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Abstract

In this paper are obtained several criteria for oscillations of a class of autonomous
functional differential systems of neutral type. 2002 Elsevier Science (USA). All rights
reserved.

1. Introduction

The purpose of this paper is to investigate the oscillatory behaviour of the
solutions of the linear functional differential system of neutral type

d

dt

[
x(t)−

0∫
−1

d[ν(θ)]x(t − τ (θ))
]

=
0∫

−1

d[η(θ)]x(t − r(θ)), (1)

wherex(t) ∈ R
n, ν(θ) andη(θ) are realn×nmatrix valued functions of bounded

variation on[−1,0], and τ (θ) and r(θ) are real positive continuous functions
on [−1,0].
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Considering the valueR = max{‖τ‖,‖r‖}, where

‖τ‖ = max{τ (θ): −1� θ � 0} and ‖r‖ = max{r(θ): −1 � θ � 0},
by a solution of (1) we mean a continuous functionx : [−R,∞[ → R, such that

x(t)−
0∫

−1

x(t − τ (θ)) d[ν(θ)]

is differentiable and (1) is satisfied for everyt � 0. A solution of (1),x(t) =
[x1(t), . . . , xn(t)]T, is said to beoscillatory if every componentxi(t), i =
1, . . . , n, has arbitrary large zeros; otherwise it is callednonoscillatory. Whenever
all solutions of the system (1) are oscillatory, we will say that (1) istotally
oscillatory. If (1) is totally oscillatory for every pair of delay functionsτ (θ), r(θ),
it will be calledtotally oscillatory globally in the delays.

According to [1], the analysis of the oscillatory behaviour of solutions of
the system (1) can be based upon the existence or absence of real zeros of the
characteristic equation

det

[
λ

(
I −

0∫
−1

exp(−λτ(θ)) d[ν(θ)]
)

−
0∫

−1

exp(−λr(θ)) d[η(θ)]
]

= 0,

(2)

where byI we mean then × n identity matrix. In fact, in this framework, one
can conclude that (1) is totally oscillatory if and only if (2) has no real roots;
nonoscillatory solutions will exist, whenever (2) has at least a real root.

We start by studying, in Section 2, the total oscillatory behavior of the scalar
case of (1), that is the case wheren = 1. Then, as an application, the general
case is discussed in Section 3, in basis of the totally oscillatory behavior of the
functional retarded differential system

d

dt
x(t)=

0∫
−1

d[η(θ)]x(t − r(θ)), (3)

corresponding to have in (1),ν(θ) constant on[−1,0].
Kirchner and Stroinski in [2] discuss the same problem for the system

d

dt

[
x(t)−

0∫
−r
d[α(θ)]x(t + θ)

]
=

0∫
−r
d[β(θ)]x(t + θ), (4)

wherer is a positive real number andα andβ are matrix valued functions of
bounded variation on[−r,0], α atomic at zero. If we allowed in (1)τ (θ) and
r(θ) to be nonnegative, then withr(θ)= τ (θ)= −rθ andα(θ)= ν(θ/r) atomic
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at zero (notice that in (1), the restriction onτ (θ) to be positive makes unneces-
sary any atomicity assumption onν) andβ(θ)= η(θ/r), we obtain the class of
systems (4). However, there will be some interest by considering (1) in order to
understand the role of the delays on the oscillatory behavior of functional dif-
ferential systems. Anyway, independently of the adopted formulation, the criteria
obtained here are of different kind of those given in [2].

Both systems (1) and (4) include the differential-difference system

d

dt

[
x(t)−

m∑
j=1

Bjx(t − τj )
]

=
m∑
j=1

Ajx(t − rj ), (5)

where theAj andBj (j = 1, . . . ,m) are realn × n matrices and theτj andrj
(j = 1, . . . ,m) are positive real numbers. Regarding a system of this kind, in [2–
6] several criteria are obtained on its total oscillatory behavior. We will develop
here, for system (1), the method introduced in Section 2 of [4] with respect to (5).
We will get, in particular, for this system, other different criteria, as well as a
clearer picture on the oscillatory behavior of scalar equations.

