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Which  case-based  intervention  measures  should  be  applied  during  an epidemic  outbreak  depends  on
how  timely  they  can  be applied  and  how  effective  they  are.  During  the course  of each  individual’s  infec-
tion,  the  earlier  control  measures  are  applied  on him/her  the  more  effectively  further  disease  spread  can
be  prevented.  However,  quick  implementation  can  lead  to  loss  of efficacy  or coverage,  e.g., when  individ-
uals  are targeted  based  on rapid  but  poorly  sensitive  diagnostic  tests  in  place  of slower  but  accurate  PCR
tests.  To  analyse  this  trade  off  between  speed  and  coverage  we  used  stochastic  models  considering  how
the  individual  reproduction  density  is  modified  by  interventions.  We  took  as example  the  case-based
intervention  strategy  employed  in the  Netherlands  during  the beginning  of  the  H1N1  pandemic.  Sus-
pected  cases  were  isolated  and  samples  were  collected  for PCR  diagnosis.  In case  of  positive  diagnosis,
antiviral  drugs  were  provided  to contacts  as  post-exposure  prophylaxis.  At the  time  there  were  also  rapid
influenza  diagnostic  tests  (RIDTs)  available  which  provided  results  within  an  hour  after  sample  collection
compared  to a median  of 2.7 days  for  PCR  tests,  but they  were  less  sensitive.  We studied  how  interven-
tions  based  on  RIDTs  with  various  sensitivities  affect  the  outbreak  size  and  how  these  compare  to  PCR
diagnosis  based  interventions.  Using  an  intervention  based  on a  bedside  RIDT  with  60%  detection  ratio

or a  laboratory  RIDT  with  70%  detection  ratio is  as effective  as the  most  effective  PCR-diagnosis  based
intervention.  Relative  performances  of  interventions  are  not  dependent  on  the  basic  reproduction  num-
ber  R0 but  only  on  distributions  of  individual  reproduction  density  and  of delay  periods.  The individual
reproduction  density  combines  R0 and  infection  time  distribution,  both  crucial  in determining  the impact
of  case-based  interventions  during  epidemic  outbreaks.

©  2014  The  Authors.  Published  by  Elsevier  B.V. This  is  an  open  access  article  under  the  CC  BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
ntroduction

Different types of intervention can be applied during epidemic

utbreaks in an attempt to reduce outbreak effects, such as final
ize, incidence, prevalence, morbidity and mortality. Case-based
nterventions are focused around infected individuals. They are
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applied at a time which is specific for each individual, depending on
when he/she is identified (or suspected) as infected, and reduce the
individual’s infectious potential from then on. For example, isola-
tion, quarantine, post-exposure prophylaxis of infected and traced
contacts would be case-based interventions.

Success of a case-based intervention in reducing the number
of subsequent infections is directly linked with how timely it is
implemented and how complete the implementation coverage is:
the earlier the implementation and the higher its coverage, the

more effective the intervention is. But there are situations where a
quicker intervention implementation is only possible at the cost of
coverage loss and vice versa, e.g., when the intervention is based on
a quicker but less sensitive diagnostic test versus a slower but more
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Fig. 1. Schematic time-line of the intervention applied to positively diagnosed individuals and to their high risk contacts from the moment of infection of the index case.
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urations of different periods are indicated as Dlat for latency (individual infected b
or period between symptom onset and consulting the general practitioner (which 

o  the laboratory, and DLX time between arrival to laboratory and diagnosis result, D

ensitive diagnosis. Because of this trade-off it is not directly clear
hich kind of diagnostic test would render a case-based interven-

ion more effective.
We  analysed the case-based intervention strategy implemented

n the Netherlands during the beginning of the H1N1 pandemic. In
ombination with providing general hygiene advice when novel
nfluenza A (H1N1) was detected in the Netherlands, a case-based
ntervention plan was put in place to contain the spreading of the
ew influenza virus (Hahné et al., 2009). Fig. 1 shows a schematic
ime-line of the intervention. Suspected cases were isolated while
amples were transported to specialised laboratories for diagno-
is by polymerase chain reaction (PCR) tests (Meijer et al., 2009;
an Asten et al., 2009). High risk contacts of suspected cases were
ocated and in case of a positive diagnosis anti-viral drugs were
dministered to them as post-exposure prophylaxis (PEP). PCR
iagnostics sensitivity is less than ideal given that the viral load
ontent of field collected samples is highly variable and depend-
nt on the infection-age at which it is collected [e.g., van Boven
t al., 2010]. But given appropriate influenza viral RNA samples, the
yping of novel influenza A (H1N1) based on PCR has a high sensitiv-
ty [e.g., Vinikoor et al., 2009, Bouscambert Duchamp et al., 2010].
herefore, PCR diagnostic tests are considered the gold standard
ethod to evaluate sensitivity of other diagnostic techniques.
owever, besides the need for specifically dedicated personnel, lab-
ratory and equipment, PCR tests are time consuming: Although
ne PCR diagnostic test can take up to 8 h in the laboratory (from
eceiving the sample to reporting the test result), the time between
ample collection and reporting the result is considerably extended
ue to transport, queueing, working schedules and other logistics.
t the time there were also commercially available, widely used,
apid influenza diagnostic tests (RIDTs). These tests are portable,
ave no need of specialised resources or personnel, and provide a
esult within the hour. RIDTs can be performed at the bedside or as
uick tests at laboratory locations [e.g, Crawford et al., 2010]. How-
ver, despite their speed and ease of use, RIDTs were discarded as
eliable diagnostic tests in the Netherlands because their overall
ensitivity to novel influenza A (H1N1) viral antigens was between

0% and 69% when compared to the PCR gold standard technique
Balish et al., 2009; Jernigan et al., 2011).

