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ABSTRACT 

Let V be a finite dimensional vector space. Motivated by theory or applica- 
tions, one might want to consider different kinds of norms on V. In this paper 
we discuss some results and problems iqvolving different classes of norms on a 
vector space studied by this author in the past few years. The paper consists of 
five sections. Section 1 concerns the conditions on two vectors x, y E V satisfying 
Ijx)l~llyl) for all 1) )I in a certain class of norms. Section 2 concerns the isometry 
groups of G-invariant norms, i.e., norms 1) 1) that satisfy 1lg(x)II = IIx/I for all 
x E V and for all g E G, where G is a group of unitary (orthogonal) operators 
on V. Section 3 concerns G-invariant norms that satisfy some special properties. 
Section 4 concerns the best approximation(s) zo E 7 of y, where y $ 7 C V, 
with respect to different kinds of norms. Additional open problems, topics, and 

references are mentioned in Section 5. 

1. COMPARISON OF NORMS OF TWO VECTORS 

The content of this section is based on the talk of the author presented 
in the Third ILAS (International Linear Algebra Society) Conference held 
at Pensacola, Florida in March 1993. Several personal remarks on mathe- 
matics research are also included. This informal style of presentation will 
be changed after this section. 

*Research supported by NSF grant DMS 91 00344 and a faculty research grant of The 
College of William and Mary. This research was done while the author was spending 
his sabbatical leave at the University of Toronto in the academic year 1992-1993. 
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1.1, Beginning Remarks 

It is a great honor for me to be invited to give a talk in the Third ILAS 
Conference, In the invitation letter, I was asked to 

attempt to maintain an exposition that will be understandable 
to a broad spectrum of linear algebraists, be broad based in 
scope, and tie in with as many other areas as is possible. 

In fact, choosing a topic with the several features mentioned in the invita- 
tion letter is not just the desire of the organizer; it is also my favorite idea for 
doing research. Some of the reasons why I like to do linear algebra research 
are: most linear algebra problems are very accessible, can be approached 
by both elementary and advanced techniques, and have interactions with 
and applications to many other branches of mathematics and sciences. [For 
further discussion and elaboration along this line, see Brualdi (1992), Li 
(1994a), Li and Tsing (1992), Fuhrmann (1992) Thompson (1992), Tucker 
(1993).] 

In the past few years, I have been working on the topics of linear pre- 
server problems and numerical ranges, which seem to fit the request of the 
organizer very well. However, the first topic was the main theme of a mini- 
symposium in the Fourth International Matrix Theory Conference held at 
Auburn in 1990, and has been discussed by me in the Second ILAS Con- 
ference held at Lisbon in 1992. Moreover, a monograph on the topic has 
appeared as a special issue of Linear and Multilinear Algebra (Pierce et al., 
1992). The second topic was the main theme of a mini-symposium in the 
Fourth SIAM Conference on Applied Linear Algebra held at Minneapolis 
in 1991, and a workshop held in Williamsburg in 1992. Furthermore, a 
special issue of Linear and Multilinear Algebra1 will be devoted to that 
topic as well. For these reasons, I am convinced that another topic should 
be considered now. Here is one problem that might be appropriate for our 
purpose: Let V be a finite dimensional vector space, and let S be a class of 
norms defined on V. Determine the conditions on a pair of vectors 2, y E V 
such that 

IlYll I llzll for all II . ]]in S. 

1.2. Motivation 

Let V = Mm,n(F), th e set of all m x n matrices over P = LR or C. It 
is convenient to assume m 2 n in our discussion. If m = n, we use the 
notation M,(E). A norm I] . 11 on V is unitarily invariant if IIUAVII = IlAll 

for all A E V and all unitary (orthogonal) matrices U and V. This topic 

‘The numerical range and numerical radius, Linear and Multilinear Algebra 37(1-3) 
1994, Special Editors: T. Ando and C. K. Li. 
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has been 

. 11, jlAl[ d p d e en s solely on the singular values 
al(A) > ... > an(A) of A. R ecall that the singular values of A E M,,,(F) 
are the nonnegative square roots of the eigenvalues of the matrix A*A. 
Moreover, Fan (1951) proved the following interesting result. 

THEOREM 1.1. Let A,B E A4m,n(JF). Then IlBll < IlAll for all unitar- 
ily invariant noms 1) . II ij and only if C~=,ai(A) for all k = 1,. . . , n. 

It is not hard to check that for any positive integer Ic < n the function 
on V defined by ]]X]]I, = C&,C~(X) is a unitarily invariant norm; it is 
sometimes referred to as the Ky Fun k-nom 

The result of Ky Fan naturally suggests the following problems: 
Let V be a finite dimensional vector space, and S be a class of norms 

defined on V. 

(I) Determine the conditions on a pair of vectors z, y E V such that 

IIYII 5 IMI for all ll llin S. (1.1) 

(II) Find a “small” subset 7 of S such that (1) holds whenever 

IIYII 5 11~11 for all II . ]]in 7. 

Let 

G(x) = {Y E V : llylj 6 11~11 for all II . Ilin. S). 

Using this notation, problems (I) and (II) can be restated as: 

(I) Determine &(x) for a given z E V. 
(II) Find a “small” subset 7 of S such that Bs(x) = al(x) for all x E V. 

When V = Mm,n(F) and S is the set of all unitarily invariant norms, 
the result of Ky Fan gives very nice answers to questions (I) and (II). Let 
us look at some more results of this type in the following. 

Let V = Fn. A symmetric gauge function on V is a norm ]I . II that 
satisfies 

ll(~lr'-,~n)tll = II(PIXil,.. , PL,%Jtll 

for any permutation (ii,. . . , in) of (1,. . , n), and for any pi E IF satis- 
fying ]pLi] = 1. For p > 1, the eP norms defined by ]](xi,. . ,x,)~II~ = 

CCL”=, IMp)l’p are examples of symmetric gauge functions. We have the 
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following result (see 7.4.45 of [Horn and Johnson (1991)] that gives a nice 
answer to our question. 

THEOREM 1.2. Let z, y E IF”. Then IIy/(/ < lllcll for all symmetric gauge 

functions II . ]I if and only if for all lc = 1,. . . ,n, 

Similar to the result of Ky Fan, one can find a finite subset 7 of S such 
that (1) holds in this case. However, such a nice situation may not occur 
in general, as shown in the next example. 

Let V = A&(@) or 3t,, where I& is the real linear space of n x n 
complex hermition matrices. A norm on V is unitary similarity invariant 

or wealcly unitarily invariant if IIU’AUII = llA/l for all A E V and for all 
unitary U [e.g., see Bhatia and Holbrook (1987)) Fong and Holbrook (1983)) 
Li and Tsing (1989a)]. Clearly, every unitarily invariant norm on Mn(@) 
is unitary similarity invariant. The numerical radius defined by 

r(A) = max{]z*Az] : cc E C?,Z*Z = 1) 

= max{]tr(EirU*AU)] : Uunitary} 

is an example of unitary similarity invariant norm that is not unitarily 
invariant. More generally, for a given C E V satisfying C # PI and 
tr C # 0, the C-numerical radius defined by 

rc(A) = max{]tr(CU*AU)] : Uunitary} 

is a unitary similarity invariant norm that is not unitarily invariant [see 
Goldberg and Straus (1979), Marcus and Sandy (1982), Tam (1986), and 
Li and Tsing (1989a)]. In fact, the concept of C-numerical radius is very 
useful in the study of unitary similarity invariant norms [e.g., see Mathias 
(1989) and Li and Tsing (1989a)l. Related to problems (I) and (II), we 
have the following result [see Li and Tsing (1989a)]. 

THEOREM 1.3. Let V = A&(C) or 7-&, and let S be the set of all 

unitary similarity invariant norms on V. 
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(i) For any A E V, as(A) = conv {$Y*AU : ,u E P, IpI = 1, U unitary}, 
where conv denotes the “convex hull of.” 

(ii) If 7 is the collection of all C-numerical radii with C E V satisfying 

C # PI and tr C # 0, then &-(A) = as(A) for any A E V. 

(iii) There is no finite set 7 such that &(A) = Bs(A) for any A E V. 

1.3. A General Result on G-Invariant Norms 

In this section, we describe a general result that embraces all the ex- 
amples mentioned in Section 1.2. The discussion is based on some results 
in Li and Tsing (1991b). 