By C+ we will denote the subset ofC([−1,0],R) formed by all positive
continuous functions on[−1,0]. With respect to a functionr ∈ C+, it will be
often considered the value

m(r)= min{r(θ): −1� θ � 0}.
Denoting byR

n×n the Banach space of alln × n real matrices, we take the
spaceBVn of all functions of bounded variation,η : [−1,0] → R

n×n. For a given
norm‖ · ‖ in R

n×n, with η ∈ BVn andθ ∈ [−1,0], by Vη(θ) we mean the total
variation ofη on the interval[−1, θ ]. The total variation ofη on [−1,0], Vη(0),
will also be denoted by

0∫
−1

∥∥d[η(θ)]∥∥.
For anyη ∈ BVn, we will consider the functionsη0 andη1 of BVn, which for
θ ∈ [−1,0] are given, respectively, by

η0(θ)= η(0)− η(θ), η1(θ)= η(θ)− η(−1).

The spaceBV1 of all real functions of bounded variation on[−1,0] will be
denoted simply byBV . Forφ ∈BV , by

0∫
−1

|dφ(θ)|

we will mean the total variation ofφ on [−1,0], which in the case ofφ to be
monotonic corresponds to the value

∆φ = |φ(0)− φ(−1)|.
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For φ monotonic, wheneverφ is called increasing (or decreasing) we are im-
plicitly excluding the possibility ofφ be constant; in order to include this case,
we will say thatφ is nondecreasing (respectively, nonincreasing).

2. The scalar case

For a matter of convenience, the scalar case of (1) will be rewritten as

d

dt

[
x(t)−

0∫
−1

x(t − τ (θ)) dp(θ)
]

=
0∫

−1

x(t − r(θ)) dq(θ) (6)

for p,q ∈BV andτ, r ∈ C+. This equation will be totally oscillatory if and only
if the function

F(λ)= λ− λ
0∫

−1

exp(−λτ(θ)) dp(θ)−
0∫

−1

exp(−λr(θ)) dq(θ)

has no real zeros. Through the analysis of this property, the two theorems below,
which will be important in the sequel, report some sufficient conditions for having
(6) totally oscillatory.

In view of the method used in the next section, we will restrict ourselves to
the case wherep(θ) andq(θ) are monotonic functions on[−1,0]. But, as for any
φ ∈ BV, r ∈ C+ andλ� 0, one has∣∣∣∣∣

0∫
−1

exp(−λr(θ)) dφ(θ)
∣∣∣∣∣� exp(−λm(r))

0∫
−1

|dφ(θ)|,

it holds thatF(λ)→ +∞ asλ→ +∞. Therefore, in such framework, asq(θ)
nondecreasing impliesF(0) � 0, (6) will have then at least a nonoscillatory
solution. So, under the assumption thatq(θ) is monotonic, in order that (6) be
totally oscillatory is necessary thatq(θ) be decreasing on[−1,0], independently
of the functionp(θ).

Theorem 1. Let p(θ) be nonincreasing andq(θ) decreasing on[−1,0]. If
‖r‖> ‖τ‖, J is a finite union of closed intervals such thatr(θ) > ‖τ‖ for θ ∈ J
and

1+∆p� e
∫
J

(‖τ‖ − r(θ)) dq(θ), (7)

then(6) is totally oscillatory.
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Proof. As F(λ) > 0 for everyλ � 0, we only have to show thatF(λ) has no
negative real zeros.

For λ �= 0, the equationF(λ) = 0 can be reduced to the formΦ(λ) = Ψ (λ),
where

Φ(λ)= exp(λ‖τ‖)−
0∫

−1

exp
(
λ(‖τ‖ − τ (θ)))dp(θ)

and

Ψ (λ)= 1

λ

0∫
−1

exp
(
λ(‖τ‖ − r(θ)))dq(θ).

Notice thatΦ(λ) is differentiable inR and has as derivative

Φ ′(λ)= ‖τ‖exp(λ‖τ‖)−
0∫

−1

(‖τ‖ − τ (θ))exp
(
λ(‖τ‖ − τ (θ)))dp(θ).

AsΦ ′(λ) > 0 for every realλ, it holds thatΦ(λ) is strictly increasing.
On the other hand, sinceq(θ) is decreasing and exp(λ(‖τ‖−τ (θ))) is positive,

we have, for every realλ < 0,

Ψ (λ)� 1

λ

∫
J

exp
(
λ(‖τ‖ − r(θ)))dq(θ)

�
∫
J

(
max

{
exp(λ(‖τ‖ − r(θ)))

λ
: λ < 0

})
dq(θ)

= e
∫
J

(‖τ‖ − r(θ)) dq(θ).

