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Abstract 

The Kneser graph K(m, n) has the n-subsets of {1, 2 . . . . .  m} as its vertices, two such vertices 
being adjacent whenever they are disjoint. The kth multichromatic number of the graph G is the 
least integer t such that the vertices of G can be assigned k-subsets of {1, 2,... ,t}, so that 
adjacent vertices of G receive disjoint sets. The values of xk(K(m, n)) are computed for n = 2, 
3 and bounded for n/> 4. © 1998 Elsevier Science B.V. All rights reserved 
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1. Introduction 

For  any positive integers t and k, a k-tuple coloring of a graph G with t colors assigns 

to each vertex of G, a k-subset of I, = {1, 2 . . . . .  t} so that adjacent vertices receive 

disjoint sets. Equivalently, such a coloring is a family {Cz}~= 1 of independent sets of 

vertices of G such that each vertex belongs to k of the Cz's. The kth (multi)chromatic 
number of G, denoted by Zk(G), is the least integer t such that G has a k-tuple coloring 
with t colors. These colorings were first studied in the early 1970s and the reader is 
referred to [10] for more information. 

For  positive integers m ~> 2n, the Kneser graph K(m, n) has all the n-subsets of / , ,  as 
its vertices, two such vertices being adjacent whenever they are disjoint as sets. It is 

natural to ask for the kth chromatic number  of the Kneser graph K(m, n). The 
following conjecture was made in [11] and also discussed in I-3, 6]. 

Conjecture 1. If k = qn - r where q >/1 and 0 ~< r < n, then Zk(K(m, n)) = qm -- 2r. 
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When k = 1, this conjecture asserts that z(K(m, n)) = xl(K(m, n)) = m - 2n + 2 
which is equivalent to the Kneser conjecture proved in [1, 9]. When k = qn, Conjec- 
ture 1 asserts that Xqn(K(m, n)) = qm. This is proved in the corollary to [11, Theorem 
9]. The following proposition was proved in [11]. 

Proposition 2. Let k be any positive integer and let G be any graph with at least one 
edge. Then 

Zk+I(G) >>- 2 + Zk(G). 

It follows from this proposition that for each K(m, n) the conjecture is valid for 
k = 1, 2, . . . ,  n. The conjecture has also been proved for K(2n + 1, n) for all k and n 
[11, Theorem 7], and for k = 4, n = 3 and m 1> 6 in [7]. The conjecture is trivially 
true for n = 1, and it will be proved below that it is also true for n = 2, 3. It was 
shown in [4] that for each n t> 2, there exists a constant c = c(n) such that 
Zn+ l(K(m, n)) >>. 2m - c for all sufficiently large m. This result will also be sharpened 
below. 

2. The main result 

A set of vertices of K(m, n) is independent if and only if its vertices are pairwise 
nondisjoint as sets. Such a set is said to be of type 1 if the intersection of all of its 
vertices is nonempty, and of type 2 otherwise. If C is a type 1 independent set of 
vertices of K(m, n) and i is an element of each of its vertices, then C will be said to be 
anchored at i. The following facts are well known: 

Erd6s et al. [5]. Every independent set of vertices of K (m, n) contains at most ( ~  ~ ) 
vertices. 

Hilton and Milner [8]. Every type 2 independent set of vertices of K(m, n) contains 
at most 

1 + ( n m - - ~ ) -  ( m n n  1 1  ) 

vertices. 

The proof of Proposition 4 below relies on the following technical lemma. 

Lemma 3. Let m and n denote positive integers and set 

Then 

g(m, n) < 0 for n = 1, 2, 3 and m > 2n, 

g(m,  n) < n 2 - -  3n + 4 for n >1 4 and m > 2n. 
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Proof.  Elementary computa t ions  can be used to show that  g(n) < 0 for n -- 1, 2, 3. As 

for n ~> 4, it follows from well-known inequalities (see [2, p. 5]) that  for m > 2n, 

(m 

m - n  1 >11 
n ( n -  1) 

m - n - - l "  

Consequently,  

m n+l . . . . .  ,m 1](:  

m - 2 n + 2  m 
- m - n - 1  n ( n - 1 ) - - - n  <nE-3n+4'  

the last inequality being verifiable by the methods of elementary calculus. [] 

Proposition 4. For any positive integers m >1 2n, k, and q, 

Z2q-l(K(m, 2)) = qm - 2, X2~(K(m, 2)) = qm, 

)(,3q-a(K(m, 3)) = qm - 4, X3q- l(K(m,3)) = qm - 2, X3q(K(m, 3)) = qm 

qm -- 2r >~ Zk(K(m, n)) >1 qm -- 2r - ( n  2 - 3n + 4), 

where k = qn - r, 0 <~ r < n. 

Proof. As noted above, )~q,(K(m, n)) = qm was already proved in [11]. It therefore 

follows from Proposi t ion  2 that )~q,_,(K(m, n)) <~ qm - 2r. Since K(2n,  n) is bipartite it 

follows that  )~k(K(2n, n)) = 2k for all k. Thus, the proposi t ion holds for m = 2n, and we 

now assume that  m > 2n. Set 

f (n) --- O f o r n = l , 2 , 3 ,  

f ( n )  = n 2 - -  3n + 4 for n ~> 4. 