Let G be a subgroup of the unitary (or orthogonal) group on the vector 
space V. A norm 11 . II on V is G-invariant if l/g(~)ll = jlzll for all IC E V 
and all g E G. For example, if G is the group of all n x n generalized 
permutation matrices, i.e., those matrices of the form DP, where D is a 
diagonal unitary (or orthogonal) matrix and P is a permutation matrix, 
then G-invariant norms on IFn are just symmetric gauge functions. If G is 
the collection of all the linear operators on Mm,,(F) of the form A H UAV 

for some fixed unitary (or orthogonal) U and V, then G-invariant norms on 
Mm,n(IF) are just unitarily invariant norms. Similarly, if G is the collection 
of all linear operators on V = Mn(e) or ‘H, of the form A H U*AU for 
some fixed unitary U, then G-invariant norms are just unitary similarity 
invariant norms. 

Let c E V. Denote by G(c) = {g(c) : g E G} the orbit of c under G. If 
c E V is such that span G(c) = V, then the G(c)-radius defined by 

TG(c)(x) = max{I(x,4 : u E G(c)) 

is a G-invariant norm; otherwise, it is just a (semi)norm. As shown in Li 
and Tsing (1991b), G( )- d’ c ra ii can be regarded as the building blocks of 
G-invariant (seminorms, because every G-invariant (semi)norm II II admits 
a representation of the form 

IkdI = s"P{rG(c)(x): c E El for all Z E V, 

where E is a subset of V depending on the given (semi)norm II . I(. In fact, 
E can be chosen to be a compact set if 11 . II is a norm. 

Related to problems (I) and (II), we have the following general result. 

THEOREM 1.4. Let G be a subgroup of the unitary (or orthogonal) 
group acting on the vector space V. Suppose S is the collection of all G- 

invariant norms. 
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(i) For any 5 E V, Bs(a) = conv{pg(z) : p E F, ]p] = l,g E G}. 
(ii) If 7 is the set of all G(c)-radii in S and it is not empty, then as(z) = 

B,(x) for all z E V. 

(iii) If I/’ . d b as re uci le under the action of the group G, there is no finite I 
such that Bs(x) = &J-(X) for all z E V. 

One easily checks that under the action of unitary similarity the space 
V = I!&(C) or ‘FI, consists of two irreducible subspaces, namely, the space 
W of all matrices with zero trace and the space W’ of scalar matrices. 
That is why condition (iii) in Theorem 1.3 holds. 

It is of interest to determine the condition on G such that none of the 
G(c)-radii is a norm. Also, it is known [see Li and Tsing, (1991b)] that the 
converse of (iii) in Theorem 1.4 does not hold in general. It would be nice 
to know the condition on G for the existence of a finite 7 C S such that 

Es(X) = El(X) f or all z E V. A related problem is: prove or disprove the 
claim that if there exists a finite 7 such that as(~) = B,(X) for all 5 E V, 

then there is a finite ? consisting of G(c)-radii such that B;F(z) = ES(X) 
for all z E V. 

1.4. Some New Developments 

The content of this section is based on Li Tsing, and Zhang (1994). 
Suppose G is the trivial group consisting of the identity transformation 

on V as the only element. Then every norm on V can be viewed as a 
G-invariant norm. By Theorem 1.4, we have the following result. 

PROPOSITION 1.5. Let S be the set of all norms on V. Then 

F. Z. Zhang and C. R. Johnson have a proof of the special case of Propo- 
sition 1.5 when V is a matrix space using the theory of linear functionals. 
In fact, this result holds on a Banach space of any dimension [e.g., see 
Lemma 5 in Kovarik (1975)]. 

Using elementary techniques, this author and N. K. Tsing improved 
Proposition 1.5 and obtained Proposition 1.6 [see Li, Tsing, and Zhang 
(1993)]. Recall that for p 2 1 the &-norm on V with respect to the basis 
(~1,. . . ,u,} is defined by ]]z]lp = (Cy=“=, ]X$‘)l’P for any z = Cy=“=, Xi’u% E 
V. A norm on V is induced by an inner product if and only if it is an 
[z-norm with respect to some basis. In particular, if we use the standard 
bases, then the &norm is known as the Euclidean norm on IV, and the 
Frobenius norm on Mm,n(ll?). 
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PROPOSITION 1.6. Let S be the set of all norms on V, and let TP be the 
set of all $-norms with respect to different bases for a fixed p > 1. Then 

Bs(z) = B,(x) = {W : P E IF, IPI I 1). 

Next we turn to a problem which is not covered by the G-invariant 
norm result. 

Recall that a norm I( . 11 on h/m@) . 1s called a ring norm (or algebra 
norm) if it satisfies [[Ill = 1 and IlAB 2 llAllllBl/ for all A, B E A&(F). 
For the basic properties and results on ring norms, we refer the reader to 
Belitskii and Lyubich (1988). A norm /I. II on &&(IF) is an induced norm if 
it is defined by IlAll = sup{lAxl : 5 E IV, 1x1 < 1) for a given norm I . I on 
F”. It is not hard to check that every induced norm is a ring norm. We are 
interested in studying problems (I) and (II) when V = M,(IF), and S is the 
set of all ring norms. It turns out that one can choose 7 to be the set of 
all induced norms, so that Bs(A) = &(A) for all A E A&(IF) except when 
A E M2(IR) has no real eigenvalues. The detailed proofs of our results are 
contained in Li, Tsing, and Zhang (1994). In the following, we describe the 
process of our discovery, which is quite amusing. 

First of all, if A is a scalar matrix or a nilpotent matrix, one only needs 
to check those norms on A&(@‘) induced by ei-norms on P with respect 
to different bases to obtain the following result. 

PROPOSITION 1.7. Let S be the set of all ring norms, and let 7 be the 
set of all induced norms on A&(F). If A is a scalar mattix or a nilpotent 
matrix, then 

&(A) = &(A) = {PA : P E F, 1~1 5 1). 

For a general matrix A, the problem is more difficult. In the complex 
case, F. Z. Zhang observed that: 

Suppose B E Bs(A), and suppose S E A& (Cc) is invertible such that 
S-lAS = J1 CD . CB J k, where Ji is an upper triangular Jordan block 
with eigenvalue Xi (A) for i = 1, . . , lc. Then S-lBS = jl @. . . @ jk, and 
for each i = 1,. . , lc, the (p, q) entry of ji equals Xi(B) if p = q, equals 
p (independent of i) with 1~1 2 1 if q = p + 1, and equals 0 otherwise. 
Furthermore, j&(B) - x.j(B)I < I&(A) - Xj(A)I for all i,j. 

This observation clearly suggests that there should be a nice theorem 
behind the picture. In my past research experience one of the following 
situations has often arisen when I tried to prove a new theorem. 

Situation 1. The statement of the theorem is clear, but it is hard 
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to find the proof. In this situation, one may need to find the right idea 
to bring in some advanced techniques to solve the problem [this notion 
is due to S. Friedland; e.g. see Thompson (1992)] or to find the clever 
trick or observation needed in the proof (this notion probably occurs to 
all mathematicians); or to find the right way to fit things together (in 
some casual discussions with other linear algebraists, including Bapat and 
Uhlig, we all agreed that an interesting aspect of linear algebra research 
is: a nontrivial theorem can be obtained by fitting elementary results in a 
nice and clever way). 

Situation 2. One has all the knowledge of a subject needed to extend 
the existing results. However, it is not easy to find the right formulation 
to state the definitions and theorems. 

Situation 3. One knows that there is a theorem. The statement of the 
result is not quite clear; it is not even clear what type of techniques should 
be used. One really has to search for the result as well as for the proof. 

In the study of t?s (A) for a general A E M,(F) we were and still are 
in situation 3. It would be nice if one could handle the problem by the 
situation 1 scenario, i.e., bring in some advanced techniques or clever ideas. 
Anyway, let me describe our progress on the problem in the following. 

Suppose A is not a scalar matrix or a nilpotent matrix. There is no 
harm in assuming that the spectral radius p(A) of A is 1 in our problem. 
Under this assumption, one easily verifies that: 

(a) For any ring norm ]] . /I, one has i[All > p(A) = 1 = ]]1]]. Hence 
I E &(A). 

(b) Suppose II. II 1s a ring norm such that IlrAll = 1 with r E (0, 11. Then 
]]B]] 5 llA\l for any B E K(r,A), where 

K(r, A) = conv{pi(rA)i/r : ,Q% E IF, I,u%[ = l,i = 0,1,2,. . .}. 

Thus 

It is also clear that Bs(AJ C &-(A). It is somewhat unexpected that 
the following theorem holds. 