Then assuming thatΨ (λ0)=Φ(λ0) for some realλ0< 0, we have that

e

∫
J

(‖τ‖ − r(θ)) dq(θ)� Ψ (λ0)=Φ(λ0) < Φ(0)= 1− (p(0)− p(−1)),

which is in contradiction with the condition (7).✷
We illustrate the preceding theorem with the following example.

Example 2. For τ, r ∈ ]0,+∞[ , the equation

d

dt

[
x(t)+

0∫
−1

x(t + τθ − τ )exp(−θ) dθ
]

+
0∫

−1

x(t + rθ − r) dθ = 0
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corresponds to have in (6),p(θ) = exp(−θ), τ (θ) = −τθ + τ , q(θ) = −θ and
r(θ) = −rθ + r. Applying Theorem 1, one easily sees that this equation is
totally oscillatory for every pair of real positive numbers,(τ, r), such that 0<
τ � (3r − 2)/4.

Whenp(θ) andq(θ) are step functions with a finite number of jump points,
one obtains the differential-difference equation

d

dt

[
x(t)−

m∑
j=1

pjx(t − τj )
]

=
m∑
j=1

qjx(t − rj ), (8)

where, forj = 1, . . . ,m, pj , qj ∈ R andτj , rj ∈ ]0,+∞[ . Theorem 1 is formu-
lated for this equation in the following corollary. The result obtained is of the
same kind of the given in [5, Chapter 6] for the casem= 1.

Corollary 3. If pj , qj ∈ ]−∞,0] (theqj not all zero), τ1< · · ·< τm and for some
m0 ∈ {1, . . . ,m}, 0< r1 < · · · < rm0−1 � τm < rm0 < · · ·< rm, then(8) will be
totally oscillatory providing that

1−
m∑
j=1

pj � e
m∑

j=m0

(τm − rj )qj .

Example 4. The equation

d

dt

[
x(t)+ 1

2
x

(
t − 1

2

)
+ 1

2
x(t − 1)

]
= ax(t − 1)+ bx(t − 2)

is totally oscillatory ifa � 0 andb � −2e−1.

Remark 5. Theorem 1 and Corollary 3 have the disadvantage of excluding
the cases, respectively,r(θ) = τ (θ) for every θ ∈ [−1,0] and τj = rj for all
j ∈ {1, . . . ,m}. However, for example, with respect to Corollary 3, ifτm � rm
andpm < 0, then the corresponding functionF(λ) has at least a real zero (see [4,
Remark 1]).

Theorem 6. Letp(θ) be nondecreasing andq(θ) decreasing on[−1,0]. Then:

(i) If ∆p= 1, Eq.(6) is totally oscillatory globally in the delays.
(ii) Equation(6) is totally oscillatory if at least one of the following assumptions

is satisfied:

1+ e
0∫

−1

r(θ) dq(θ) < ∆p < 1, (9)
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1<∆p <
em(τ)

‖r‖ log(‖r‖e∆q), (10)

1<∆p and
0∫

−1

1

eτ(θ)
dp(θ)+

0∫
−1

1

∆qr(θ)
log[∆qr(θ)e]dq(θ) < 0. (11)

This theorem is an immediate consequence of the following lemma.

Lemma 7. Letp(θ) be nondecreasing andq(θ) decreasing on[−1,0]. Then:

(i) F(λ) has no real zeros if

∆p = 1. (12)

(ii) F(λ) has no real negative zero if

∆p > 1+ e
0∫

−1

r(θ) dq(θ). (13)

(iii) F(λ) has no real positive zero if at least one of the following assumptions is
satisfied:

∆p � 1, (14)

∆p <
em(τ)

‖r‖ log(‖r‖e∆q), (15)

0∫
−1

1

eτ(θ)
dp(θ)+

0∫
−1

1

∆qr(θ)
log[∆qr(θ)e]dq(θ) < 0. (16)

Proof. (i) Consider the functions

ϕ(λ)= 1−
0∫

−1

exp(−λτ(θ)) dp(θ)

and

ψ(λ)= 1

λ

0∫
−1

exp(−λr(θ)) dq(θ);

asF(0)=∆q > 0, thenF(λ) has a real zero if and only ifϕ(λ)=ψ(λ) for some
realλ �= 0.
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As the functionϕ(λ) is differentiable inR and

ϕ′(λ)=
0∫

−1

τ (θ)exp(−λτ(θ)) dp(θ)� 0,

we have thatϕ(λ) is nondecreasing.
On the other hand, analogously to the functionΨ (λ) of the proof of Theorem 1,

for everyλ ∈ ]−∞,0[ it holds that

ψ(λ)� −e
0∫

−1

r(θ) dq(θ)� em(r)∆q > 0.

