests can be found in [40].

6. Applications to image processing

We performed several experiments that involve true image data, trying to show the
practicality of the tools in hand using the proposed algorithm and the general sparse
coding theme. We should emphasize that our tests here come only to demonstrate
the concept of using such factorizations in sparse representations, and further work is
required to fully deploy those ideas in actual applications. The example signals were
gathered as a set of 11,000 examples of image block patches of size 8 × 8 pixels, taken
from a database of face images (in various locations). These blocks constructs the
signal matrix B ∈ R64×11,000, for which we would like to find a sparsely representing
dictionary (i.e., a factorization B = AX as in Eq. (18)). Working with real images data
we preferred that all dictionary elements except one has a zero mean. Therefore, the
first dictionary element was set to include a constant value in all its entries, and was not
changed afterwards. This element takes part in all representations, and as a result, all
other dictionary elements remain with zero mean during all iterations. We applied the
K-SVD, training a dictionary of size 64 × 441 (the matrix A). The choice k = 441
came from our attempt to compare the outcome to the undecimated overcomplete
Haar dictionary of the same size [20]. This dictionary has separable basis functions,
having steps of various sizes and in all locations. The trained dictionary elements are
shown in Fig. 1. The coefficients were computed using the OMP, where the maximal
number of coefficients is L = 10. Note that better performance can be obtained by
switching to BP or FOCUSS. We concentrated on OMP because of its simplicity and
fast execution.

Filling in missing pixels

We chose one random full face image that contains ∼600 blocks (all of which were
not used for training). On each block a ratio of the pixels (between 10% and 90%),
in random locations, were discarded. In the recovery process, each of the corrupted
blocks is treated independently, seeking a sparse representation to compose it with an
�2 error of 5 gray-levels per pixel. In this decomposition process, obtained by the OMP,
only the available pixels take part, thus using only the relevant rows from the dictionary
A that correspond to these pixels. Normalization of this sub-dictionary columns is
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necessary so as to fascilitate a fast OMP usage. Once the sparse representation for the
block is found, multiplication by the full original dictionary gives an approximation
of the missing pixels.

The mean reconstruction errors (for all blocks and all corruption rates) were com-
puted, and are displayed in Fig. 2. Three test images and their reconstructions can be
seen in Fig. 3, where the left image is the corrupted one, having some of its pixels
missing, and the middle and right images present the reconstructed images by the
learned and Haar dictionaries, respectively. As can be seen, high quality recovery is
obtained, and with substantial advantage to the learned dictionary. Note that in using
bigger blocks the performance would have been further improved.

Fig. 1. K-SVD resulted dictionary (left) and the Haar dictionary (right).
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Fig. 2. Filling in - RMSE versus the relative number of missing pixels.
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Fig. 3. Filling in Results. Black pixels in the images on the left indicate missing values.

Compression

A compression test was conducted, comparing between the learned dictionary, the
overcomplete Haar dictionary, and the complete DCT dictionary, which is being used
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Fig. 4. Compression results.

by JPEG algorithm. Each 8 × 8 block was compressed independently until it holds a
specified SNR value. The decomposition was done using OMP with an error bound
(that depends on the desired SNR value). The compression was measured in bit per
pixel (BPP), assuming 10 bits per each coefficient. In the overcomplete dictionaries,
elements with arbitrary index were allowed, and therefore, the BPP value was set
as BPP = C(10 + log k)/64 (where C is the number of required coefficients). In
DCT, we used the leading coefficient in a zig-zag order (as done by JPEG), resulting
BPP = C · 10/64.

Sample compressed images can be seen in Fig. 4, and a summary rate-distortion
graph is presented in Fig. 5. We can see that the learned dictionary outperforms the
other two alternatives in all tested compression rates.
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Fig. 5. Compression results in a graph.

7. Conclusions

In this paper we have studied the problem of dictionary design for sparse represen-
tations. We posed this task as a matrix factorization problem under sparsity constraint.
We first proved the uniqueness of such a factorization. Doing so, we provided the
theoretical background for constructing a practical algorithm for extracting this fac-
torization. We then presented the K-SVD algorithm which aims to perform this task.
This algorithm is a generalization of the K-means used frequently for clustering. We
presented experiments that deploy the K-SVD and the ideas of sparsity and redundant
representations to real images.

We strongly believe in the importance and the potential encompasses in the ques-
tions and solutions raised in this paper, and our plan is to proceed this work and
explore further topics around these issues.
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