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Using the theory of measures of noncompactness, we prove a few existence
theorems for some quadratic integral equations. The class of quadratic integral
equations considered below contains as a special case numerous integral equations
encountered in the theories of radiative transfer and neutron transport, and in the
kinetic theory of gases. In particular, the well-known Chandrasekhar integral
equation also belongs to this class. Q 1998 Academic Press

1. INTRODUCTION

In the theory of radiative transfer, one can encounter the following
quadratic integral equation:

w sŽ .1
x t s 1 q tx t x s ds, 1Ž . Ž . Ž . Ž .H t q s0

w xwhere w is a given continuous function defined on the interval 0, 1 and x
is an unknown function. This equation also plays an important role in the
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Ž wtheory of neutron transport and in the kinetic theory of gases cf. 5, 7, 8,
x .11 and references therein .

Ž .Equations of type 1 and some of their generalizations were considered
w xin several papers 2, 3, 6, 8, 9, 12, 13 . In those papers the authors proved

Ž . Ž .that 1 or more general equations is solvable in some classes of Banach
spaces. Some other properties, such as uniqueness, location of solutions,
and convergence of successive approximations, were also studied in the
mentioned papers.

w xRecently I. Argyros 3 investigated a class of quadratic equations of type
Ž .1 with a nonlinear perturbation. Using the theory of measures of non-
compactness, he proved that those equations have solutions in some
Banach function algebras.

w xUnfortunately, the investigations of the paper 3 contain several mis-
prints and mistakes and are unclear in a few places. Moreover, some of the

w xassumptions made in 3 seem to be a bit artificial.
The aim of this paper is to improve, clarify, and generalize some results

w xobtained in the mentioned paper 3 .
We will also apply the theory of measures of noncompactness, but we

restrict ourselves to the space of continuous functions on an interval. This
is caused by the fact that this space seems to be sufficiently general for the
study of the equations in question. Nevertheless, we review the possibility
of studying quadratic integral equations with a perturbation in some
Banach function algebras.

The results obtained below generalize several obtained in the papers
quoted above.

2. MEASURES OF NONCOMPACTNESS AND
FIXED-POINT THEOREMS

Ž 5 5.Let E, ? be a given Banach space and let M denote the family ofE
Ž .all nonempty and bounded subsets of E. By the symbol B x, r we will

denote the closed ball centered at x and with radius r.
The function x defined on the family M byE

� 4x X s inf « ) 0: X admits a finite «-net in EŽ .

is called the Hausdorff measure of noncompactness. In the literature there
exist several other definitions of the notion of a measure of noncompact-

Ž w x .ness see, e.g., 1, 4 , for example . Nevertheless, the Hausdorff measure of
noncompactness seems to be the most important and convenient in appli-
cations. This is caused by the fact that in some Banach spaces it is possible
to express this measure with the help of handy formulas.
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w xFor example, let C s C 0, 1 be the Banach space consisting of all real
w xcontinuous functions defined on the interval 0, 1 and endowed with the

maximum norm.
w xThen it may be shown 4 that for any X g M the following formulaC

holds:
1x X s v X ,Ž . Ž .02

Ž . � � Ž . 44 Ž .where v X s lim sup v x, « : x g X and v x, « denotes the0 « ª 0
modulus of continuity of the function x, i.e.,

< < < <w xv x , « s sup x t y x s : t , s g a, b , t y s F « .� 4Ž . Ž . Ž .

For the properties of measures of noncompactness, we refer to the
w xmonographs 1, 4 .

w xNow we recall the fixed-point theorem of Darbo 10 , which enables us
to prove the solvability of several operator-functional equations considered
in nonlinear functional analysis.

w xTo quote this theorem, we need the following definition from 4 .

DEFINITION. Let M be a nonempty subset of a Banach space E, and
let T : M ª E be a continuous operator that transforms bounded sets

Žonto bounded ones. We will say that T satisfies the Darbo condition with
.a constant k G 0 if for any bounded subset X of M, we have

x T X F kx X .Ž . Ž .Ž .

ŽIn the case k - 1, the operator T is said to be a contraction with respect
.to x .

w xTHEOREM 1 10 . Let Q be a nonempty bounded closed con¨ex subset of
E and let T : Q ª Q be a contraction with respect to x . Then T has at least
one fixed point in the set Q.