THEOREM 1.8. Suppose A is not a scalar matrix satisfying p(A) = 1. 
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Then 

n K(r,A) = &(A) = HA) 

rE(O,il 

unless A E Mz(IR) has no real eigenvalues. 

Even though we have proved Bs(A) = &-(A) and have a descrip- 

tion of this set, it is unsatisfactory that the observation of Zhang 

does not follow easily. We therefore took a closer look of the set 

f~,,(,,~lK(r,A). Notice that if A has minimal polynomial f(t) = 

tm + um_itm--l +. + ao, then all K(r, A) c span{l, A,. . , A”-‘}, 

the smallest algebra generated by 1 and A. It turns out that 

(c) &(A) C wan{l, A). 

This is another unexpected discovery in our study. Furthermore, one 

can show that if T > 0 is sufficiently small, then K(r, A) C conv{p,(rA)i/r : 
pi E lF, Ipi1 = 1, i = O,l,. . , m-l}. It follows that for any 7< T,K(~, A)n 

span(1, A} C K(r, A) n span{1, A}. C onsequently, we have the following 
result, from which the observation of Zhang follows. 

THEOREM 1.9. Suppose A satisfies the hypothesis of Theorem 1.8. 

Then 

rE(O,11 rt[ro,ll 

where TO is the smallest real number r E (0, I] such that K(r, A) C conv 

{pi (rA)i/r : pi E P, lp,/ = 1,i = 0, 1,. . . ,m - 1). 

We remark that TO can be determined by the minimal polynomial of A. 

Moreover, we suspect that the following is true: 

Suppose A satisfies the hypothesis of Theorem 1.8. Then 

n K(r, A) = K(ro, A) n K(1, A) n span{l, A}, 

rE(O,il 

where TO satisfies the condition mentioned in Theorem 1.9. 

It would be nice to prove or disprove this statement. At this point, we 

are still working on this problem. This conjecture has been disproved by 
Li, Tsing and Zhang (1994). 

2. ISOMETRY GROUPS OF G-INVARIANT NORMS 

Given a norm ]I 11 on Ij, the collection of linear operators L satisfying 

IIL(z)lI = II4 f or all z forms a group, which is known as the isometry 
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group for ]] . I(. 0 ne may see Horn and Johnson (1985) for some basic 
properties of isometries and isometry groups. In this section, our focus is 
on the isometry groups of G-invariant norms. We shall always assume that 
G is a closed subgroup of the unitary (orthogonal) group of I/’ such that 
/IG = G for all p E F with ]p] = 1, unless specified otherwise. 

Let us first describe some general results concerning the isometries and 
isometry groups of norms. 

THEOREM 2.1. A linear operator L is an isometry for a norm 11 . 11 on 
V if and only if one of the following conditions holds: 

(a) L(B) = B, h w ere B is the unit norm ball with respect to II . II in V. 

(b) L(E) = E, h w ere E is the set of extreme points of the unit norm ball 

with respect to 11 . 11 in V. 

(c) The dual transformation L* of L is an isometry for the dual norm of 

II . II. 

By this theorem, one can use the geometry of B and E to help study 
L. Also, if ]I 11, B, and E are complicated, one can consider the dual norm, 
the dual norm ball and its extreme points, etc., to get information about 
L*. For example, if a G(c)-radius is a norm, then the set of extreme points 
of the dual norm ball is just G(c) [e.g., see the proof of the special case 
in Li and Mehta (1994, Proposition 4.3)]. Thus, studying the isometries 
for the G(c)-radius is the same as studying those linear operators mapping 
G(c) onto itself [see Li and Tsing (1988q 1988d, 1991a)]. In fact, this is 
true even if rG(C) is not a norm as shown in the following result [see Li and 
Tsing (1991b)l. 

THEOREM 2.2. Let c E V. A linear operator L on V is an isome- 
try for the G(c)- ra aus i an only if its dual transformation L* satisfies d’ f d 

L*(G(c)) = G(c). 

Sometimes it is easier to study the whole isometry group instead of 
an individual isometry for a given norm. The following result [e.g., see 
Deutsch and Schneider (1974) and Li and Tsing (1990a)l is very useful if 
one uses this approach. 

THEOREM 2.3. Suppose K is a bounded group of linear operators acting 
on V. There exists an invertible linear operator S such that SIKS is a 

subgroup of the group of unitary operators acting on V. Moreover, if K 

contains an irreducible subgroup of unitary (orthogonal) operators, then S 

can be chosen to be the identity operator, i.e., K is a subgroup of the group 
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of unitary operators. 

We shall make further comments on how the above results are used in 
our recent work in the next few sections. 

It is interesting to note that the problem of determining which subgroup, 
of the orthogonal (unitary) group on V can be the isometry group of a 
norm is still open [see Gordon and Loewy (1979, Theorem 3.1) for a partial 
answer]. 

2.1. Unitarily Invariant Norms 

In this section, we concentrate on the isometry group of a unitarily 
invariant norm on Mm,n(F). W e a wa 1 y s assume that G is the collection 
of all linear operators on M,,,(F) of the form A H UAV for some’ fixed 
unitary (orthogonal) U and V. Denote by T the transposition operator on 
A&(F), i.e., r(A) = At. On A&(R) denote by I$ the special linear operator 
defined by A H (BlAC1 + BzACz + BzAC3 + A)/2, where 

We have the following result. 

THEOREM 2.4. The isometry group K of a unitarily invariant norm 

II II on V = Mm+(F) must be of one of the following forms: 

(a) K is the unitary group on V. 

(b) V = Md(R) and K = (G, 7, 4). 

Cc) K = { G,T, ifmfn, 

ifm=n. 

Furthermore, condition (a) holds if and only if 11 . II is a multiple of the 

Frobenius norm; on V = Md(R) condition (b) holds if and only if (a) does 
not hold and 4 is an isometry of 11 . 11; and condition (c) holds if and only 

if (a), (b) do not hold. 

The study of isometries of unitarily invariant norms has an extended his- 
tory. Schur (1925) showed that Theorem 2.4 holds for the spectral norm 
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]] . (/ on M,(C). Russo (1969) obtained the result for the trace norm, 
i.e., the Ky Fan n-norm, on M,(C). Arazy (1975) studied the isome- 
tries of Schatten p-norms on symmetrically normed ideals. In the finite 
dimensional case, his result reduces to Theorem 2.4 with V = A&(C) and 

IPII = tc:=, %(WPY where p 2 1. Grone and Marcus (1977) [see 
also Grone (1979), (1980)] proposed the study of the (p, Ic)-norm defined 

by IlAll = {C;~l~i(A)p)l’p with 1 < Ic < n and p 2 1 on M,,,(C), and 
obtained some partial results using geometrical techniques (cf. Theorem 
2.1). A complete answer of the problem raised by Grone and Marcus was 
given in Li and Tsing (1988b). In his thesis Grone (1976) made the ambi- 
tious conjecture that K satisfies condition (c) unless ]]. 1) is a multiple of the 
Frobenius norm. For V = B&(C) the conjecture was confirmed by Sourour 
(1981), whose result actually holds for the infinite dimensional case. In 
Johnson, Laffey, and Li (1988), it was shown that the linear operator 4 de- 
fined in Theorem 2.4 is an isometry of the Ky Fan 2-norm on A&&), using 
some theory of real quaternions [see also Dokovic (1990) and Chang and 
Li (1991)]. Thus the conjecture of Grone is not valid on A&(R) in general. 
In Li and Tsing (1988d), the authors obtained the result for G(c)-radius 

on Mm+(F) d h an s owed that 4 is the only exceptional case. The main 
tools in the proofs is Theorem 2.2 and some differential geometry tech- 
niques. This approach was further refined by the same authors to obtain 
Theorem 2.4 in Li and Tsing (1990a). Later Dokovic and Li (1993) used 
a group theoretic approach [see Li (1993a)] to obtain a general result on 
linear operators leaving invariant functions on singular values of matrices 
that covers Theorem 2.4. 

