Estela Medrano was killed in a car accident on 30 August 2010 while she was returning from a Gordon Research Conference on the biology of aging in Switzerland. At the conference, she had chaired a session on cellular senescence and DNA modifications and damage. She was driving home from the airport with her husband, Jorge, and they were close to their home when they were struck by another car. Her husband, who was critically injured in the accident, and her four children—Alejandro, Federico, Mariano, and Fernando—survive her.

Estela was born in Argentina. She pursued her undergraduate education in organic chemistry at the College of Sciences at the University of Buenos Aires and her graduate degree at the same institution, in Jose Mordoh's laboratory. Her postdoctoral training, supported by a Fogarty International Fellowship from the National Institutes of Health, was at the Dana Farber Cancer Institute, in the laboratory of Arthur Pardee. At the time of her death, Estela was a professor in the Department of Molecular and Cellular Biology at Baylor College of Medicine, and she had recently been named the Robert C. Fyfe Professor at Baylor's Huffington Center on Aging.

Estela's career spanned 28 years, starting with an assistant professorship at the College of Sciences at the University of Buenos Aires, continuing with her tenure at the University of Cincinnati from 1988 to 1995, and ending with her professorship at Baylor. Her research was strongly focused on cellular proliferation, cellular senescence, and aging, with a particular emphasis on melanocytes and melanoma, although she also made valuable contributions to the area of breast cancer research. No one person can claim credit for a scientific field, but it is fair to say that in the area of melanocyte senescence, Estela was a true pioneer. Her work on melanocyte senescence started at the University of Cincinnati with simple, yet profound, observations on the growth of melanocytes from adults and vitiligo patients, and in 1999 she published work that showed that activation of the cAMP pathway correlates with premature senescence of human melanocytes. She went on to define the role of cyclins, cyclin-dependent kinases, and cyclin-dependent kinase inhibitors in the senescence of melanocytes, and she was one of the first investigators to recognize the importance of epigenetic changes in the control of cellular and organismal aging. Her work on the role of histone acetylases and deacetylases in melanocyte senescence stimulated strong interest within the scientific community at large. While investigating senescence in melanocytes, she identified a critical role for Ski protein in melanoma progression, and at the time of her death her work had moved into highly sophisticated analyses of chromatin remodeling in senescence, tissue aging, and cancer. She was immensely curious, tackling scientific questions with rigor and creativity, and her career was on a strong upward trajectory at the time of her death.

Estela had a unique combination of determination, stamina, creativity, and love of science that resulted in seminal observations in the field of cellular aging and the area of melanocytes and melanoma. Her accomplishments are
all the more remarkable because she did this while raising four children, mentoring numerous graduate students and postdoctoral fellows, and chairing scientific sessions around the world. She performed a valuable service to the *Journal of Investigative Dermatology* by serving as Associate Editor. Estela routinely put the needs of others before her own. Judith Campisi, who was a postdoctoral fellow with Estela, recounts, “I had a cold and long cell cycle experiments to do, and—as I sniffled my way through the experiments—she chided me about trying to do too much. This from a woman who was enormously productive in the lab and raising (then) three small children! She would rise early each morning to prepare breakfast and lunches for the children for school, rush to work, work intensely all day, then rush home to cook for her family and do her reading and writing, after washing up and putting the kids to bed. And yet she was always kind and patient, and accepting of others.”

Estela was singularly empathetic; she would listen patiently to your problems, whatever they were, and share her own problems with you. At the end of the conversation, you felt better—that is a true gift. Estela’s life was cut short in her prime. But if the number of people a person has touched is a measure of life, Estela’s life was very long indeed. She is missed.

Glynis Scott
Department of Dermatology, University of Rochester Medical School, Rochester, New York, USA