Note
 The multichromatic numbers of some Kneser graphs

Saul Stahl*
Department of Mathematics, University of Kansas, Lawrence, KS 66045-2142, USA

Received 4 December 1996; accepted 4 August 1997

Abstract

The Kneser graph $K(m, n)$ has the n-subsets of $\{1,2, \ldots, m\}$ as its vertices, two such vertices being adjacent whenever they are disjoint. The k th multichromatic number of the graph G is the least integer t such that the vertices of G can be assigned k-subsets of $\{1,2, \ldots, t\}$, so that adjacent vertices of G receive disjoint sets. The values of $\chi_{k}(K(m, n))$ are computed for $n=2$, 3 and bounded for $n \geqslant 4$. (C) 1998 Elsevier Science B.V. All rights reserved

Keywords: Graph; Kneser; multichromatic number

1. Introduction

For any positive integers t and k, a k-tuple coloring of a graph G with t colors assigns to each vertex of G, a k-subset of $I_{t}=\{1,2, \ldots, t\}$ so that adjacent vertices receive disjoint sets. Equivalently, such a coloring is a family $\left\{C_{\lambda}\right\}_{\lambda=1}^{t}$ of independent sets of vertices of G such that each vertex belongs to k of the C_{λ} 's. The k th (multi)chromatic number of G, denoted by $\chi_{k}(G)$, is the least integer t such that G has a k-tuple coloring with t colors. These colorings were first studied in the early 1970s and the reader is referred to [10] for more information.

For positive integers $m \geqslant 2 n$, the Kneser graph $K(m, n)$ has all the n-subsets of I_{m} as its vertices, two such vertices being adjacent whenever they are disjoint as sets. It is natural to ask for the k th chromatic number of the Kneser graph $K(m, n)$. The following conjecture was made in [11] and also discussed in [3, 6].

Conjecture 1. If $k=q n-r$ where $q \geqslant 1$ and $0 \leqslant r<n$, then $\chi_{k}(K(m, n))=q m-2 r$.

[^0]When $k=1$, this conjecture asserts that $\chi(K(m, n))=\chi_{1}(K(m, n))=m-2 n+2$ which is equivalent to the Kneser conjecture proved in $[1,9]$. When $k=q n$, Conjecture 1 asserts that $\chi_{q n}(K(m, n))=q m$. This is proved in the corollary to [11, Theorem $9]$. The following proposition was proved in [11].

Proposition 2. Let k be any positive integer and let G be any graph with at least one edge. Then

$$
\chi_{k+1}(G) \geqslant 2+\chi_{k}(G) .
$$

It follows from this proposition that for each $K(m, n)$ the conjecture is valid for $k=1,2, \ldots, n$. The conjecture has also been proved for $K(2 n+1, n)$ for all k and n [11, Theorem 7], and for $k=4, n=3$ and $m \geqslant 6$ in [7]. The conjecture is trivially true for $n=1$, and it will be proved below that it is also true for $n=2,3$. It was shown in [4] that for each $n \geqslant 2$, there exists a constant $c=c(n)$ such that $\chi_{n+1}(K(m, n)) \geqslant 2 m-c$ for all sufficiently large m. This result will also be sharpened below.

2. The main result

A set of vertices of $K(m, n)$ is independent if and only if its vertices are pairwise nondisjoint as sets. Such a set is said to be of type 1 if the intersection of all of its vertices is nonempty, and of type 2 otherwise. If C is a type 1 independent set of vertices of $K(m, n)$ and i is an element of each of its vertices, then C will be said to be anchored at i. The following facts are well known:

Erdős et al. [5]. Every independent set of vertices of $K(m, n)$ contains at most $\binom{m-1}{n-1}$ vertices.

Hilton and Milner [8]. Every type 2 independent set of vertices of $K(m, n)$ contains at most

$$
1+\binom{m-1}{n-1}-\binom{m-n-1}{n-1}
$$

vertices.
The proof of Proposition 4 below relies on the following technical lemma.
Lemma 3. Let m and n denote positive integers and set

$$
g(m, n)=m-2 n+1-\frac{m}{n}-(m-2 n+2)\left[\binom{m-n-1}{n-1}-1\right]\binom{m-1}{n-1}^{-1}
$$

Then

$$
\begin{array}{ll}
g(m, n)<0 & \text { for } n=1,2,3 \text { and } m>2 n, \\
g(m, n)<n^{2}-3 n+4 & \text { for } n \geqslant 4 \text { and } m>2 n .
\end{array}
$$