2.2. Symmetric Gauge Functions 

In this subsection, we consider the isometries for symmetric gauge func- 
tions on IF”. We use G to denote the group of generalized permutation 
matrices. Since G is irreducible, it follows from Theorem 2.3 that the 
isometry group of a given symmetric gauge function is always a subgroup 
of the unitary (orthogonal) group. In Chang and Li (1992) the authors 
characterized the isometries for G(c)-radii and some other special symmet- 
ric gauge functions on Iw”, using geometric techniques (cf. Theorem 2.1). 
It was conjectured that except when n = 2,4, the isometry group is either 
the whole unitary group or the group G. This was confirmed in DokoviC, 
Li, and Rodman (1991). The main idea of the proof is to show that except 
for n = 2,4, there is no closed subgroup lying strictly between G and the 
orthogonal group. Since the isometry group of a symmetric gauge func- 
tion must contain G and must be a subgroup of the orthogonal group, the 
desired conclusion follows. In the paper, we actually characterized all the 
possible isometry groups of symmetric gauge functions on IP for IF = Iw, C, 
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or the skew field of real quaternions. 

THEOREM 2.5. Let II? = R,@, or the skew field of real quaternions. 
The isometry group K of a symmetric gauge function 11 11 on V = IFn must 
be of one of the following forms: 

(a) K is the orthogonal (unitary or sympletic) group. 
(b) V = W4 and K = (G, A), where 

A=${(: -:)@(: -:)). 
(c) V = Iw4 and K = (G, B), where 

( 1 1 1 1 

j&f 1 1 1 
-1 

-; 1; 1 . 

1 -1 -1 1 

(d) V = lR2, and K is the dihedral group with 8k elements. 
(e) K = G. 

Furthermore, condition (a) holds if and only if /I 11 is a multiple of the 
Frobenius norm; on V = R4 condition (b) holds if and only if (a) does not 
hold and A is an isometry of 11 .II, and condition (c) holds if and only if (a) 
and (b) do not hold and B is an isometry of II .[I; on V = IR2 condition (d) 
holds if and only if the unit ball of II 11 as a regular 4k-sided polygon; and 
condition (e) holds if and only if (a)-(d) do not hold. 

Notice that in the above theorem, one can replace 11. /I by any function f 
on IF” such that f (Px) = f ( ) f IC or any P E G. If the group K of invertible 
matrices A E A&(IF) satisfying f (Ax) = f(x) for all 2 is compact, then K 
must be one of the groups described in Theorem 2.5. 

An infinite dimensional version of the Theorem 2.5 can be found in 
Rolewicz (1985, Theorem 9.8.3). As pointed out in Dokovid, Li, and Rod- 
man (1991), Theorem 2.5 can be deduced from the theory of reflection 
groups. In fact, Gordon and Lewis (1977) have used this approach to solve 
certain isometry problems (cf. Section 2.5) that cover Theorem 2.5 for 
72 2 13. 

2.3. Unitary Similarity Invariant Norms 

In this subsection, we focus on unitary similarity invariant norms on 
V = M,(C) or XH,. We let G be the collection of all linear operators on V 
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of the form A H U*AU for some fixed unitary U. As mentioned before, in 
this case the G(c)-radius reduces to the C-numerical radius. Concerning 
the isometric for C-numerical radius, we have the following result [see Li 
(1987a, b), Li and Tsing (1988a, c), Man (1991), Li, Mehta, and Rodman 
(1994)]. 

THEOREM 2.6. Suppose C E A&(@) is a normal matrix or satisfies 

rank C = 1. If r-c is a norm on Mn(@) and L is an isometry for rc, 

then there exist 1-1 E @ with ]p] = 1 and a unitary U such that L is of the 

form A H p[U*AU + (Q - l)(tr A)/I] or A H p[U*AtU + (ii - l)(tr A)/I], 

where n is a kth root of unity such that r@ is unitarily similar to C := 

C - (tr C)l/n. 

Whether the same conclusion in Theorem 2.6 holds for general C is 
not known. A general result concerning the isometry group of a uni- 
tary similarity invariant norm on Mn((c) is not available. If V = ‘H,, 
we have the complete information as shown in Theorem 2.7 [see Li and 
Tsing(l99Ob)l. Note that if a unitary similarity invariant norm is in- 
duced by an inner product, then there exists a positive operator P de- 
fined by P(A) = p(tr A)I + v[nA - (tr A)I], where 1-1, v > 0 such that 

II4 = P(A), P(4)““. 

THEOREM 2.7. The isometry group K of a unitary similarity invariant 

norm ]I . ]I on l-l, must be of one of the following forms: 

(a) There exists a positive operator P on ‘I-l, defined by P(A) = p(tr A)I 

+ v[nA- (tr A)I], where p, u > 0 such that PICP-I is the orthogonal 

group on ‘H,. 
(b) K is the collection of all orthogonal operators on Ii, mapping I to 

H. 

(c) K = (G,r, L), where L(A) = A - 2(tr A)I/n for all A E 7-1,. 

(d) K = (G,r). 

Furthermore, condition (a) holds if and only if ]I . II is induced by an 

inner product on ‘l-l, with ]]A]12 = (P(A), P(A)); condition (b) holds if and 
only if (a) does not hold and ]]A]] depends only on ]tr A] and tr (A*A); 

condition (c) holds if and only if (a), (b) do not hold and L is an isometry 

of /I . /I; condition (d) holds if and only if conditions (a)-(c) do not hold. 

We remark that Theorem 2.7 also holds if we replace 3-1, by the linear 
space of all n x n real symmetric matrices (see that next section). 

All the results mentioned in this section were obtained by computation 
and geometrical techniques. It was proposed in Li (1994a) that the problem 
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can be studied by a group theoretic approach, namely, enumerating all the 
subgroups between G and the unitary group on A&(@). 

2.4. Unitary Congruence Invariant Norms 

In this subsection, we consider those norms ]] 11 on V = M,(lF), Sn(IF), 
or K,(lF) that satisfy llUtAUll = [IAll for all A E V and all unitary (or- 
thogonal) U, where &(lF) is the linear space of all symmetric matrices and 
K,(F) is the linear space of all skew-symmetric matrices. These norms are 
referred to as unitary congruence invariant norms or unitary consimilarity 

invariant norms. We let G be the group of linear operators on V of the 
form A H UtAU for some fixed unitary (orthogonal) U. The behavior of 
unitary congruence invariant norms on 5&(R) is the same as that of uni- 
tary similarity invariant norms on IH,. In particular, one can easily modify 
Theorem 2.7 to get a corresponding result concerning the isometry groups 
of unitary congruence invariant norms on 5&(R). For the isometry group 
of unitary congruence invariant norms on Sn(@) and K,(IF), we have the 
following results [see Li and Tsing (1991a) and also Morita (1941, 1944)]. 

THEOREM 2.8. Let K be the isometry group of a unitary congruence 
invariant norm on &(C) which is not a multiple of the Frobenius norm. 
Then K = G. 

THEOREM 2.9. Let K be the isometry group of a unitary congruence 

invariant norm on K,(F) which is not a multiple of the Frobenius norm. 
Then one of the following holds: 

(a) n = 4 and 

where $(A) is obtained from A by interchanging its (1, 4) and (2, 3) 

entries, and interchanging its (4,l ) and (2, 3) entries accordingly. 

General results concerning the isometry groups of unitary congruence 
invariant norms on M,(IF) are not available. The result is not known even 
for a G(c)-radius. 

Notice that if IF = C, the G(c)-radius reduces to the c-congruence nu- 
merical radius. It is known [see Cheng, (1990) and Li and Tsing (1991b)l 
that in this case a G(c)-radius is a norm if and only if c E A&(C) is neither 
symmetric nor skew-symmetric. If IF = IR, the G(c)-radius reduces to the 
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c-numerical radius, and it is a norm if and only if tr c # 0, and c- (tr c)l/n 
is neither symmetric nor skew-symmetric. While the isometry group of a 
G(c)-radius for general c E A&(F) is not known, we have the characteri- 
zation of those linear operators L leaving the G(C)-radius invariant when 
c E &(lF)uK,(IF). N o ice that in this case, the G(c) radius is a seminorm. t 

Suppose c E Sn(@) is nonzero, and suppose L is a linear operator on 
A&(@) leaving the G(c)-radius invariant. Then rGcc)(A) = 0 if and only if 
A E K,(C). Therefore, if L is decomposed into L1 + Lz, where L1 (A) = 

L(A + At)/2 and La = L(A - At)/2, then Lz(K,(@)) C Kn(@). Further- 
more, if La(A) = [Ll(A) + L1(A)t]/2 for all A E Sn(@), then Lo is a linear 
operator on Sn(@) 1 eaving the G(c)-radius invariant, and hence Theorem 
2.8 applies. Consequently, one has 

THEOREM 2.10. Suppose c E &(@), and suppose L is a linear operator 

on Mn(C) leaving the G(c)-radius invariant. Then there exist a unitary U 

and a linear operator 2 on M,(C) with its range lying in K,(C) such that 

L(A) = Ut(A + At)U/2 + z(A) for all A. 