The question arises whether and when using RIDTs in place of
CR tests for diagnosis of the novel influenza A (H1N1) would have
 yet infectious), Dinf for infectious, Dinc for incubation (time to symptom onset), DOC

des with the collection of samples for diagnosis), DCL time for transporting samples
e to apply response on contacts after a diagnosis is positive.

rendered the applied interventions more effective. To answer this
question we used stochastic models of H1N1 influenza outbreaks
that follow each infector individually, from the moment he/she
has been infected. The models include the concept of individual
reproduction density, which is the rate of infections produced per
unit time by an infector at any given infection-age (the time passed
since becoming infected). This provides flexibility to follow the new
cases each infector will generate as his/her individual reproduc-
tion density can be modified depending on whether and how late
after infection an intervention is applied onto him/her. We  ana-
lysed the results of our models to determine which diagnostic test
would have rendered the intervention more effective in reducing
the growth of the epidemic, depending on diagnostic test speed and
sensitivity.

Methods

We modelled the Dutch situation at the introduction of the
novel influenza A (H1N1) in 2009 by assuming implementation of
intervention measures based on RIDTs performed at the bedside
and based on RIDTs performed at laboratory locations with vary-
ing sensitivities. We  compared these results to those from models
assuming implementation of intervention measures based on the
standard PCR diagnosis. To evaluate the performance of the differ-
ent interventions we focused on the attack rate: the lower it is the
better the performance of the intervention is.

Individual reproduction density and interventions

The basic reproduction number, R0, indicates the average num-
ber of new infectees that a random infector produces during his
infectious period in a completely susceptible population, in the
absence of any intervention. If R0 < 1 an outbreak will die out
without becoming large, but if R0 > 1 it is likely that the outbreak
becomes large, i.e., affects a significant fraction of the population.
The individual reproduction number corresponds to the expected
number of new infectees that a particular infector produces dur-

ing his infectious period (Lloyd-Smith et al., 2005). We  write the
individual reproduction number of a particular infector as Rj. We
denote with a subscript j all quantities corresponding to a partic-
ular subject j, meaning that these quantities tend to vary among
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Table 1
Model parameter values.

Parameter Notation Value/distribution Reference

Duration of incubation period (distribution) Dinc logNormal(1.047, 0.642); 1–7days, with mean 3 days and
SD 2.5 days

RIVM (2010), Heymann (2008),
Richardson et al. (2001)

Duration of latent period (distribution) Dlat Dinc − logNormal(− 1.040, 0.833); infectiousness starts
between 1 and 0 days before onset of symptoms

RIVM (2010), Heymann (2008),
Richardson et al. (2001)

Duration of infectious period (distribution) Dinf (Dinc − Dlat + logNormal(2.013, 0.067); infectious period
ends about 7 days after symptom onset

RIVM (2010), Heymann (2008),
Richardson et al. (2001)

Time elapsed between symptom onset and
sample collection for diagnosis (distribution)

DOC logNormal(0.996, 0.813); mean 3.77 days and SD 3.65 days Fit to data gathered by IDS

Time  elapsed between sample collection and
arrival to laboratory (distribution)

DCL logNormal(0.335, 0.331); mean 1.48 days and SD 0.50 days Fit to data gathered by IDS

Time  elapsed between arrival to laboratory
and diagnosis result (distribution)

DLX logNormal(0.050, 0.954); mean 1.66 days and SD 0.954 days Fit to data gathered by IDS

Time  elapsed between diagnosis result and
PHA response on contacts

DXR Fixed value 0.75 days Approximation to LCI expert
opinion
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ifferent individuals. The average value of Rj in a completely sus-
eptible population in the absence of intervention corresponds
o R0. Reproduction numbers describe the cumulative number
f infections produced during the whole infectious period by an
nfector, but the rate at which he infects new individuals is not
ecessarily constant. It depends on the infectivity and contacts
he infector has during his infectious period, both depending on
he infection-age. In analogy with the notation in Diekmann et al.
2012), consider �j the infection-age of infector j, Aj(�j) his infec-
ivity and cj(�j) the rate he makes contact with others after he had
ecome infected. We  define the individual reproduction density
j(�j) ≡ cj(�j)Aj(�j), the rate at which a particular infector j produces
ew infectees at a given infection-age �j. The individual reproduc-
ion number can be written as