Proof. Elementary computations can be used to show that $g(n)<0$ for $n=1,2,3$. As for $n \geqslant 4$, it follows from well-known inequalities (see [2, p. 5]) that for $m>2 n$,

$$
\begin{aligned}
\binom{m-n-1}{n-1}\binom{m-1}{n-1}^{-1} & \geqslant\left(\frac{m-2 n}{m-n-1}\right)^{n} \\
& =\left(1-\frac{n-1}{m-n-1}\right)^{n} \geqslant 1-\frac{n(n-1)}{m-n-1} .
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
m & -2 \mathrm{n}+1-\frac{m}{n}-(m-2 n+2)\left[\binom{m-n-1}{n-1}-1\right]\binom{m-1}{n-1}^{-1} \\
& \leqslant m-2 n+2-\frac{m}{n}-(m-2 n+2)\left(1-\frac{n(n-1)}{m-n-1}\right) \\
& =\frac{m-2 n+2}{m-n-1} n(n-1)-\frac{m}{n}<n^{2}-3 n+4,
\end{aligned}
$$

the last inequality being verifiable by the methods of elementary calculus.
Proposition 4. For any positive integers $m \geqslant 2 n, k$, and q,

$$
\begin{aligned}
& \chi_{2 q-1}(K(m, 2))=q m-2, \quad \chi_{2 q}(K(m, 2))=q m, \\
& \chi_{3 q-2}(K(m, 3))=q m-4, \quad \chi_{3 q-1}(K(m, 3))=q m-2, \quad \chi_{3 q}(K(m, 3))=q m \\
& q m-2 r \geqslant \chi_{k}(K(m, n)) \geqslant q m-2 r-\left(n^{2}-3 n+4\right),
\end{aligned}
$$

where $k=q n-r, 0 \leqslant r<n$.
Proof. As noted above, $\chi_{q n}(K(m, n))=q m$ was already proved in [11]. It therefore follows from Proposition 2 that $\chi_{q n-r}(K(m, n)) \leqslant q m-2 r$. Since $K(2 n, n)$ is bipartite it follows that $\chi_{k}(K(2 n, n))=2 k$ for all k. Thus, the proposition holds for $m=2 n$, and we now assume that $m>2 n$. Set

$$
\begin{aligned}
& f(n)=0 \text { for } n=1,2,3, \\
& f(n)=n^{2}-3 n+4 \text { for } n \geqslant 4 .
\end{aligned}
$$

It follows from Proposition 2 that it suffices to prove the present proposition for the case $r=n-1$. Fix n and suppose by the way of contradiction that m is the least positive integer that is at least $2 n+1$ and for which there exist a positive integer q such that

$$
\chi_{q n-(n-1)}(K(m, n)) \leqslant q m-2(n-1)-f(n)-1 .
$$

Set $\Lambda=q m-2(n-1)-f(n)-1$ and let $\left\{C_{\lambda}\right\}_{\lambda=1}^{\lambda}$ be a family of independent sets such that every vertex of $K(m, n)$ belongs to $q n-(n-1)$ of the C_{λ} 's.

Case 1: There exists an integer $i \in\{1,2, \ldots, m\}$ such that at least q of the C_{λ} 's are anchored at i. It may be assumed, without loss of generality, that $i=m$ and that for each λ such that

$$
\Lambda-q<\lambda \leqslant \Lambda
$$

C_{λ} is anchored at m. Let M denote the set of vertices of $K(m, n)$ that contain m and set $\bar{C}_{\lambda}=C_{\lambda}-M$ for each λ. Then $\left\{\bar{C}_{\lambda}\right\}_{\lambda=1}^{\lambda-q}$ is a family of independent sets of vertices of $K(m-1, n)$ such that each vertex of $K(m-1, n)$ is contained in $q n-(n-1)$ of the $\overline{\mathrm{C}}_{\lambda}$'s. It follows from the minimality of m that

$$
\begin{aligned}
q(m-1)-2(n-1)-f(n) & \leqslant \chi_{q n-(n-1)}(K(m-1, n)) \\
& \leqslant \Lambda-q=q m-2(n-1)-f(n)-1-q
\end{aligned}
$$

which is impossible.
Case 2: For each integer $i \in\{1,2, \ldots, m\}$ at most $q-1$ of the C_{2} 's are anchored at i. Since every type $1 C_{\lambda}$ that contains the arbitrary vertex $\left\{i_{1}, i_{2}, \ldots, i_{n}\right\}$ of $K(m, n)$ must be anchored at some $i_{j}, j \in\{1,2, \ldots, n\}$, it follows that each such vertex is contained in at most $n(q-1)$ type $1 C_{\lambda}$'s. Hence, each vertex is contained in at least one C_{λ} of type 2 . Thus the type $2 C_{\lambda}$'s constitute a (1-tuple) coloring of $K(m, n)$. Consequently, if d denotes the number of type $2 C_{\lambda}$'s, then

$$
\begin{equation*}
d \geqslant \chi(K(m, n)=m-2 n+2 . \tag{1}
\end{equation*}
$$