Similarly, if c E Sn(R), we have the following result. 

THEOREM 2.11. Suppose c E Sn(R), and suppose L is a linear operator 

on M,(R) leaving the G(c)-radius invariant. Let 

lR.I if c is a scalar matrix, 

{XES,(lR):trX=O} iiftrc=O, 

Sri(W) otherwise, 

and let WI be the orthogonal complement of W in M,(E%). Then there exist 

an orthogonal U and a linear operator 2 on Mn(E%) with its range lying in 

W’, such that L is of the form A H h[Ut(A - At)U/2 +(F/ - l)(tr A)I/n] 

+ L(A), where p = fl and n = fl such that nA has the same spectrzLm 

as A^ := (A - At)/2 - (tr A)I/n. 

By the same argument, if c E K,(F), we have the following result. 

THEOREM 2.12. Suppose c E K,(F), and suppose L is a linear operator 

on Mn(F) leaving the G(c)- d’ ra ius invariant. Then there exist a unitary U 

and a linear operator 2 on Mn(F) with its range lying in &(IF) such that 

L is of the form 

A H pUt(A - At)U/2 + E(A) 
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or 
A H @Q(A - At)U/2 + Z(A), 

87 

where p = 
1 iflF=C, 

ztl ifti= IR. 

It would be nice to solve the general problem on A&@‘). 

2.5. Permutation Invariant Norms 

In this subsection, we consider those norms I] . 11 on V = IFn that satisfy 
]~QcJ]] = ]]lc]] for all z E V and all permutation matrices Q. We shall let G 
be the group generated by all permutation matrices and the scalar matrices 
~1 with ]p] = 1. Suppose c E IF”. The G(c)-radius is defined by 

rG(,-)(z) = max{]c*Pz]: P a permutation matrix}. 

Itisanormon~nifandonlyifc#~eandc*e#O,wheree=(l,...,l)t~ 
F”. Note much is known about the isometry group of this type of G- 
invariant norm. Let ei denote the ith column of 1, for i = 1,. . . , n. Denote 
by J, the n x n matrix with all entries equal to one. We have the following 
result [see Li and Mehta (1994)]. 

THEOREM 2.13. Let c(cl,. . . , c,)~ E IL%” with entries arranged in de- 
scending order. Suppose the G(c)-radius is a norm on IF, and K is the 

corresponding isometry group. Then one of the following holds: 

(a) There exists S = (I~I + /3J such that SC = el and SPIKS is the group 

of n x n real generalized permutation matrices. 

(b) n is odd, and there exists S of the form aI + /3J such that SC = 

Ci<n/2 e, and SMIKS = (G, B), where 

i 

0 

B= Ine2 - &J,_l f 

0 
n-3 n-3 
n-_l’.‘n-_l 1 

Cc) cz + G-z+1 areallequalfori=l,... ,n, and K = (G, I, -(2/n)J). 
(d) c does not satisfy the conditions described in (a)-(c), and K = G. 

The proof of this result in Li and Mehta (1994) is purely computa- 
tional. R. Loewy has informed this author that Gordon and Lewis (1977) 
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have used the theory of reflection groups [see Benson and Grove (1985) for 
basic definitions] to characterize isometry groups of general permutation 
invariant norms on lWn for n > 13. Currently, this author and W. Whit- 
ney are extending the techniques in Gordon and Lewis (1977) to give a 
complete solution of the problem [see Li and Whitney (1994)]. 

3. SPECIAL TYPES OF G-INVARIANT NORMS 

3.1. Norms Induces by Inner Products 

In this subsection, we consider those G-invariant norms that are induced 
by inner products. We have the following general result (Li and Tsing, 
1989c) (cf. Theorem 3.1). 

THEOREM 3.1. Let V = WI @ +. .. + @wk be mutually orthogonal 
G-irreducible subspaces. Then I] . 11 zs a G-invariant norm on V induced by 

an inner product if and only if there is positive definite H = (hij) E Sk(R), 

where hij = 0 whenever Wi and Wj are not isomorphic, such that for any 
w= WI+... + wk with Wi E Wi we have llv11’ = ci,j hij(xi, Xj). 

Notice that by Theorem 3.1, if V is irreducible under the action of G, 
then a G-invariant norm on V is induced by an inner product if and only 
if it is a multiple of the Frobenius norm. 

Using Theorem 3.1, Li and Tsing (1989c) re-proved several known re- 
sults in Li and Tsing (1987) and Bhatia and Holbrook (1987)) and obtained 
some new ones. In the following we mention some of the results related to 
the G-invariant norms mentioned in the previous sections. 

THEOREM 3.2. 

(4 suppose II . II is a symmetric gauge function on P, or a unitarily 

invariant (unitary congruence) norm on Mm,,(P), (5&(C) or K,(F)). 

Then II ]I is induced by an inner product if and only if it is a positive 
multiple of the Frobenius norm. 

(b) A permutation invariant norm /I . I] on Fn is induced by an inner 

product if and only if there exist p, n E IL% with n > 0 and np + n > 0 

such that 

llxl12 = pIxieI + 77(x*x) forall xEP. 

(c) A unitary similarity invariant norm ]].I] on V = A&(@), FtH,, or Sri(R) 
is induced by an inner product if and only if there exist II, n E JR with 
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n > 0 and np + n > 0 such that 

I(A/[’ = pltrA12 + n tr (AA*) for all A E V. 

(d) An orthogonal similarity invariant norm II . /I on A&(R) is induced 

by an inner product if and only if there exists p, 7, u E IL% with n > 1~1 

and np + n + u > 0 such that 

/IAll = p(tr A)2 + n tr (AAt) + v tr (A2) for all A E A&(R). 

3.2. Norms Induces by Other G-Invariant Norms 

Suppose I] II is a norm on V. For any invertible linear operator 5’ on V, 
one can consider the norm ]]x]]s defined by ]I. 11~ = jIS(z)ll. One would like 
to know when I] (1s is a G-invariant norm. We have the following result 
(Hemasinha, Weaver, and Li, 1992, Theorem 2.1). 

THEOREM 3.3. Let II .I/ b e a norm on V with K as the isometry group. 

Suppose S is an invertible linear operator on V. Then 11. I] is a G-invariant 
norm if and only if SGS-1 C K. 

In Hemasinha, Weaver, and Li (1992), the authors studied the cases 
when I] II is a symmetric gauge function on IF” and G is the group of 
diagonal unitary (orthogonal) matrices, the group of permutation matrices, 
or the group of generalized permutation matrices. In other words, for a 
given symmetric gauge function I] ‘11, the authors determined the condition 
on S E A&(F) such that the induced norm ]I 11~ is an absolute norm, a 
permutation invariant norm, or a symmetric gauge function. R. Hemasinha 
has been studying the problem for a full ranks E M,,,(F), i.e., /I . I/ is a 
norm on IF” [see Hemasinha (1993)]. 

Note that a norm on IFn is a symmetric gauge function if and only if it is 
absolute and is permutation invariant. A few years ago, Cheng raised the 
question whether a norm on A&(@) is unitarily invariant if and only if it is 
unitary similarity invariant and unitary congruence invariant. The author 
of this paper gave an affirmative answer to this question, and communicated 
the result to Cheng (see [Cheng (1991b); cf. Theorem 4.4.11). 

THEOREM 3.4. A norm on A&(C) is unitarily invariant if and only if 
it is both unitary similarity invariant and unitary congruence invariant. 

Proof. The necessity part is clear. To prove the converse, suppose 
]I. I/ on M,(C) is both unitary similarity invariant and unitary congruence 
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invariant. Suppose A E A&(@) and U, V are unitary. We show that there 
exist unitary X, Y, D such that D is diagonal, U = X*DY*, and V = 

YDX. It will then follow that IIUAVll = JIX*DtY*AYDXII = IlAll. 

Now, since UV is unitary, there exist a unitary matrix W and a diagonal 
unitary matrix D such that UV = WD’W*. One easily check that X = 
(DW*) and Y = (U’W) satisfy the required conditions. n 

By Theorem 2.5, we know that all the possible isometry groups of uni- 
tarily invariant norms. With Theorem 3.3, one can deduce the following 
result. 