Now we are going to prove a theorem that allows us to indicate a large
class of operators satisfying the Darbo condition in the case of Banach

5 5algebras. So, let us assume that E is a Banach algebra with the norm ?
and the zero element u .

THEOREM 2. Let M be a nonempty bounded subset of a Banach algebra
E. Assume that T : M ª E satisfies the Darbo condition with a constant k

Žand P: M ª E is completely continuous operator i.e., it is continuous and
Ž . .the set P M is relatï ely compact . Then the operator S s PT satisfies the

w 5 Ž .5 xDarbo condition with the constant kb, where b s sup P x : x g M - `.

Ž .Proof. Fix an arbitrary nonempty subset X of M. Let x X s r.
Choose arbitrarily « ) 0. Then there exists a finite collection of points
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x , x , . . . , x g E such that1 2 n

n

X ; B x , r q « .Ž .D i
is1

Ž . Ž . Ž .Furthermore, let us denote Y s P X ? T X . Since P X is compact,
there exist points z , z , . . . , z g E such that1 2 m

m

P X ; B z , « .Ž . Ž .D i
is1

Ž Ž .. Ž .In view of the assumption x T X F kx X s kr, we can find a finite
� 4set u , u , . . . , u ; E such that1 2 k

k

T X ; B u , kr q « .Ž . Ž .D j
js1

Then we have

m k

Y s P X T X ; B z , « B u , kr q «Ž . Ž . Ž . Ž .D Di jž / ž /is1 js1

m k

; B z , « B u , kr q « .Ž . Ž .D D i j
is1 js1

� 4 � 4Now, for fixed i g 1, 2, . . . , m and j g 1, 2, . . . , k let us consider the
set

A s B z , « ? B u , kr q « .Ž . Ž .i j i j

Obviously, z u g A .i j i j
Ž .Choose arbitrarily ¨ g A l Y. Then ¨ s xy, where x g B z , « li j i

Ž . Ž . Ž .P X and y g B u , kr q « l T X . Hence we getj

5 5 5 5 5 5 5 5¨ y z u s xy y z u F xy y xu q xu y z ui j i j j j i j

5 5 5 5 5 5 5 5 5 5 5 5F x ? y y u q u ? x y z F x kr q « q u ? « .Ž .j j i j

2Ž .

On the other hand, by virtue of the assumption, we have

5 5x F b. 3Ž .
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�Moreover, without loss of generality, we can assume that u : j sj
4 Ž Ž . . Ž .1, 2, . . . , k ; B T X , kr q « , where the symbol B ZZ, t stands for the

‘‘ball’’ centered at the set ZZ and with radius t. Hence we infer that the
constant L, defined as

5 5L s sup w : w g B T X , kr q « ,� 4Ž .Ž .

is finite.
Ž . Ž .Now, taking into account the above assertion and 2 and 3 , we infer

that

5 5xy y z u F b kr q « q « L.Ž .i j

Thus, keeping in mind the arbitrariness of « , we deduce that

m k

x Y s x P X T X F x A l YŽ . Ž . Ž .Ž . D D i jž /is1 js1

s max x A l Y : i s 1, 2, . . . , m; j s 1, 2, . . . , k� 4Ž .i j

F bkr s bkx X ,Ž .

which completes the proof.
w xObserve that the above theorem generalizes Theorem 1 from 3 . More-

over, based on this theorem, we conclude the following fixed-point
theorem.

THEOREM 3. Let Q be a nonempty bounded closed con¨ex subset of a
Banach algebra E and S s PT : Q ª Q, where P: Q ª E is a completely
continuous operator and T : Q ª E satisfies the Darbo condition with a

Ž �5 Ž .5 4.constant k. If bk - 1 where b s sup P x : x g Q , then S has a fixed
point in the set Q.