Moreover, for everyλ ∈ ]0,+∞[ one hasψ(λ) < 0.
Thusϕ(0)= 1−∆p= 0, that is (12), implies thatϕ(λ) �= ψ(λ) for every real

λ �= 0; ϕ(0)= 1−∆p� 0, that is (14), implies thatϕ(λ) �=ψ(λ) for everyλ > 0.
Analogously,

−e
0∫

−1

r(θ) dq(θ) > ϕ(0)= 1−∆p,

that is (13), implies thatϕ(λ) �=ψ(λ) for everyλ < 0.
(ii) With respect to (15) and (16) let us suppose thatF(λ0)= 0 for some real

λ0> 0 and consider the functions

f (λ)= λ−
0∫

−1

exp(−λr(θ)) dq(θ)

and

g(λ)= λ
0∫

−1

exp(−λτ(θ)) dp(θ).

Forλ > 0 we have

f (λ)� λ+ exp(−λ‖r‖)∆q
� min

{
λ+ exp(−λ‖r‖)∆q : λ ∈ R

}
= 1

‖r‖ log(‖r‖∆qe).
On the other hand, for everyλ > 0 it holds that

g(λ)�
0∫

−1

max
{
λexp(−λτ(θ)): λ > 0

}
dp(θ)
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�
0∫

−1

1

eτ(θ)
dp(θ)� ∆p

em(τ)
. (17)

Henceλ0 > 0 is such thatf (λ0) = g(λ0) and, by consequence, we have
necessarily

1

‖r‖ log(‖r‖e∆q)� f (λ0)= g(λ0)�
∆p

em(τ)
,

which contradicts (15).
(iii) In the concerning to (16), notice that the functionf (λ) can be rewritten as

f (λ)= −
0∫

−1

(
λ

∆q
+ exp(−λr(θ))

)
dq(θ)

� −
0∫

−1

min
λ∈R

(
λ

∆q
+ exp(−λr(θ))

)
dq(θ)

= −
0∫

−1

1

∆qr(θ)
log(∆qr(θ)e) dq(θ).

Thus, by (17), one has necessarily

−
0∫

−1

1

∆qr(θ)
log[∆qr(θ)e]dq(θ)� f (λ0)= g(λ0)�

0∫
−1

1

eτ(θ)
dp(θ),

which contradicts (16). ✷
Remark 8. Condition (9) is included in [2, Theorem 3.3.].

Remark 9. Theorem 6 can be used to analyze the totally oscillatory behavior of
the functional differential equation

d

dt
x(t)=

0∫
−1

x(t − r(θ)) dq(θ), (18)

corresponding to have, in (6),p(θ) constant on[−1,0]. As ∆p = 0, then with
q(θ) decreasing, by (9) we can state that (18) is totally oscillatory if

0∫
−1

r(θ) dq(θ) <−1

e
.
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This result, for the caser(θ) = −rθ (r > 0, θ ∈ [−1,0]), is included in several
papers like [2,7,8].

Remark 10. Notice also that, even under the assumption ofq(θ) be decreasing,
Eq. (18) cannot be totally oscillatory globally in the delays. In fact, by considering
the functionf (λ), introduced in the proof of the preceding lemma, the totally
oscillatory behavior of (18) depends uponf (λ) to be positive for everyλ ∈ R.
But, for anyλ < 0 it holds that

f (λ)� λ+ exp(−λm(r))∆q.
Therefore, ifλ < −∆q , one can havef (λ) < 0, providing thatr ∈ C+ be such
thatm(r) be small enough. So, in order to have (18) totally oscillatory globally in
the delays, we have to exclude thatq(θ) be monotonic.

In Theorem 6, the second inequality of (11) is not very easy to handle in the
applications. The same seems not happen to the remaining conditions, as one can
see through the following examples.

Example 11. For any decreasing functionq(θ) on [−1,0], by (i) of Theorem 6,
the equation

d

dt

[
x(t)−

0∫
−1

x(t − τ (θ)) dθ
]

=
0∫

−1

x(t − r(θ)) dq(θ)

is totally oscillatory globally in the delays.

Example 12. By making, in (6),p(θ) = exp(θ) andq(θ) = −θ , we obtain the
equation

d

dt

[
x(t)−

0∫
−1

x(t − τ (θ))exp(θ) dθ

]
+

0∫
−1

x(t − r(θ)) dθ = 0.