THEOREM 3.5. Let /I. I/ be a unitarily invariant norm on U = M,,,(F) 
with isometry group K, and let S be an invertible linear operator on 

Mm,, (P). Then II . II as a unitarily invariant norm if and only if S be- 

longs to the normalizer of K in the group of invertible linear operators on 

V. 

One may further the study of this problem for other types of G-invariant 
norms. 

4. APPROXIMATION PROBLEMS 

Let 7 be a subset of U. Suppose y E V\7. It is of interest to determine 
zc E 7 such that 

IIY-zoll <IIY-XII for all z E 7 

for a given norm or a given class of norms. The element zc is known as 
the best approximation of y from the set 7. There is a lot of research on 
this topic; e.g., see Marshall and Olkin (1979), Singer (1970), and their 
references. 

To give a concrete example of this type of results, we mention the 
following result, which is a slight extension of Theorem 4.1 in Li and Tsing 
(1987). 

THEOREM 4.1. Let 11. /I be a norm on V. Suppose f : V --f V such that 

f (x + y) = f(x) + f(y), f 0 f(z) = x, and llf (x)II = II4I, for all 5 and Y in 
V. If 7 = {CIJ E V : f(z) = x}, then for any y E V\7 

where 

IIY-xoll I IIY-511 for all x E 7, 

ICIJ = [f(x) + 4/a E 7. 
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One may take ]] . 11 to be any unitarily invariant norm on M,(C) or any 
C-numerical radius on A&(@) with C = C*; the conclusion of Theorem 4.1 
is valid if f(A) = &A*, *?I, or *At. In fact, for a given G-invariant norm 
]I. I/ and a given transformation f on V, one has ]]f(x)1] = ]]x]] for all IC E V 
if and only if there is a compact set E C I/ such that f(E) = I and 

ll~ll = m= {~-c(~)(~I : 2 E E} for all z E II. 

Another situation of interest is when ]I I/ is a G-invariant norm and 
7 = G(x) or conv G(x). We list some results and open problems in the 
following. 

THEOREM 4.2. Let G be the group of generalized permutation matrices 

over IF = IR or @. Suppose x, y E IFn are such that y $ G(x). Let P, Q E G 

be such that Py and Qx have nonnegative entries arranged in descending 

order. Then for any symmetric fuktion I/ . II on IFn, 

IIY - P-‘&XII I IIY - zll I II?/ - (-P-‘&)x11 for all z E G(x) 

and 

IIY-zoll I IIY-zll for all z E conv G(x), 

where x0 E conv G(x) is constructed by the following algorithm: 

Step 1. Set a = Py - Qx. 

Step 2. If A, > ... > A,, then go to step 4. Otherwise go to step 3. 

Step 3. Let 1 -c lc < t 5 n be such that 

A, > . 2 Ak_l 5 Ak = ‘. = A, # Al+i, 

and let j be the smallest integer such that A3 = Ak_i. 

Then for i = j, . ,e, replace A, by (CbTe A,)/(e - j + 1). Go to 

step 2. 
Step 4. For i = 1,. , n, replace Ai by 0 if Ai < 0. Then set x0 = y - P-IA. 

Theorem 4.2 was proved in Cheng (1991a). By the fact that there is a 
one-one correspondence between unitarily invariant norms on Mm,,(P)(m 
2 n) and symmetric gauge functions on IWn [e.g., see Mirsky (1960)], one 
can deduce the following result from Theorem 4.2. 

THEOREM 4.3. Let G be the group of linear operators on Mm,+(IF)(m 2 
n) of the form A H UAV for some unitary U and V. Suppose X,Y E 
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M,,,(P), and suppose P, Q, R, S are unitary matrices such that PXQ = 
Cy=“=, oi(X)Eii and RYS = Cz, oi(Y)Eii. Then for any unitarily invari- 

ant norm II . II on. Mm,,(F), 

IIY-R*PXQS*II 5 l/Y-Z11 5 (IY-(-R*PXQS*)II for all Z E G(X), 

and 

for all Z E conv G(X), 

where xc = (PI,. . , pn)t is obtained by the algorithm of Theorem 4.2 on 

setting z = o(X) and y = o(Y) in step 1. 

By the same idea, one can apply Theorem 4.2 to obtain results for uni- 
tary congruence invariant norms on k&(C) and K,(IF) [see Cheng (1991a)l. 
In fact, the study of Cheng (1991a) was motivated by an earlier paper by 
Li and Tsing (1989b). In that paper, the authors considered unitary sim- 
ilarity invariant norms on V = 3-1, or &(R). The proofs actually cover 
the problem of permutation invariant norms on IF. We have the following 
results. 

THEOREM 4.4. Let G be the group of permutation matrices. Suppose 

x, y E R” are such that y 6 G(x). Let P, Q, Q E G be such that Py and Qx 

have entries arranged in descending order, and 6x has entries arranged in 

ascending order. Then for any permutation invariant norm II . II on P”, 

IIY - P-lQxll I IIY - zll I IIY - (P-l&^)xll for all z E G(z), 

and 

IIY-xoll 5 IIY-zll for all z E conv G(x), 

where xo E conv G(x) is constructed by the following algorithm: 

Step 1. Set A = Py - Qx. 

Step 2. If Ai > . . . > A,, then go to step 4. Otherwise go to step 3. 

Step 3. Let 1 < k 5 ! < n be such that 

A, > . . . 2 Ak_i < Ak = ‘. . = A, # A,,,, 

and let j be the smallest integer such that Ai = A,_i. 

Then for i = j, . . ,l, replace Ai by (CEzj A,)/([ - j + 1). Go to 

step 2. 
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Step 4. Set x0 = y - P-IA . 

Since there is a one-one correspondence between permutation invariant 
norms and unitary similarity invariant norms on V = ‘If, or &(I%), one 
can apply Theorem 4.4 to obtain the following result. We shall use X(A) = 

(A, (A), . . . ,X,(A))” to denote the vector of eigenvalues of A E V with 
entries arranged in descending order. 

THEOREM 4.5. Let G be the group for linear operators on V = 7-l, or 

Sn(JFi) of the form A H U*AU for some unitary U. Suppose X, Y E V, and 
suppose V, W, R are unitary matrices such that V* XV = Cz=“=, Xi(X) Eii, 

W*XW = Cr=, Xn-i+l (X)Eii, and R*YR = Cy=“=, Xi(Y)Eii. Then for 

any unitary similarity invariant norm 11 . 11 on V, 

IIY-RV*XVR*II 5 IlY-211 < IIY-RW*XWR*II for all 2 E G(X) 

and 

R*ll I IIY - z/l for all 2 E conv G(X), 

where x0 = (~1,. . , ,LL~)~ is obtained by the algorithm of Theorem 4.4 on 

setting IC = X(X) and y = X(Y) in step 1. 

The problems are open if we consider unitary congruence invariant 
norms on A.&(@) or unitary similarity invariant norms on Mn(IF). The 
problems are much more difficult if we consider 7 to be a union of orbits, 
or the convex hull of a union of orbits. For example, if V = A&(@), G is 
the group in Theorem 4.5, and 7 is the union of G(D) for all diagonal D, 
then finding DO in 7 that best approximates a given A E V is the same as 
finding the best normal approximation of A. This is known to be a difficult 
problem even using the Frobenius norm [see Ruhe (1987)]. 

There are many other interesting approximation problems on matrix 
spaces. For example, if 

then finding a best approximation in ‘T for a given 

A = (it tz) E M,,,(F) with AZ E A&,(P) 
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is equivalent to finding a minimum norm completion of the partial matrix 

where X E Mp,,(F) is unspecified. It is known [e.g., see Davis, Kahan, and 

Weinberger (1982) and also Paulsen, Power, and Smith (1989)] that if ]I . I/ 
is the spectral norm, i.e., the Ky Fan l-norm, then the minimum value of 

IK ::)I1 with X E Mp,q(IF) 

coincides with the obvious lower bound 

One may consider the minimum norm completion problem for other norms. 

For example, finding a minimum numerical radius completion for a given 

partial matrix in Mn(C) is highly nontrivial even for the 2 x 2 case [see 

Choi and Li (1993)]. In fact, the problem is still open for n 2 3. 

Also, characterizing the best approximation elements is of interest [see 

Zietak (1993) and its references]. 

5. OTHER PROBLEMS AND RELATED TOPICS 

In this section, we list a few more general problems on norms that 

the author has been involved in the last few years. We only give a brief 

description, either because better references on the problems are available 

elsewhere, or because not many results are available yet. 