For each λ, set $d_{\lambda}=\binom{m-1}{n-1}-\left|C_{\lambda}\right|$. It follows from the Erdős-Ko-Rado theorem that $d_{\lambda} \geqslant 0$. Since $\left\{C_{\lambda}\right\}_{\lambda=1}^{\lambda}$ is a $[q n-(n-1)]$-tuple coloring of $K(m, n)$, we have

$$
\begin{align*}
\sum_{\lambda=1}^{\Lambda} d_{\lambda} & =\Lambda\binom{m-1}{n-1}-\sum_{\lambda=1}^{\Lambda}|C|_{\lambda}=\Lambda\binom{m-1}{n-1}-[q n-(n-1)]\binom{m}{n} \\
& =\binom{m-1}{n-1}\left(m-2 n+1-\frac{m}{n}-f(n)\right) \tag{2}
\end{align*}
$$

By the Hilton-Milner theorem $d_{\lambda} \geqslant\binom{ m-n-1}{n-1}-1$ whenever C_{λ} is of type 2 and so

$$
\begin{equation*}
d\left[\binom{m-n-1}{n-1}-1\right] \leqslant\binom{ m-1}{n-1}\left(m-2 n+1-\frac{m}{n}-f(n)\right) \tag{3}
\end{equation*}
$$

Combining (1) and (3) we get

$$
(m-2 n+2)\left[\binom{m-n-1}{n-1}-1\right] \leqslant\binom{ m-1}{n-1}\left(m-2 n+1-\frac{m}{n}-f(n)\right)
$$

or

$$
f(n) \leqslant m-2 n+1-\frac{m}{n}-(m-2 n+2)\left[\binom{m-n-1}{n-1}-1\right]\binom{m-1}{n-1}^{-1}
$$

It follows from the lemma that $f(n)<0$ for $n=1,2,3$, and that $f(n)<n^{2}-3 n+4$ for $n \geqslant 4$. In either case this contradicts the definition of $f(n)$.

3. Conclusions

A homomorphism of the graph G into the graph H is a function $f: V(G) \rightarrow V(H)$ that maps adjacent vertices to adjacent vertices. It is immediate that

$$
\chi_{n}(G) \leqslant m \text { if and only if there exists a homomorphism of } G \text { into } K(m, n) .
$$

In view of this, the computation of the n-tuple multichromatic numbers would resolve the issue of just when there exists a homomorphism $\eta: K(s, t) \rightarrow K(m, n)$. Ref. [12] contains an application of such a homomorphism.

A graph G is said to be (k, t)-colorable if there exists a k-tuple coloring of G with t colors. The computation of the multichromatic numbers of the Kneser graphs would also provide an answer to the following question:

For which ordered 4 -tuples of integers (k, t, m, n) does (k, t)-colorability imply (m, n)-colorability?

It may be of interest to note that $K(m, 1), K(m, 2), K(m, 3)$ and $K(2 n+1, n)$ were the only Kneser graphs whose chromatic numbers were known prior to Lovász's proof of the Kneser conjecture. They are also the only Kneser graphs for which Conjecture 1 has been verified for all values of k.

Added in proof: The multichromatic numbers of $K(m, 2)$ (i.e. case $k=2$ of Proposition 4) were computed previously and independently by Claude Tardif. The author is indebted to both Claude Tradif and Sandi Klavzar for reviving his interest in this topic.

References

[1] I. Bárány, A short proof of Kneser's conjecture, J. Combin. Theory A 25 (1978) 325-326.
[2] B. Bollobás, Random Graphs, Academic Press, London, 1985.
[3] A.E. Brouwer, A. Schrijver, Uniform hypergraphs, in: A. Schrijver (Ed.), Packing and Covering in Combinatorics, Math. Centre Tracts No. 106, 1979, pp. 39-73.
[4] V. Chvátal, M. R. Garey, D.S. Johnson, Two results concerning multicoloring, Ann. Discrete Math. 2 (1978) 151-154.
[5] P. Erdős, C. Ko, R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford 22 (1961) 313-320.
[6] P. Frankl, Z. Füredi, Extremal problems concerning Kneser graphs, J. Combin. Theory B 40 (1986) 270-284.
[7] M.R. Garey, D.S. Johnson, The complexity of near optimal graph coloring, J. Assoc. Comput. Math. 23 (1976) 43-49.
[8] A.J.W. Hilton, E.C. Milner, Some intersection theorems for systems of finite sets, Quart. J. Math. Oxford 218 (1967) 369-384.
[9] L. Lovász, Kneser's conjecture, chromatic number and homotopy, J. Combin. Theory A 25 (1978) 319-324.
[10] E. Scheinerman, D. Ullman, Fractional graph theory, a rational approach to graph theory, J. Wiley \& Sons, New York, 1997.
[11] S. Stahl, n-Tuple colorings and associated graphs, J. Combin. Theory B 20 (1976) 185-203.
[12] C. Tardif, Homomorphisme du Graphe de Petersen et Inégalités Combinatoire, manuscript.

[^0]: *E-mail: stahl@kuhub.cc.ukans.edu.