As ∆p = 1 − e−1 < 1, we have by (9) that, independently of the delay function
τ ∈C+, this equation is totally oscillatory for everyr ∈C+ such that

e−2<

0∫
−1

r(θ) dθ

(for example, anyr ∈C+ in manner thatm(r) > e−2).
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Example 13. Now lettingp(θ)= −e−θ , q(θ)= −θ , andτ (θ)= r(θ)= −kθ+k,
we have by (10) that the equation

d

dt

[
x(t)−

0∫
−1

x(t + kθ − k)e−θ dθ
]

+
0∫

−1

x(t + kθ − k) dθ = 0

is totally oscillatory, providing thatk � e/2. In fact, notice that 1<∆p = e − 1
< e, ‖r‖ = 2k,m(τ)= k,∆q = 1 and

2k � e⇔ e

2
log(2ke)� e.

For the differential-difference equation

d

dt

[
x(t)−

m∑
j=1

pjx(t − rj )
]

=
m∑
j=1

qjx(t − rj ), (19)

one can apply also Theorem 6. The following corollary is then obtained. Several
other different criteria can be seen in [3,5] and references therein.

Corollary 14. Let forj = 1, . . . ,m bepj ∈ [0,+∞[ , qj ∈ ]−∞,0] (not all zero)
andrj ∈ ]0,+∞[ . Then:

(i) (19) is totally oscillatory globally in the delays if
∑m
j=1pj = 1;

(ii) (19) is totally oscillatory providing that at least one of the following as-
sumptions be satisfied:

1+ e
m∑
j=1

qj rj <

m∑
j=1

pj < 1, (20)

1<
m∑
j=1

pj <
er1

rm
log

(
erm

∣∣∣∣∣
m∑
j=1

qj

∣∣∣∣∣
)

(r1 � · · · � rm), (21)

m∑
j=1

pj > 1 and

∣∣∣∣∣
m∑
j=1

qj

∣∣∣∣∣
m∑
j=1

pj

rj
< e

m∑
j=1

|qj |
rj

log

(
erj

∣∣∣∣∣
m∑
j=1

qj

∣∣∣∣∣
)
. (22)

These conditions are illustrated, respectively, in each one of the following
examples.

Example 15. By (i) of Corollary 14 the equation

d

dt

[
x(t)− 1

2
x(t − r1)− 1

2
x(t − r2)

]
= ax(t − r1)+ bx(t − r2)
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for everya, b ∈ ]0,+∞[ is totally oscillatory globally in the delays.

Example 16. The condition (20) of Corollary 14 is obtained, in particular, in [8,
Corollary 4.3]. This condition is satisfied if

m∑
j=1

pj < 1 and
m∑
j=1

qjrj <−1

e
.

For example, the equation

d

dt

[
x(t)− 1

2
x(t − 1)− 1

3
x(t − 2)

]
= ax(t − 1)+ ax(t − 2)

is totally oscillatory for everya ∈ ]−∞,−1/3e[ .

Example 17. By (21), the equation

d

dt

[
x(t)− e

2
x(t − 1)− e

2
x(t − 2)

]
= ax(t − 1)+ bx(t − 2)

with a, b ∈ ]−∞,0], is totally oscillatory ifa + b <−e/2.

Example 18. Through (22), we can say that the equation

d

dt

[
x(t)− x(t − 1)− x(t − 2)

]+ 1

r
x(t − r)= 0

is totally oscillatory whenever 0< r < 2e/3.

3. Retarded and neutral systems

Forη, ν ∈ BVn andλ ∈ R the matrices

A(λ)= λI −
0∫

−1

exp(−λr(θ)) d[η(θ)]

and

B(λ)= λ
0∫

−1

exp(−λτ(θ)) d[ν(θ)]

will play an important role, in order to obtain a sufficient condition for having
system (1) totally oscillatory.