5.1. Inequalities 

Given two norms ( I and /I jl on V, it is of interest to find the largest 
QI and the smallest 4 such that 

4zI 5 II4 5 Plzl for all 5 E V. 

Suppose o is a product on V, i.e., a binary operation on V that is 

continuous with respect to the given norm I/ 11. One may be interested in 

knowing the smallest v such that 

vllz O YII 5 e4l4lYll for all z, y E V. 
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A related problem is to determine the smallest v such that 

+lcll I wll)” forall zEV, Ic>2, 

where xk = F o ‘;’ o 5 

There are m&y results and open problems on this topic. The work of 

this author is mainly on unitary similarity invariant norms and has been 

summarized in Li (1994b). F or related topics, one may see Stone (1962), 

Marcus and Sandy (1985), Goldberg and Straus (1982, 1983), Gottlieb, 

Johnson, and Spitkovsky (1994), Johnson and Li (1988), Li (1986, 1991), 

R. C. Li (1993) and Okubo (1993). 

5.2. Geometrical Structure of the Unit Ball 

To study problems related to a norm, it is very useful to know the ge- 

ometrical structure of the unit norm balls. For examples, in the study of 
isometry problems or inequalities involving norms, knowing the character- 

ization of the extreme points of the unit balls is very useful [see Chang 

and Li (1992), Li and Mehta (1994a, b, & c), and Li and Tsing (1988a, 

d)]. Recently, some authors, including So (1990), Zietak (1988), and de Sa 

(1994a, b, c) have studied the facial structure of the norm balls. While the 
problems on unitarily invariant norms are quite well studied, not much is 

known for other types of G-invariant norms. 

5.3. Other Sources of Problems and References 

There are many other results and problems involving different types 

of norms. See, for example, the excellent monographs by Belitskii and 

Lyubich (1988), Bhatia (1987), Schatten (1950, 1961), and Stewart and 

Sun (1992), as well as the lecture note series by Lindenstrauss and Milman 

(1985590). 
Note added in proof: Dr. Beata Randrianantoanina has brought our 

attention to the excellent survey on isometry problems by Fleming and 

Jamison (1994). These are several references, namely Braverman and Se- 

menov (1974) and Schneider and Turner (1973), that are closely related to 

our discussion in Section 2. 

REFERENCES 

1 Arazy, J. 1975. The isometry of C,, Israel J. Math. 22:247-256. 

2 Belitskii, G. R. and Lyubich, Yu. I. 1988. Matrix Norms and Their Appli- 

cations, Oper. Theory Adv. Appl. 36, Birkhguser. 

3 Benson, C. T. and Grove, L. C. 1985. Finite Reflection Groups, 2nd ed. 

Springer-Verlag, New York. 



96 CHI-KWONG LI 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

Deutsch, E. and Schneider, H. 1974. Bounded groups and norm-hermitian 

matrices, Linear Algebra Appl. 9:9-27. 

Dokovid, D. 2. 1990. On isometries of matrix spaces, Linear and Multilinear 

Algebra 27~73-78. 

DokoviC, D. 2. and Li, C. K. 1993. Overgroups of some classical linear 

groups with applications to linear preserver problems, Linear Algebra Appl., 

to appear. 

DokoviC, D. i., Li, C. K. and Rodman, L. 1991. Isometries of symmetric 

gauge functions, Linear and Multilinear Algebra 30:81-92. 

Fan, K. 1951. Maximum properties and inequalities for the eigenvalues of 

completely continuous operators, Proc. Nat. Acad. Sci. U.S.A. 37:760%766. 

Fleming, R. J. and Jamison, J. E., 1994. Isometries on Bausch spaces-a 

Survey, preprint. 

23 Fong, C. K. and Holbrook, J. A. R. 1983. Unitarily invariant operator 

Bhatia, R. 1987. Perturbation Bounds for Matrix Eigenualues, Pitman Res. 

Notes Math. Ser., Longman. 

Bhatia, R. and Holbrook, J. A. R. 1987. Unitary invariance and spectral 

variation, Linear Algebra Appl. 95:43368. 

-Brualdi, R. A. 1992. The symbiotic relations of combinatorics and matrix 

theory, Linear Algebra Appl. 162-164:65-105. 

Chang, S. S. and Li, C. K. 1991. A special linear operator on n/r,(W), Linear 

and Multilinear Algebra 30:65-75. 

Chang, S. S. and Li, C. K. 1992. Certain isometries on Iw”, Linear Algebra 

Appl. 165:251-261. 

Cheng, C. M. 1990. Two results on C-congruence numerical radii, Tamlcang 

J. Math. 21:59-64. 

Cheng, C. M. 1991a. An approximation problem with respect to symmetric 

gauge functions with application to matrix spaces, Linear and Multilinear 

Algebra 29:169-180. 

Cheng, C. M. 1991b. Some results on Eigenvalues, Singular Values and 

Orthostochastic Matrices, Ph.D. Thesis, Univ. of Hong Kong. 

Choi, M. D. and Li, C. K. Some basic properties of the numerical radius, 

in preparation. 

Davis, C., Kahan, W. and Weinberger, H. 1982. Norm-preserving dilations 

and their applications to optimal error bounds, SIAM J. Numer. Anal. 

19:455-469. 

de Sa, E. M. 1994a., Faces and Traces of the unit ball of a symmetric gauge 

function, Linear Algebra Appl., 197-198:349-396. 

de Sa, E. M. 1994b., Exposed faces and duality for synnetric and unitarily 

invariant norms, LAA 197-198:4299450. 

de Sa, E. M. 1994c., Faces of the unit ball of a unitarily Invariant norm, 

LAA 197-198:451-494. 



THEORY OF NORMS 97 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

norms, Canad. 1. Math., 35(2):274-299. 

Fuhrmann, P. A. 1992. Functional models in linear algebra, Linear Algebra 

Appl. 162%164:107-151. 

Goldberg, M. and Straus, E. 1979. Norm properties of C-numerical radii, 

Linear Algebra Appl. 24:1133131. 

Goldberg, M. and’straus, E. 1982. Operator norms, multiplicativity factors 

and C-numerical radii, Linear Algebra Appl. 43:137-159. 

Goldberg, M. and Straus, E. 1983. Multiplicativity factors and C-numerical 

radii, Linear Algebra Appl. 54:1-16. 

Gordon, Y. and Lewis, D. R. 1977. Isometries of diagonally symmetric 

Banach spaces, Israel J. Math. 28:45567. 

Gordon, Y. and Loewy, R. 1979. Uniqueness of (A) bases and isometries of 

Banach spaces, Math Ann. 241:1599180. 

Grone, R. 1976. Isometries of Matrix Algebras, Ph.D. Thesis, Univ. of Cal- 

ifornia, Santa Barbara. 

Grone, R. 1979. The invariance and partial isomatries, Indiana Math. J. 

28:445-449. 

Grone R., 1980. Certain isometries of rectangular complex matrices, Linear 

Algebra Appl. 29:161-171. 

Grone, R. and Marcus, M. 1977. Isometries of matrix algebras, J. Algebra 

47:180-189. 

Hemssinha, R. 1993. The sign invariance of certain norms on Il%“, Linear 

and Multilinear Algebra 35:1355151. 

Hemasinha, R., Weaver, J., and Li, C. K. 1992. Norms induced by symmet- 

ric gauge functions, Linear and Multilinear Algebra 31:217-224. 

Horn, R. A. and Johnson, C. R. 1985. Matrix Analysis, Cambridge U.P., 

New York. 

Horn, R. A. and Johnson, C. R. 1991. Topics in Matrix Analysis, Cambridge 

U.P., New York. 

Johnson, C. R., Laffey, T. J., and Li, C. K. 1988. Linear transformations 

on Mn(R) that preserve the Ky Fan k-norm and a remarkable special case 

when (n, k) = (4,2), Linear and Multilinear Algebra 23:2855298. 

Johnson, C. R. and Li, C. K. 1988. Inequalities relating unitarily invariant 

norms and the numerical radius, Linear and Multilinear Algebra 23:183- 

191. 

Johnson, C. R., Spitkovsky, and Gottlieb, S., I. M. 1994. Some inequalities 

involving the numerical radius, Linear and Multilinear Algebra, 37, 13-24. 

Kovarik, Z. V. 1975. Spectrum localization in Banach spaces Z1, Linear 

Algebra Appl. 121223-229. 

Li, C. K. 1986. On the higher numerical radius and spectral norm, Linear 

Algebra Appl. 80:55-70. 