3. EXISTENCE THEOREMS

In this section we shall deal with the quadratic integral equation of the
form

1
x t s 1 q Tx t k t , s w s x s ds, 4Ž . Ž . Ž . Ž . Ž . Ž . Ž .H

0

w xwhere t g I s 0, 1 and T is an operator to be described below.
Ž . Ž . Ž .Notice that Eq. 1 is a particular case of Eq. 4 cf. Example 1 .
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Ž .In what follows we shall discuss Eq. 4 , assuming that the following
hypotheses are satisfied:

Ž . �Ž .4i k: I = I _ 0, 0 ª R is continuous, and for each t g I there
exists the integral

1
< <k t , s ds.Ž .H

0

Ž . Ž .ii w g C s C I .
Ž .iii The operator T : C ª C is continuous and satisfies the Darbo

condition with a constant a.
Ž . Ž w ..iv There exists a bounded function w: I ª R R s 0, ` withq q

Ž . Ž .qthe property w 0 s lim w t s 0 and such thatt ª 0

1
< < < <k t , s y k t , s ds F w t y tŽ . Ž . Ž .H 2 1 2 1

0

for all t , t g I.1 2

Ž . Ž .Remark. Observe that from assumptions i and iv it follows that

1 1 1
< < < < < <k t , s ds F k t , s y k 0, s ds q k 0, s dsŽ . Ž . Ž . Ž .H H H

0 0 0

1
< <F w t q k 0, s ds.Ž . Ž .H

0

This implies that q - `, where

1
< <q s sup k t , s ds: t g I .Ž .H½ 5

0

To ensure the existence of a ball being invariant under the operator
Ž .determined by the right-hand side of Eq. 4 , we further assume the

following condition:

Ž .v There exists a constant b such that

5 5 5 5T x F b xŽ .
for each x g C.

Finally, let us denote by Q the quantity

1
< 5 <Q s sup k t , s w s ds: t g I .Ž . Ž .H½ 5

0

5 5Since Q F q w , this quantity is finite.
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Then we can formulate our main existence result.

Ž . Ž .THEOREM 4. Let the assumptions i ] ¨ be satisfied and bQ - 1r4.
Moreo¨er, assume that either

18 a - 2b
or

28 a G 2b and a y b G a2 Q.

Ž . Ž .Then Eq. 4 is sol̈ able in the space C s C I .

Proof. For an arbitrary x g C let us denote by Ax the function defined
Ž .by the right-hand side of Eq. 4 , i.e.,

1
Ax t s 1 q Tx t k t , s w s x s ds, t g I.Ž . Ž . Ž . Ž . Ž . Ž . Ž .H

0

Ž . Ž .In view of assumptions ii ] iv , we infer that Ax g C. Moreover, we have
1

< < < < < < < <Ax t F 1 q Tx t k t , s w s x s dsŽ . Ž . Ž . Ž . Ž . Ž . Ž .H
0

5 5 2F 1 q bQ x .
Ž .Since bQ - 1r4, it is easily seen that A transforms the ball B u , r into

itself for r F r F r , where0 1

1r2 1r2r s 1 y 1 y 4bQ r2bQ, r s 1 q 1 y 4bQ r2bQ.Ž . Ž .0 1

For further reasons, we assume that r s r .0
Ž .Next, let us take a nonempty subset X of the ball B u , r . Fix x g X.

Then, for arbitrarily chosen t , t g I, we have1 2

Ax t y Ax tŽ . Ž . Ž . Ž .2 1

1 1
F Tx t k t , s w s x s ds y Tx t k t , s w s x s dsŽ . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .H H2 2 1 1

0 0

1 1
F Tx t k t , s w s x s ds y Tx t k t , s w s x s dsŽ . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .H H2 2 2 1

0 0

1 1
q Tx t k t , s w s x s dsy Tx t k t , s w s x s dsŽ . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .H H2 1 1 1

0 0

1
< < < <F Tx t k t , s y k t , s w s x s dsŽ . Ž . Ž . Ž . Ž . Ž .H2 2 1

0

1
< < < < < <q Tx t y Tx t k t , s w s x s dsŽ . Ž . Ž . Ž . Ž . Ž . Ž .H2 1 1

0

5 5 2 5 5 < < < < 5 5F b x w w t y t q v Tx , t y t Q xŽ . Ž .2 1 2 1

5 5 2 < < < <F b w r w t y t q rQv Tx , t y t .Ž . Ž .2 1 2 1
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Ž .Hence, in view of assumption iv , we get

v AX F rQv TX .Ž . Ž .0 0

Consequently,

x AX F rQ x TX F rQax XŽ . Ž . Ž .