For that purpose, matrix measures, already introduced on this subject by other
authors, will be used. For a matter of completeness we recall briefly its definition
and the properties which will be used in the sequel.
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For each induced norm‖·‖ in R
n×n we associate a matrix measureµ :Rn×n →

R, which is defined for anyC ∈ R
n×n as

µ(C)= lim
γ→0+

‖I + γC‖ − 1

γ
,

where byI we mean the identity matrix. Independently of the considered induced
norm inR

n×n, a matrix measure has always the following properties (see [9]) for
anyC ∈ R

n×n:

(I) −‖C‖ � µ(C)� ‖C‖.
(II) µ(C1)−µ(−C2)� µ(C1 +C2)�µ(C1)+µ(C2) (C1,C2 ∈ R

n×n).
(III) µ(γC)= γµ(C) for everyγ � 0.
(IV) µ(γC)= |γ |µ(−C) for everyγ � 0.
(V) −µ(−C)� ‖C−1‖−1, if C is nonsingular.

Denoting byσ(C) the spectrum of the matrixC and introducing the upper and
lower bounds of the set Reσ(C)= {Reλ: λ ∈ σ(C)}, which are given by

s(C)= max{Rez: z ∈ σ(C)} and 2(C)= min{Rez: z ∈ σ(C)},
we have

(VI) −µ(−C)� 2(C)� s(C)� µ(C).

If η ∈ BVn the continuity ofµ onR
n×n implies thatµ◦η ∈ BV ; in consequence,

the following inequalities hold (see [2]):

(VII) If φ ∈ C([−1,0];R) is nonincreasing and positive, then

µ

( 0∫
−1

φ(θ) d[η(θ)]
)

�
0∫

−1

φ(θ) d(µ ◦ η1)(θ).

(VIII) If φ ∈ C([−1,0];R) is nondecreasing and positive, then

µ

( 0∫
−1

φ(θ) d[η(θ)]
)

� −
0∫

−1

φ(θ) d(µ ◦ η0)(θ).

Specifically, for any given induced norm‖ · ‖ in R
n×n and the corresponding

matrix measureµ, the functionη ∈ BVn, which determinesA(λ), will be sup-
posed in manner that the following assumption holds:

(A) µ ◦ η0 is increasing andµ ◦ η1 decreasing.

The following property ofA(λ) is then stated.
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Theorem 19. Under(A), let r ∈ C+ be such that:

(i) r is decreasing and

0∫
−1

r(θ) d(µ ◦ η1)(θ) <−1

e
; (23)

(ii) r is increasing and

0∫
−1

r(θ) d(µ ◦ η0)(θ) >
1

e
. (24)

Thenµ(−A(λ)) < 0 for every realλ.

Proof. Sinceµ(±I) = ±1 andµ(0) = 0, by the properties (II) and (III) of the
matrix measures we have, for every realλ,

µ(−A(λ))� −λ+µ
( 0∫

−1

exp(−λr(θ)) [dη(θ)]
)
. (25)

Assumption (A) implies the following inequalities:

0∫
−1

r(θ) d(µ ◦ η1)(θ)� ‖r‖((µ ◦ η1)(0)− (µ ◦ η1)(−1)
)

= ‖r‖µ(η1(0)), (26)
0∫

−1

r(θ) d(µ ◦ η0)(θ)� −‖r‖µ(η0(−1)), (27)

and forλ� 0,

0∫
−1

exp(−λr(θ)) d(µ ◦ η0)(θ)� −exp(−λ‖r‖)µ(η0(−1)), (28)

0∫
−1

exp(−λr(θ)) d(µ ◦ η1)(θ)� exp(−λ‖r‖)µ(η1(0)). (29)

Moreover, taking into account thateu−1 � u for every realu, still holds that
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0∫
−1

exp(−λr(θ)) d(µ ◦ η1)(θ)� −λe
0∫

−1

r(θ) d(µ ◦ η1)(θ), (30)

0∫
−1

exp(−λr(θ)) d(µ ◦ η0)(θ)� −λe
0∫

−1

r(θ) d(µ ◦ η0)(θ) (31)

for every realλ.
(1) Let then (i) be satisfied. By (23) and (26) we haveµ(η1(0))= µ(η0(−1))

< 0.
(1.1) Then lettingλ� 0, by (28) we have

0∫
−1

exp(−λr(θ)) d(µ ◦ η0)(θ) > 0.

But asr(θ) is decreasing, exp(−λr(θ)) is nondecreasing and positive. Therefore
by property (VIII) of the matrix measures it holds that

µ

( 0∫
−1

exp(−λr(θ)) [dη(θ)]
)

� −
0∫

−1

exp(−λr(θ)) d(µ ◦ η0)(θ) < 0.