Li, C. K. 1987a. A generalization of spectral radius, numerical radius, and 



98 CHI-KWONG LI 

spectral norm, Linear Algebra Appl. 90:105-118. 

44 Li, C. K. 1987b. Linear operators preserving the numerical radius of matri- 

ces, Proc. Amer. Math. Sot. 99(4):601-608. 

45 Li, C. K. 1987c. Linear operators preserving the higher numerical radius of 

matrices, Linear and Multiline’ar Algebra 21:63-73. 

46 Li, C. K. 1991. Inequalities relating norms invariant under unitary similar- 

ities, Linear and Multilinear Algebra 29:155-167. 

47 Li, C. K. 1994a. A class of linear preserver problems and some useful ap- 

proaches, Linear Algebra Appl., 197-198:817-824. 

48 Li, C. K. 1994b. C-numerical ranges and C-numerical radii, Linear and 

Multilinear Algebra, 37:051-82. 

49 Li, C. K. and Mehta, P. P. 1994. Permutation invariant norms, Linear 

Algebra Appl., to appear. 

50 Li, C. K., Mehta, P., and Rodman, L. 1994. A generalized numerical range: 

The range of a constrained sesquilinear form, Linear and Multilinear Alge- 

bra, 37:25550. 

51 Li, C. K. and Tsing, N. K. 1987. On unitarily invariant norms and related 

results, Linear and Multilinear Algebra 20:107-119. 

52 Li, C. K. and Tsing, N. K. 1988a. Linear operators that preserve the C- 

numerical range or radius of matrices, Linear and Multilinear Algebra 23:27- 

46. 

53 Li, C. K. and Tsing, N. K. 198813. Some isometries of rectangular complex 

matrices, Linear and Multilinear Algebra 23:47-53. 

54 Li, C. K. and Tsing, N. K. 1988c. Duality between some linear preservers 

problems:The invariance of the C-numerical range, the C-numerical radius 

and certain matrix sets, Linear and Multilinear Algebra 23:353-362. 

55 Li, C. K. and Tsing, N. K. 1988d. Duality between some linear preserver 

problems II: Isometries with respect to c-spectral norms and matrices with 

fixed singular values, Linear Algebra Appl. 110:181-212. 

56 Li, C. K. and Tsing, N. K. 1989a. Norms that are invariant under uni- 

tary similarities and the C-numerical radii, Linear and Multilinear Algebra 

24:209-222. 

57 Li, C. K. and Tsing, N. K. 198913. Distance to the convex hull of unitary 

orbit with respect to unitary similarity invariant norms, Linear and Multi- 

linear Algebra 25:933103. 

58 Li, C. K. and Tsing, N. K. 1989c. G-invariant hermitian forms and G- 

invariant elliptical norms, SIAM J. Matrix Anal. Appl. 10:435-445. 

59 Li, C. K. and Tsing, N. K., 1990a. Linear operators preserving unitarily 

invariant norms of matrices, Linear and Multilinear Algebra 26:119-132. 

60 Li, C. K. and Tsing, N. K. 1990b. Linear operators preserving unitary 

similarity invariants norms -on matrices, Linear and Multilinear Algebra 

27:213-224. 



THEORY OF NORMS 99 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

79 

Li, G. K. and Tsing, N. K. 1991a. Duality between some linear preserver 

problems III: c-spectral norms on (skew)-symmetric matrices and matrices 

with fixed singular values, Linear Algebra Appl. 143:67-97. 

Li, C. K. and Tsing, N. K. 199lb. G-invariant norms and G(c)-radii, Linear 

Algebra Appl. 150:179-194. 

Li, C. K. and Tsing, N. K. 1992. Linear preserver problems: A brief intro- 

duction and some special techniques, Linear Algebra Appl. 162-164:217- 

236. 

Li, C. K. and Tsing, N. K., and Zhang F. Z. 1994. Comparison of norms of 

two vectors, preprint. 

Li, C. K. and Whitney, W. 1994. Symmetric closed overgroups of S, in O,, 

preprint. 

Li, R. C. 1993. Norms of certain matrices with applications to variations of 

the spectra of matrices and matrix pencils, Linear Algebra Appl. 182:199- 

234. 

Lindenstrauss, .I. and Milman, V. 1985-90. Geometric Aspects of Functional 

Analysis, Springer-Verlag Notes 1267, 1317, 1376, 1469. 

Man, W. Y. 1991. The invariance of C-numerical range, C-numerical radius 

and their dual problems, Linear and Multilinear Algebra 30:117-128. 

Marcus, M. and Sandy, M. 1982. Three elementary proofs of the Goldberg- 

Straus theorm on numerical radii, Linear and Multilinear Algebra 11:243- 

252. 

Marcus, M. and Sandy, M. 1985. Singular values and numerical radii, Linear 

and Multilinear Algebra 18:337-353. 

Marshall, A. W. and Olkin, I. 1979. Inequalities: Theory of Majorization 

and its Applications, Academic, New York. 

Mathias, R. 1989. A Representation of Unitary Similarity Invariant Norms, 

Technical Report 515, Dept. of Mathematical Sciences, Johns Hopkins 

Univ., Blatimore. 

Mirsky, L. 1960. Symmetric gauge functions and unitarily invariant norms, 

Quart. J. Math. 11:50-59. 

Morita, K. 1941. Analytical characterization of displacements in general 

Poubcare space, Proc. Imperial Acad. 17:489-494. 

Morita, K. 1944. Schwarz’s lemma in a homogeneous space of higher di- 

mension, Japan J. Math. 19:45-56. 

Okubo, K. 1993. Some equality conditions with respect to the dual norm 

of the numerical radius, Linear and Multilinear Algebra 34:365-376. 

Paulsen, V., Power, S., and Smith, R. 1989. Schur product and matrix 

completions, J. Funct. Anal. 85:151-178. 

Pierce, S. et al., 1992. A survey of linear preserver problems, Linear and 

Multilinear Algebra 33, Nos. 1-2. 

Rolewicz, S. 1985. Metric Linear Spaces, 2nd ed., PWN-Polish Scientific 



100 CHI-KWONG LI 

Publications. 
80 
81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

Ruhe, A. 1987. Closest normal matrix finally found, BIT 27:585-598 
Russo, B. 1969. Trace preserving mappings of matrix algebra, Duke Math. 

J. 36:297-300. 

Schatten, R. 1950. A Theory of Cross-Spaces, Princeton U.P., Princeton, 
N.J. 
Schatten, R. 1961. Norm Ideals of Completely Continuous Operators, Ergeb. 
Math. N.F. 27, Springer-Verlag, Berlin. 
Schur, I. 1925. Einige Bemerkungen zur Determinanten Theorie, Sitzungs- 
ber. Preuss. Akad. Wiss. Berlin 251454-463. 

Singer, I. 1970. Best Approximation in Normal Linear Spaces by Elements 

of Linear Subspaces, Springer-Verlag, Berlin. 
So, W. 1990. Facial structures of Schatten p-norms, Linear and Multilinear 

Algebra 27:207-212. 

Sourour, A. R. 1981. Isometries of norm ideals of compact operators. J. 
Funct. Anal. 43:69-77. 
Stewart, G. W. and Sun, J. G. 1992. Matrix Perturbation Theory, Aca- 
demic, New York. 
Stone, B. J. 1962. Best possible ratios of certain matrix norms, Numer. 
Math. 4:114-116. 

92 

93 

94 

95 

96 

Tam, B. S. 1986. A simple proof of Goldberg-Straus theorem on numerical 
radii, Glasgow Math. J. 28:139-141. 
Thompson, R. C. 1980. The congruence numerical range, Linear and Mul- 

tilinear Algebra 18:197-206. 
Thompson, R. C. 1992. High, low, and quantitative roads in linear algebra, 
Linear Algebra Appl. 1622164:23-64. 

Tucker, A. 1993. The growing importance of linear algebra in undergraduate 
mathematics, College Math. J. 24:3-g. 

von Neumann, J. 1937. Some matrix-inequalities and metrization of matrix- 
space, Tomsk Univ. Rev. 1:286-300. 

Zietak, K. 1988. On the characterization of the extremal points of the unit 
sphere of matrices, Linear Algebra Appl. 106:57-75. 

Zietak, K. 1993. Properties of linear approximations of matrices in the 
spectral norm, Linear Algebra Appl. 183:41-60. 

Received 9 June 1993; final manuscript accepted 30 October 1993 