It follows from Proposi t ion  2 that  it suffices to prove the present proposi t ion for the 

case r = n - 1. Fix n and suppose by the way of  contradict ion that  m is the least 

positive integer that  is at least 2n + 1 and for which there exist a positive integer 
q such that  

Zqn-( , -1)(K(m,  n)) <~ qm - 2(n - 1) - f ( n )  - 1. 

Set A = qm - 2(n -- 1) - f ( n )  -- 1 and let {C~}A=I be a family of  independent  sets 

such that  every vertex of K(m,  n) belongs to qn - (n - 1) of the Cx's. 
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Case 1: There exists an integer ie{1, 2, ... ,m} such that at least q of the Ca's are 
anchored at i. It may be assumed, without loss of generality, that i = m and that for 

each 2 such that 

A - q < 2 < < . A ,  

Ca is anchored at m. Let M denote the set of vertices of K(m, n) that contain m and set 
Ca C a - M f o r e a c h a .  Then - A-q = {Ca}k= 1 is a family of independent sets of vertices of 
K(m - 1, n) such that each vertex of K(m - 1, n) is contained in qn - (n - 1) of the 
~a's. It follows from the minimality of m that 

q(m - 1 ) -  2(n - 1) - f ( n )  <~ Zq.-( . -1)(K(m - 1, n)) 

<~ A - q = qm - 2 ( n -  1 ) - f ( n ) -  1 - q, 

which is impossible. 
Case 2: For  each integer i ~ { 1, 2 . . . . .  m} at most q - 1 of the Cz's are anchored at i. 

Since every type 1 Ca that contains the arbitrary vertex {il, i2 . . . . .  i,} of K(m, n) must 
be anchored at some it, j e { 1, 2 . . . . .  n}, it follows that each such vertex is contained in 
at most n(q - 1) type 1 Ca's. Hence, each vertex is contained in at least one Ca of 
type 2. Thus the type 2 Ca's constitute a (1-tuple) coloring of K(m, n). Consequently, if 

d denotes the number of type 2 Ca's, then 

d >~ z(K(m,  n) = m - 2n + 2. (1) 

For  each 2, set da , -  1 = ( . - 1  ) - I Cal.  It follows from the Erd6s -Ko-Rado  theorem that 
d~ ~> 0. Since {Ca}~= 1 is a [qn - (n - 1)]-tuple coloring of K(m, n), we have 

(m) 
da = A - ICla = A - [qn - (n - 1)] 

4= i  a = l  

= ( n m S ~ ) ( m _ 2 n + l  __mn - - f (n ) ) "  (2) 

By the Hilton-Milner theorem da/> (m~-_,~ 1) _ 1 whenever Ca is of type 2 and so 

d I ( m - n - 1 ) _ l l < < ( m n ~ ) ( m _ 2 n + l  m f ( n ) )  
n - - 1  n 

Combining (1) and (3) we get 

[( ) l (m-l)  0 ( m - 2 n + 2 )  m - n - 1  - 1  ~< ( m - 2 n + l - - -  
n - 1  1 n 

o r  

(3) 

: n, .m2n+l . . . . .  m mn 2n+2'E(° n 1)nl 11(:::) -1 
It follows from the lemma that f (n )  < 0 for n = 1, 2, 3, and that f (n )  < n 2 - 3n + 4 
for n >i 4. In either case this contradicts the definition of f (n).  [] 
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3. Conclusions 

A homomorphism of the graph G into the graph H is a function f :  V(G) ~ V(H) that  

maps  adjacent vertices to adjacent vertices. It  is immediate that  

xn(G) <~ m if and only if there exists a homomorphism of G into K(m, n). 

In view of this, the computa t ion  of the n-tuple mult ichromatic  numbers  would resolve 

the issue of  just when there exists a h o m o m o r p h i s m  rl:K(s, t ) ~  K(m, n). Ref. [12] 

contains an application of such a homomorph i sm.  

A graph  G is said to be (k, t)-colorable if there exists a k-tuple coloring of  G with 

t colors. The computa t ion  of  the mult ichromatic  numbers  of the Kneser graphs would 

also provide an answer to the following question: 

For which ordered 4-tuples of integers (k, t, m, n) does (k, t)-colorability imply 
(m, n)-colorability? 

It may  be of interest to note that  K(m, 1), K(m, 2), K(m, 3) and K(2n + 1, n) were 

the only Kneser  graphs whose chromat ic  numbers  were known prior  to Lov/tsz's 

p roof  of  the Kneser  conjecture. They are also the only Kneser  graphs for which 

Conjecture l has been verified for all values of  k. 

Added in proof: The mult ichromatic  numbers  of K(m, 2) (i.e. case k = 2 of  

Proposi t ion  4) were computed  previously and independently by Claude Tardif. 

The au thor  is indebted to both Claude Tradif  and Sandi Klav~ar for reviving his 

interest in this topic. 
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