Thus, by (25),µ(−A(λ)) < 0 for everyλ ∈ [0,+∞[ .
(1.2) Forλ < 0, as exp(−λr(θ)) is decreasing and positive, we have by (VII),

(30) and (23) that

µ

( 0∫
−1

exp(−λr(θ)) [dη(θ)]
)

�
0∫

−1

exp(−λr(θ)) d(µ ◦ η1)(θ)

� −λe
0∫

−1

r(θ) d(µ ◦ η1)(θ) < λ.

Hence, by (25),µ(−A(λ)) < 0 also for everyλ ∈ ]−∞,0[ .
(2) Assuming (ii), we have by (27) thatµ(η0(−1))= µ(η1(0)) < 0.
(2.1) Lettingλ� 0, asr(θ) is increasing, we have exp(−λr(θ)) nonincreasing

and positive and by property (VII) of the matrix measures and (29) it holds that

µ

( 0∫
−1

exp(−λr(θ)) [dη(θ)]
)

�
0∫

−1

exp(−λr(θ)) d(µ ◦ η1)(θ)

� exp(−λ‖r‖)µ(η1(0)) < 0.

Thus (25) implies thatµ(−A(λ)) < 0 for everyλ ∈ [0,+∞[ .
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(2.2) Forλ < 0, as exp(−λr(θ)) is increasing and positive, we have by (VIII),
(31) and (24) that

µ

( 0∫
−1

exp(−λr(θ)) [dη(θ)]
)

� −
0∫

−1

exp(−λr(θ)) d(µ ◦ η0)(θ)

� λe
0∫

−1

r(θ) d(µ ◦ η0)(θ) < λ.

Hence, by (25),µ(−A(λ)) < 0 also for everyλ ∈ ]−∞,0[ . ✷
From the properties (V) and (VI) of the matrix measures the following cor-

ollary holds.

Corollary 20. Under the assumptions of Theorem19, the matrixA(λ) is nonsin-
gular and∥∥A(λ)−1

∥∥� − 1

µ(−A(λ)) (32)

for every realλ.

Remark 21. Sinceµ(−A(λ)) < 0 implies det[A(λ)] �= 0, both cases in Theo-
rem 19 express sufficient conditions to have the retarded functional differential
system (3) totally oscillatory. This conclusion, for the case wherer(θ) = −rθ
(r > 0, θ ∈ [−1,0]), is reported, in particular, by Kirchner and Stroinski in [5,
Theorem 3.3].

Remark 22. Replacing the assumption (A) by the condition that for a given matrix
measureµ the functionη ∈ BVn is such that

µ(η(θ1)− η(θ2))� 0 (33)

for everyθ1, θ2 ∈ [−1,0], θ1< θ2, then by use of similar arguments, one can also
conclude thatµ(−A(λ)) < 0 for every realλ, providing thatr ∈C+ be such that

µ

( 0∫
−1

r(θ) d[η(θ)]
)
<−1

e
. (34)

This means that in such circumstances (3) is also totally oscillatory, a statement
which is reported by Kong in [8] for the case wherer(θ) = −rθ (r > 0, θ ∈
[−1,0]). The relationship between conditions (33) and (34) and the assumptions
of Theorem 19 is as follows. Condition (33) implies (A). In fact, ifθ1, θ2 ∈ [−1,0]
are such thatθ1< θ2, then by property (II) of the matrix measures it holds that
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µ(η0(θ1))−µ(η0(θ2))� µ(η0(θ1)− η0(θ2))= µ(η(θ2)− η(θ1))� 0,

µ(η1(θ2))−µ(η1(θ1))� µ(η1(θ2)− η1(θ1))= µ(η(θ2)− η(θ1))� 0.

On the other hand, by property (VII) of the matrix measures, (23) implies (34) in
the case wherer(θ) is decreasing, and by (VIII), (24) implies (34) whenr(θ) is
increasing.

Theorem 19 and its corollary enable the following sufficient condition for
having (1) totally oscillatory.