∞

0

�j(�j)d�j = Rj. (1)

fter applied at infection-age �I,j on infector j, an individual-based
ntervention I lowers �j(�j) values, depending on how effective it
s. Thus, we consider the individual reproduction number modified
y the intervention as

I,j =
∫ �I,j

0

�j(�j)d�j +
∫ ∞

�I,j

(1 − Ieff)�j(�j)d�j, (2)

here intervention effectiveness Ieff ranges from 0 to 1, with 1
eaning 100% effective. An intervention would successfully stop

n epidemic outbreak if the mean reproduction number modified
y the intervention RI,j ≡ RI < 1.

tochastic model of Dutch response to novel influenza A (H1N1)

The aim of this study is to asses which intervention would be
ore effective in reducing the number of infected people dur-

ng an outbreak without putting attention on health economics.
herefore, we assume that the studied interventions do not carry
mplementation, logistics and/or economic burden, and neglect
roblems regarding treating non-infected contacts. We use a
tochastic model similar to that of Bonačić Marinović et al. (2012),
hich does not track susceptible individuals, by employing a com-
ined compartmental and individual approach. Persons not yet
nfected (the susceptibles) are considered in one compartment

here they cannot be distinguished from each other. At infection,
he infected individual moves out of the susceptible compartment
lat ; 1.03, 0.67), log-normal probability
, evaluated at age since onset of

Dlat)

Dolin (1976), Carrat et al. (2008),
Cori et al. (2012)

and is then followed individually throughout his disease history in
time steps of 6 h. We  record the individual reproduction density of
each infector as it becomes modified depending on the infection-
age at which interventions are applied.

Individual time-lines
Every individual who has been infected has two  internal time-

lines that characterise the development and consequences of the
disease according to his infection-age (Fig. 1). The transmission
time-line tracks the duration of the different infectious states of the
individual. It starts with a latent period of duration Dlat, then the
individual becomes an infector and remains infectious for a period
of duration Dinf, until he is no longer infectious because he recovers
permanently (see Table 1 for period distributions). The intervention
time-line tracks the different stages of the disease, which can be
observed and which finally lead to an individually targeted inter-
vention. It begins with an incubation period of duration Dinc until
onset of symptoms. Then there is a time interval of duration DOC
from onset of symptoms until consultation with a physician or local
public health authority (PHA), at which time samples for diagno-
sis are collected. For performing PCR diagnosis, samples need to be
transported to the laboratory and this period lasts DCL. Once in the
laboratory, a time period of duration DLX is needed to obtain the
PCR diagnostic test results. If a sample is tested positive, a period of
duration DXR is needed by local PHAs to effectuate the intervention
on high risk contacts.

Probability distribution of various time-line periods
Period duration values for both time-lines are generated ran-

domly from the distributions indicated in Table 1 for each infected
individual. Distributions for the periods Dinc, Dlat and Dinf were
constructed based on published literature. Distributions of DOC,
DCL and DLX were constructed using data collected by the Centre
for Infectious Disease Research, Diagnostics and Screening (IDS)
of the Dutch National Institute for Public Health and the Envi-
ronment (RIVM), the reference laboratory in charge of pandemic
influenza diagnostics during the early phase of the outbreak in the
Netherlands. Parameters of the distributions in Table 1 were found
by fitting the data with a Kolmogorov-Smirnov minimisation at a

0.05 significance level. We  assumed a fixed delay DXR of 18 h for
PHAs to respond with administration of PEP to high risk contacts,
based on expert opinion from the Dutch National Coordination Cen-
tre for Communicable Disease Control (LCI).
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iral load shaping individual reproduction density
We  assumed that in our simulated population of 10,000 indi-

iduals everyone has the same probability of contacting everyone
lse, so-called homogeneous mixing. Any given infector, say j, has

 probability per time step Pinf,j(�j)d�j of infecting a susceptible,
ependent on the infection-age �j and proportional to the individ-
al reproduction density �j(�j). We  consider the viral load curve
hape fVL,j(�j), which peaks one and a half days after the onset of
ymptoms (Table 1) as for seasonal influenza (Dolin, 1976; Carrat
t al., 2008; Cori et al., 2012). Note that fVL,j(�j) does not represent
he actual viral load values in time, but only its scaled shape as a
unction of the infection-age. In case that subject j moves freely
uring his whole infectious period we assume �j(�j) proportional
o his viral load during the infectious period only. This implies

inf,j(�j) ∝
{

fVL,j(�j) if Dlat < �j < (Dlat + Dinf)

0 otherwise
.  (3)

or each assumed R0 value in our simulations, the amplitude of
inf,j(�j) was chosen such that outbreak final sizes from our sim-
lations assuming no intervention on contacts is applied were
onsistent with the final-size equation ln(s∞) = R0(s∞ − 1), where
∞ is the final size [e.g., Anderson and May, 1991, Diekmann et al.,
012].

solation of newly suspected cases
As part of the response plan in the Netherlands to control the

ovel influenza pandemic in 2009, suspected cases (not their con-

acts) were instructed to remain isolated. We assumed that after
amples for diagnosis are collected, infected individuals cannot
nfect any others due to 100% effective isolation. This reduces �j(�j)
o zero when �j > Dinc,j + DOC,j in all cases (Fig. 2).