Ž .cf. Section 2 .
Observe that the assumptions of our theorem yield rQa s r Qa - 1,0

Ž .which implies that A is a contraction with respect to x on the ball B u , r .
Ž .Thus, applying Theorem 1, we infer that there exists a function x g B u , r

Ž .that is a solution of Eq. 4 . This completes the proof.
Now we provide a few examples illustrating the applicability of Theo-

rem 4.

Ž .EXAMPLE 1. Consider Eq. 1 , which we write here in the following
form:

t1
x t s 1 q x t w s x s ds.Ž . Ž . Ž . Ž .H t q s0

Ž . Ž .Obviously this equation is a particular case of Eq. 1 , where k t, s s
Ž . Ž .tr t q s and T x s x.
It is easy to check that in this situation the assumptions of Theorem 4

are satisfies for a s 1 and b s 1. Thus case 18 of Theorem 4 is fulfilled.
Moreover, it may be verified that

< <t w sŽ .1
5 5Q s sup ds : t g I F w ln 2.H½ 5t q s0

Thus, to ensure that the inequality bQ s Q - 1r4 will be valid, it is
Ž . 5 5 Ž .enough to take w g C I such that w - 1r4 ln 2.

w xThe above calculations show that a result from 3 is an easy corollary of
Theorem 4.

EXAMPLE 2. Let us take the following integral equation:

t 2 x t 1Ž . 1
x t s 1 q exp y1r t q s w s x s ds. 5Ž . Ž . Ž . Ž . Ž .Ž .H 2< <1 q x tŽ . 0 t q sŽ .

Ž .Put according to Theorem 4

tx t tŽ .
Tx t s , k t , s s exp y1r t q s .Ž . Ž . Ž . Ž .Ž .2< <1 q x tŽ . t q sŽ .
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Then it is easy to check that the assumptions of Theorem 4 are satisfied
Ž .for b s 1 and a s 2. Indeed, taking an arbitrary function x g C I , we

have

t x t t x tŽ . Ž .2 2 1 1
< <Tx t y Tx t s yŽ . Ž . Ž . Ž .2 1 < < < <1 q x t 1 q x tŽ . Ž .2 1

< < < <F t y t q 2 x t y x t .Ž . Ž .2 1 2 1

This yields,

v Tx , « F « q 2v x , « ,Ž . Ž .

and consequently,

v TX F 2v X ,Ž . Ž .0 0

for any bounded subset X of the space C.
Now observe that in view of a s 2 G 2b s 2, case 28 of Theorem 4

comes into play. Thus the function w g C has to be taken in such a way
that bQ s Q - 1r4. This implies immediately that the second part of case
28, i.e., a y b G a2 Q, is satisfied.

Ž .Let us notice that the existence result for Eq. 5 deduced with the help
w xof Theorem 4 cannot be obtained as a consequence of results given in 3 .

4. FINAL REMARKS

In this section we summarize the paper with a few comments and
remarks.

At first let us observe that the existence result contained in Theorem 4
can be obtained with help of the fixed-point principle formulated in

w xTheorem 3. A similar approach has been realized in paper 3 , but it seems
that the method determined by Theorem 1 is easier and more natural. On
the other hand, it is clear that this method is based on the fact that the

Ž .space C I is a Banach algebra.
Second, let us mention that we can investigate equations with a more

Ž . Žcomplicated form than Eq. 4 . For example, the method of Theorem 4 or
.Theorem 3 can be adopted for the study of the Chandrasekhar integral

equation with nonlinear perturbation of the form

t1 1
x t s 1 q x t w s x s ds q F t , s, x t , x s ds. 6Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .H Ht q s0 0

w xThis equation was considered in 6 , for example.
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Ž .Based on Example 1, we will assume that w g C s C I and that w
satisfies the following condition:

Ž . 5 5a w F 1r4 ln 2.
Furthermore, we assume the following hypotheses:

Ž . 2 2b F: I = R ª R is a continuous function such that
< < < <F t , s, x , u y F t , s, y , u F k x y yŽ . Ž .

and
< < < <F t , s, 0, u F m u ,Ž .

where k and m are some constants,
Ž . Ž .2g k q m - 1 and 1 y k y m G 1rln 2.

Under the above assumptions, we can easily prove the theorem on the
Ž .existence of solutions of Eq. 6 . We omit the details.

Ž .Let us pay attention to the fact that the existence result for Eq. 6 was
w xproved in paper 6 under more complicated and more restrictive assump-

tions.
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