Dinc DOC

DXR

DCL DLX DXR

ig. 2. Schematic time-line of the intervention applied to a positively diagnosed index 

urves represent reproduction densities assuming that neither PEP nor isolation are ap
epresent the corresponding individual reproduction number Rj affected only by isolatio
secondary case’s light-grey area overlaps with darker grey areas). Secondary cases wou
efore  independent isolation, leading to smaller individual reproduction numbers, RI,j .
hat  it is administered. The medium-grey area (which overlaps with the darkest-grey a
EP  administered at index infection-age �I,index = Dinc + DOC + DCL + DLX + DXR, due to PC
maller  individual reproduction number considering PEP administered after positive bed
pidemics 8 (2014) 28–40 31

Intervention on contacts of positive cases: post-exposure
prophylaxis

In addition to the isolation of suspected cases, high risk con-
tacts of positively diagnosed cases were provided antiviral drugs
to prevent disease and further transmission (PEP). In our models
this means that at the moment a case is diagnosed, those infected
directly by him receive PEP treatment and have a reduced repro-
duction density from then on (Fig. 2). The effectiveness of PEP
treatment determines the proportion to which the reproduction
density is reduced (0 if PEP is 100% effective). Treatment has an
effect only if the infected contact receiving it has not yet been
isolated.

In the scenario where PCR diagnostic tests are used, infected
contacts are treated DCL+DLX+DXR days after samples from the index
are collected. In the scenario where bedside RIDTs are used, diagno-
sis takes place when samples are collected, so infected contacts are
treated 18 h (DXR) after sample collection. In the scenario where
laboratory RIDTs are used, infected contacts are treated DCL+DXR
days after collection of samples.

Comparison of scenarios
For comparing the performance of various interventions we

used the attack rates. An intervention which shows a lower attack
rate was  considered to perform better. We  compared the attack
rate of the epidemic when the intervention uses PCR test diag-
nosis to that of when bedside RIDTs are used, the latter with a
detection ratio in the range of 0–100% when compared to that
of the PCR test diagnosis. A similar comparison was  carried out

between interventions based on PCR test diagnosis and laboratory
RIDTs. Comparisons were performed at the end of simulated out-
breaks (final attack rate) as this is a direct outcome measure from
which the mean reproduction number RI can be derived. However,

τ

τ

and to a secondary case in the context of individual reproduction density. Dotted
plied on either the index or the secondary case. Light-grey areas for both cases
n at sample collection due to suspicion of infection, as if cases were independent
ld produce less new cases if antiviral drugs are administered (darker-grey areas)

 It is assumed for this scheme that PEP is 50% effective, independent of the time
rea) represents the secondary case’s individual reproduction number considering
R-based diagnosis of index. The darkest-grey area represents the secondary case’s
side RIDT results at index infection-age �I,index = Dinc + DOC + DXR.
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τ

Fig. 3. Viral load since infection and relation to diagnosis test sensitivity. The thick solid line represents the viral load from the moment of infection. Horizontal dotted-lines
indicate  hypothetical limits for the indicated diagnosis tests to result positive. Vertical dotted-lines indicate time windows within which the indicated tests result positive.
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he  curve with grey area shows the fitted distribution of time elapsed since infect
nd  Table 1). The complete greyed area (light- and dark-grey) indicates the proport
ndicates the proportion of tested individuals which would be found positive with a

ase-based interventions are likely to be applied during early stages
f an epidemic only and it is of interest for PHAs whether interven-
ions can also slow down the growth of an epidemic as this can
uy some time during the outbreak until better control options are
eveloped (e.g., new vaccines). Therefore, for the case of bedside
IDTs we also explicitly performed attack rate comparisons at 30,
0, 90, 120 and 180 days after onset of the epidemic (shown in
ppendix A). Some outbreaks die out before the time of observa-

ion, in which case their final attack rate is considered.
PCR tests are the gold standard diagnostics method and,

lthough they are not ideal (e.g., field sensitivity of 47% or lower
an Boven et al., 2010), for the sake of simplicity we assumed in our
odels that they are capable of detecting 100% of tested infected

ases. This does not affect our results regarding to which interven-
ion would perform better than another because RIDT sensitivities
re measured relative to the PCR method. Therefore, the cover-
ge of both RIDT and PCR based interventions would be reduced
n the same proportion. Nevertheless, we also considered a sce-
ario where interventions are applied to 50% of the population,

ncluded in Appendix B, which is comparable to, e.g., a scenario
ith 100% coverage intervention and “absolute” sensitivity of PCR

est diagnosis of 50%.
We  performed our calculations assuming various R0 values. In

ur models R0 is the reproduction number corresponding to a sce-
ario where no PEP intervention on contacts is applied, but only

solation of cases after consultation with a physician or local PHA.
o show the effect on the reproduction number caused by the PEP
nterventions on contacts we derived RI using our final size results
nd the final size equation RI = (ln(s∞)/(s∞ − 1)) [e.g., Anderson
nd May, 1991, Diekmann et al., 2012].

Following recommendations in international guidelines it is
onsidered that PEP treatment is only effective if administered

ithin 48 h of exposure [e.g., CDC, 2009]. Therefore, we  consid-

red scenarios with early (within 48 h of exposure) and late (after
8 h of exposure) PEP treatment effectiveness: early PEP 100%
nd late PEP 100% effective (i.e., PEP effectiveness independent of
 sample collection (Section “Probability distribution of various time-line periods”
 individuals which would be found positive with PCR diagnosis. The dark-grey area
.

infection-age); early PEP 100% and late PEP 50% effective; and
early PEP 100% and late PEP 0% effective. We  also studied a sce-
nario considering PEP treatment effectiveness of 50% independent
of infection-age. We  did not study a scenario considering PEP
treatment effectiveness of 0% independent of infection-age as it
is similar to that where no PEP intervention is applied.

RIDT sensitivity and actual detection ratios
Interpreting sensitivity as a probability for detecting positives

that is constant during infection justifies the assumption that a
RIDT detection ratio is equal to the RIDT sensitivity value. How-
ever, just as the sensitivity of PCR diagnosis, the sensitivity of a RIDT
may  depend on the viral load of the tested individual, which varies
during the infectious period. Indeed, studies show that RIDT per-
formance is high when samples are collected one day after onset
of symptoms and decreases progressively for samples which are
collected later (Jernigan et al., 2011). RIDTs also seem to perform
better with small children, who normally present a higher viral load
than adults (Andresen and Kesson, 2010). Taking this into consider-
ation we can hypothesise a time window when the RIDT performs
better due to the patient having a high viral load. Consequently, if
a majority of cases are sampled for diagnosis at a time when their
viral load is peaking, even a rather insensitive RIDT may  have a
detection ratio larger than its reported sensitivity.

For our particular case of pandemic influenza in the Netherlands,
Fig. 3 shows a viral load profile and the range of time that it remains
above a hypothetical threshold for detection with a RIDT and with
a PCR test. Estimating the RIDT sensitivity by randomly sampling
patients at any infection-age would result in a value given by the
ratio of 4.1 days (time window for positive RIDT) to 11.3 days
(time window for positive PCR diagnosis), i.e., of about 36%. How-
ever, samples were collected according to the distribution shown

in Fig. 3 (Table 1), meaning the detection ratio is given by the ratio
of the dark-grey area to the total greyed area, i.e., about 60%. Fol-
lowing this procedure we evaluated the correlation between RIDT
detection ratios and various RIDT sensitivities. Fig. 4 shows that the
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Fig. 4. Proportion of detected positives as a function of RIDT sensitivity. The solid line indicates the proportion of detected positives assuming the indicated RIDT test
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elation.

etection ratio would be underestimated when considered equal to
he sensitivity value, if cases are sampled near the viral load peak.

Knowing we can map  RIDT detection ratios to RIDT sensitivities,
e calculated and presented our results in terms of RIDT detec-

ion ratios. In this way they become more general and clear, as it
s possible to later interpret results in terms of RIDT sensitivities,
epending on any assumed correlation with RIDT detection ratios.
he simplistic assumption that RIDT sensitivity is equivalent to the
etection ratio provides the most conservative scenario.

esults

We  performed 10,000 simulation runs of each model. Before
onsidering the various R0 values we studied, we  focus in the mod-
ls with a basic reproduction number R0 = 2. This is value somewhat
igher than that estimated for H1N1 (R0=1.4–1.6, e.g., Fraser et al.,
009) but the effects we are studying are more clearly shown
ithin a higher attack rate scenario (80% in a population where only

ases after consultation are isolated and no PEP is provided to con-
acts). The attack rate values we present are the 95th-percentiles
f the predicted outcomes for each modeled scenario (i.e., 95%
f predicted attack rates are lower than the presented values).
ig. 5 shows final attack rates computed with scenarios assuming
nterventions based on bedside RIDTs with various detection ratios
nd PCR diagnostic tests, as indicated, and different PEP treatment
ffectiveness scenarios. RIDT based interventions perform better
have a lower attack rate) than PCR-diagnosis based interventions
hen the RIDT detection ratio is 100%, because PEP is provided

arlier to all infected contacts. In contrast, when RIDT detection
atio is 0%, the attack rate is the same as not applying any kind of
ntervention to infected contacts (no PEP, solid thin line in Fig. 5),

ecause no tested individual is detected positive.

An intervention based on the PCR diagnostic test has almost no
ffect if late PEP treatment is not effective (double-dotted lines in
ig. 5). Attack rates are almost the same as if no PEP treatment
e varying viral load as described in the text. The dotted line indicates a one to one

is administered to contacts because treatment is almost always
applied after 48 h of infection (DCL+DLX+DXR has a median of about
3 days). In this case, an intervention based on bedside RIDTs with
any detection ratio larger than 0 performs better in reducing the
final attack rate than the intervention based on the PCR diagnosis.
Using bedside RIDT with 100% detection ratio would considerably
reduce the attack rate to 25%, but still it would not be enough to
avoid a large outbreak.

If late and early PEP treatments both have 100% effectiveness
(dotted lines in Fig. 5), we  see that a PCR-diagnosis based inter-
vention reduces the attack rate considerably (to less than 30%). In
order to achieve the same attack rate reduction with a bedside RIDT
based intervention, the RIDT must have at least 60% detection ratio.
A RIDT detection ratio of ≥70% would reduce the attack rate even
further to the point of avoiding a large outbreak.

Considering the scenario with 100% effective early PEP treat-
ment and 50% effective if applied after 48 h of infection (dashed
lines in Fig. 5), the attack rate obtained with the PCR-diagnosis
based intervention is 60%. Such an attack rate is matched by using
a bedside RIDT-based intervention with 40% detection ratio. In this
case the intervention is expected to avoid a large outbreak if the
RIDT detection ratio is larger than 90%.

The scenario considering a constant PEP treatment effective-
ness of 50% (tiny-dotted line in Fig. 5) exhibits for PCR diagnosis
based interventions a very similar final attack rate as that of the
mixed scenario with late PEP treatment effectiveness of 50%. The
reason is that most PCR diagnosis based treatment is administered
after 48 h, so there is little contribution from 100% effective early
treatment. In contrast, interventions based on RIDTs perform sig-
nificantly worse in this scenario than in the mixed scenario with
50% late PEP treatment effectiveness, as in this case there is an

important proportion of treatments applied within 48 h of infec-
tion. Therefore, RIDTs need to have a detection ratio larger than
58% for a bedside RIDT based intervention to out perform a PCR
diagnosis based intervention.
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Fig. 5. Final attack rate of outbreaks (R0 = 2) in which PEP treatment is provided to infected contacts, based on bedside RIDT with detection ratio indicated in the x-axis.
Line  colours show scenarios with different PEP treatment effectiveness, as indicated in the legend. Straight horizontal lines indicate the attack rate in case PCR-diagnosis
based intervention is applied in the modelling scenario corresponding to their line styles. All lines show 95th-percentiles of the predicted outcomes of each indicated model
in  order to represent worst case scenarios. Circles highlight where RIDT-based interventions perform with the same efficacy as PCR-diagnosis based interventions for the
corresponding scenario colour. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

Fig. 6. Comparison of final attack rate as function of reproduction number considering interventions based on RIDTs performed at the bedside and interventions based on
PCR-diagnosis (performed in the laboratory). Each panel indicates its corresponding scenario and efficiency of the PEP treatment provided to infected contacts. Each panel
shows  the indicated PEP treatment efficiency scenario. Bold solid lines indicate the predicted attack rates as if there is no treatment administered to contacts. Solid lines with
crosses  show the predicted attack rate of interventions based on PCR diagnostic tests. Dashed lines indicate predicted attack rates of RIDT based interventions, with RIDT
detection ratios as indicated inside each panel.
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Fig. 7. Reproduction number modified by PEP intervention on contacts compared to
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Fig. 6 shows a similar analysis as above for varying R0 values,
rom which those that are <2 lead to lower attack rates. While for
he R0 range of values estimated for H1N1 (1.4–1.6) PCR-diagnosis
ased interventions have outbreak control potential only when
EP treatment is 100% effective at any time of administration,
edside RIDT based interventions are potentially capable of out-
reak control in all considered scenarios of treatment effectiveness,
epending on the detection ratio of RIDTs. Lines showing attack rate
o no cross in Fig. 6, indicating that varying R0 does not change
hich intervention performs better than another. Therefore, the
redicted minimum detection ratio a RIDT should have for an inter-
ention based on it to perform equally as well as one based on PCR
iagnosis is independent of R0, for a given PEP treatment effective-
ess. This is also visualised in Fig. 7, which shows RI as a function of
0 for various interventions. For each intervention there is a linear
elation showing the reduction factor of the reproduction number is
ndependent of R0, except for when RI and R0 approximately equal
, which is the threshold limit for outbreaks to occur.

Fig. 8 shows the comparison between scenarios with interven-
ions based on RIDTs performed at laboratory facilities and with
nterventions based on PCR diagnostics. Similar qualitative conclu-
ions are drawn as in the previous comparison where bedside RIDTs
re considered, but attack rate differences are smaller because
nfected contacts are provided PEP treatment with a larger delay
han in the scenarios when RIDTs are performed at the bedside. For
he same reason, larger laboratory-RIDT detection ratios than those
or bedside RIDTs are needed to match interventions based on PCR
ests.
PCR diagnostic tests. Dashed lines indicate predicted RI for RIDT based interventions,
with RIDT detection ratios as indicated in the figure. Thin dotted diagonal lines are
for  showing the linearity of the relation between RI and R0.

ig. 8. Comparison of final attack rate as function of reproduction number considering interventions based on RIDTs performed in the laboratory and on PCR-diagnosis
also  performed in the laboratory). Bold solid lines indicate the predicted attack rates as if there is no treatment administered to contacts. Solid lines with crosses show the
redicted attack rate of interventions based on PCR diagnostic tests. Dashed lines indicate predicted attack rates of RIDT based interventions, with RIDT detection ratios
arying from 10% (higher attack rates) to 100% (lower attack rates), increasing in steps of 10%. These are respectively presented from higher to lower attack rates for any
iven  reproduction number value, in the same way as in Fig. 6.
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iscussion

We  showed that using RIDTs in place of PCR-diagnosis poten-
ially leads to an equally or more effective intervention even with
ower sensitivities, depending on the effectiveness of PEP treat-

ent. The most favourable situation for a PCR-diagnosis based
ntervention is the case that PEP treatment is 100% effective, regard-
ess of when it is administered. In this situation, we  find that
mploying a bedside RIDT based intervention requires a ≥60%
etection ratio and a laboratory RIDT based intervention a ≥70%
etection ratio for achieving the same results. These results do not
nly manifest in the final attack rates, but also in the attack rates at
ny moment during the outbreak (see Appendix A). In a more real-
stic scenario where PEP treatment is less effective if applied later,
ven lower RIDT detection ratios are sufficient to match perfor-
ance of a PCR based intervention. A 60% detection ratio is already
ithin the range measured for existing RIDTs [e.g., Balish et al.,

009, Jernigan et al., 2011]. Therefore our analysis suggests that for
he 2009 H1N1 outbreak, the use of an existing RIDT at the moment
f sample collection would have been preferable over using PCR
iagnostic tests for implementing interventions.

Besides attack rates, there are other ways for comparing the per-
ormance of interventions which may  be more directly applicable
rom a logistic point of view, such as reduction of number of peo-
le in the contact tracing system, reduction of number of people
eeding treatment, and reduction of (peak) incidence. However,
rovided that a particular intervention when compared to another
eeps the prevalence lower at any given moment during the out-
reak, we expect that everything that scales in a per-case manner

s also kept at lower numbers.
Our results show that given two particular interventions, the

ne leading to a lower attack rate does so for all R0 value in the
ange we considered, except for when R0 is so small that both inter-
entions can achieve outbreak control. Moreover, we show that
ny particular intervention reduces the reproduction number by a
actor which does not depend on R0. This indicates that the trade
ff between speed and coverage does not depend on the magni-
ude (i.e., R0) but rather on the shape of the average individual
eproduction density (�(�)) and of the infection-age distribution
f intervention implementation. The distribution in time of inter-
ention implementation on contacts depends on when during the
nfection diagnostic samples are collected and on the duration of
he various delays until having a diagnostic test result. Information
n those variables can be directly collected. Observing the shape of
he individual reproduction density is more difficult as generation
nterval distributions are required (Wallinga and Lipsitch, 2007).
eneration intervals indicate the time between infection of the pri-
ary case to infection of secondary cases and their distributions

re difficult to observe directly. However, observing serial inter-
al distributions (time between symptom onset of primary case to
ymptom onset of secondary cases) is possible and these can be
sed to estimate generation intervals and, therefore, the distribu-
ion of the individual reproduction density [e.g., Klinkenberg and
ishiura, 2011].

Considering that RIDT sensitivity depends on the viral load of
he tested subject at the moment of sampling, the proportion of
etected cases may  vary and differ from the measured sensitiv-

ty. If testing takes place during infectious stages with high viral
oad, the 60% bedside RIDT detection ratio necessary for match-
ng the performance of a PCR-diagnosis based intervention could
e achieved already with a test of less than 40% sensitivity. For a

aboratory RIDT (70%) the same holds for less than 50% sensitivity

Fig. 4). This suggests that had we used RIDTs existing at the time of
nset of the novel influenza A (H1N1) epidemic as diagnostic tests
he impact of prophylactic treatment of contacts would have been
qual or even higher than when using PCR tests. In addition, high
pidemics 8 (2014) 28–40

viral load levels are associated with higher infectivity. Thus, testing
at the moment of higher viral loads not only increases the prob-
ability of getting a positive result but also intervening when they
have a higher transmission potential, thereby making RIDT-based
interventions even more effective.

In our analysis we  assume an intervention with 100% coverage,
so neither under-reporting, non-compliance, missing contacts, nor
the possibility of asymptomatic cases are considered. In case the
intervention coverage is not 100%, both RIDT and PCR-diagnosis
based interventions are less effective in reducing attack rates of an
epidemic as both would be applied only to a fraction of the infected
population. Our findings on which intervention would perform bet-
ter than the other remain valid for that subpopulation and therefore
generalise to the total population, but with smaller differences in
performance (e.g., Appendix B).

Our analysis includes individual heterogeneity in Rj and RI,j , as
a consequence of the stochasticity in the duration of the various
delays in the transmission and intervention time-lines. However,
we have not carried out simulations including more than random
heterogeneity, such as super-spreading events. The later can play
a significant role in the early stages of an outbreak (Lloyd-Smith
et al., 2005), which is when case-based interventions are likely to be
implemented. For example, super-spreading events could render
interventions based on low sensitivity diagnosis tests less effec-
tive, as the possibility of missing these events (which are few) is
increased.

It has been proposed that interventions including anti-viral
treatment may  promote the emergence of a drug resistant virus
strain due to selective pressure exerted by the number of people
treated with anti-viral drugs (Lipsitch et al., 2007). Considering this
into our analysis would favour the decision of using RIDT-based
interventions as these can be equally as effective as PCR-based
interventions while fewer people receive anti-viral treatment.

Conclusion

The concept of individual reproduction density proved useful for
analysing the impact of interventions targeted at high risk individ-
uals during epidemic outbreaks when a trade off between speed
and coverage is at play. We  find that using a bedside RIDT with
60% detection ratio or a laboratory RIDT with 70% detection ratio
is already sufficient to match the performance of the best PCR-
diagnosis based interventions. Even lower RIDT detection ratios
are sufficient to match the performance of PCR-diagnosis based
interventions if post exposure prophylaxis is not 100% effective.
Employing the method described here provides insight in relative
impact of interventions. In combination with data collected during
outbreaks such as serial intervals and viral load distributions the
results may  be applied to support policy making decisions in the
future.

Appendix A. Attack rates comparison at different time
points during the outbreak

In the interest of public health authorities, we present our
results on how the various modelled interventions based on bed-
side RIDTs would help slowing down ongoing outbreaks, and how
they compare to PCR-based interventions. Figs. A.9–A.13 show
attack rate comparisons as observed respectively at 30, 60, 90, 120
and 180 days after the beginning of the outbreak, for the same R0
values considered in Fig. 6. Whether any intervention performs bet-

ter than another appear independent of R0 in each figure, in a similar
way as in Fig. 6. Only in Fig. A.9 results for a better performing
intervention do not consistently remain better for different values
of R0 because of enhancement of stochastic effects due to smaller
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Fig. A.9. Attack rate observed 30 days after outbreak has begun as function of reproduction number. Each panel indicates its corresponding scenario and efficiency of the
PEP  treatment provided to infected contacts. Bold solid lines indicate the predicted attack rates as if there is no treatment administered to contacts. Solid lines with crosses
show  the predicted attack rate of interventions based on PCR diagnostic tests. Dashed lines indicate predicted attack rates of bedside RIDT based interventions, with RIDT
detection ratios varying from 10% (higher attack rates) to 100% (lower attack rates), increasing in steps of 10%. These are respectively presented from higher to lower attack
rates  for any given reproduction number value, in the same way as in Fig. 6.

Fig. A.10. Similar to Fig. A.9, but with attack rates observed 60 days after outbreaks have begun.
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Fig. A.11. Similar to Fig. A.9, but with attack rates observed 90 days after outbreaks have begun.

Fig. A.12. Similar to Fig. A.9, but with attack rates observed 120 days after outbreaks have begun.
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Fig. A.13. Similar to Fig. A.9, but with attack rates observed 180 days after outbreaks have begun.

Fig. B.14. Comparison of final attack rate as function of reproduction number considering interventions based on RIDTs performed at the bedside and interventions based on
PCR-diagnosis (performed in the laboratory). Bold solid lines indicate the predicted attack rates as if there is no treatment administered to contacts. Solid lines with crosses
show  the predicted attack rate of interventions based on PCR diagnostic tests. Dashed lines indicate predicted attack rates of RIDT based interventions, with RIDT detection
ratios  as indicated inside each panel.
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ing:  paradigm shift in influenza diagnosis. J. Clin. Microbiol. 47 (9), 3055–3056,
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umbers. In general, any intervention that has a better performance
educing the outbreak final size will also perform better by further
educing the number of infections at any point in time during the
utbreak.

ppendix B. Attack rates comparison assuming lower
verall coverage

In practice, conditions are far from ideal to implement case-
ased interventions with high coverage. Overall coverage of any

ntervention is reduced by many factors such as the sensitivity
f the gold standard diagnostic method, impossibility of tracing
f all possible contacts, non-compliance to take antiviral drugs,
nder-reporting, among others. All these factors will add up in

 multiplicative mannerto reduce the proportion of the popula-
ion which can be reached by a contact-based intervention. Here
e present our results by assuming that the contact-based inter-

ention is applied on 50% of the population, assuming that PEP
fficiency is 100% independent of the infection-age at which pro-
hylaxis is administered. The attack rate of all interventions is

arger in comparison to the case considering 100% overall inter-
ention coverage in the manuscript (except for the case when there
s no PEP administered). However, when comparing interventions
mong each other we see that an intervention based on a bed-
ide RIDT with 60% sensitivity has a performance comparable to
n intervention based on PCR-diagnosis, just as in the case consid-
ring 100% overall intervention coverage. This is expected because
IDT sensitivities are measured relative to the PCR method. There-

ore, the coverage of both RIDT and PCR based interventions are
educed in the same proportion, maintaining their relative perfor-
ance regarding which of the interventions leads to lower attack

ate.
Fig. B.14.
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