Theorem 23. Under (A), let τ, r ∈ C+ be such thatr is decreasing,‖r‖ > ‖τ‖
and

1+
0∫

−1

∥∥d[ν(θ)]∥∥� e
∫
J

(‖τ‖ − r(θ)) d(µ ◦ η1)(θ), (35)

whereJ is a finite union of closed intervals such thatr(θ) > ‖τ‖ for θ ∈ J . Then
(1) is totally oscillatory if at least one of the following assumptions is verified:

0∫
−1

∥∥d[ν(θ)]∥∥� 1, (36)

0∫
−1

∥∥d[ν(θ)]∥∥< em(τ)‖r‖ log
[‖r‖e∣∣µ(η0(−1))

∣∣], (37)

0∫
−1

1

eτ(θ)
dVν(θ) <

0∫
−1

log(|µ(η0(−1))|r(θ)e)
|µ(η0(−1))|r(θ) d(µ ◦ η0)(θ). (38)

Proof. As, by (35),

1< 1+
0∫

−1

∥∥d[ν(θ)]∥∥− e‖τ‖
∫
J

d(µ ◦ η1)(θ)

� e
∫
J

r(θ) d(−(µ ◦ η1))(θ)

� e
0∫

−1

r(θ) d(−(µ ◦ η1))(θ),
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then
0∫

−1

r(θ) d(µ ◦ η1)(θ) <−1

e
.

So, by Theorem 19 we haveµ(−A(λ)) < 0 for every realλ. This implies that
A(λ) is nonsingular for every realλ, and so all solutions of (1) are oscillatory if
and only if, for everyλ ∈ R,

det[I −A−1(λ)B(λ)] �= 0.

But by properties (I) and (VI) of the matrix measures this occurs, in particular,
whenever

‖A−1(λ)B(λ)‖< 1, (39)

for every realλ.
By Corollary 20 we obtain, for every realλ,

‖A−1(λ)B(λ)‖ � ‖A−1(λ)‖ · ‖B(λ)‖ � − ‖B(λ)‖
µ(−A(λ)) ;

then if

‖B(λ)‖<−µ(−A(λ)) (40)

for every realλ, inequality (39) is satisfied.
But since for every realλ it holds that

‖B(λ)‖ � |λ|
0∫

−1

exp(−λτ(θ)) dVν(θ)

and

µ(−A(λ))� −λ+µ
( 0∫

−1

exp(−λr(θ)) [dη(θ)]
)
,

we have that if

|λ|
0∫

−1

exp(−λτ(θ)) dVν(θ) < λ−µ
( 0∫

−1

exp(−λr(θ)) d[η(θ)]
)

(41)

for every realλ, then inequality (40) is satisfied.
(1) As, forλ� 0, exp(−λr(θ)) is decreasing, we have

µ

( 0∫
−1

exp(−λr(θ)) d[η(θ)]
)

�
0∫

−1

exp(−λr(θ)) d(µ ◦ η1)(θ).
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Then taking the function

G(λ)= λ+ λ
0∫

−1

exp(−λτ(θ)) dVν(θ)−
0∫

−1

exp(−λr(θ)) d(µ ◦ η1)(θ),

(41) is satisfied for everyλ� 0, if G(λ) > 0 for everyλ ∈ ]−∞,0].
But G(λ) is a specific case of the functionF(λ) introduced in Section 2, rel-

atively to the nonincreasing functionp(θ)= −Vν(θ) and the decreasing function
q(θ)= (µ ◦ η1)(θ) (θ ∈ [−1,0]). Hence, thatG(λ) > 0 for everyλ ∈ ]−∞,0],
follows by Theorem 1 and its proof.

(2) Forλ > 0, as exp(−λr(θ)) is increasing, we have that

µ

( 0∫
−1

exp(−λr(θ)) d[ν(θ)]
)

� −
0∫

−1

exp(−λr(θ)) d(µ ◦ η0)(θ).

Therefore taking now

G(λ)= λ− λ
0∫

−1

exp(−λτ(θ)) dVν(θ)+
0∫

−1

exp(−λr(θ)) d(µ ◦ η0)(θ),

we have analogously that (41) is satisfied for every realλ > 0, if G(λ) > 0
for every λ ∈ ]0,+∞[ . But nowG(λ) is the functionF(λ) corresponding to
p(θ) = Vν(θ) andq(θ)= −(µ ◦ η0)(θ). Then by (iii) of Lemma 7 the theorem
follows. ✷

A similar theorem can be obtained, analogously, for the case where the delay
functionr(θ) is increasing.

Theorem 24. Under (A), let τ, r ∈ C+ be such thatr is increasing,‖r‖ > ‖τ‖
and

1+
0∫

−1

∥∥d[ν(θ)]∥∥� e
∫
J

(r(θ)− ‖τ‖) d(µ ◦ η0)(θ),

whereJ is a finite union of closed intervals such thatr(θ) > ‖τ‖ whenθ ∈ J .
Then (1) is totally oscillatory if at least one of the following assumptions is
satisfied:

0∫
−1

∥∥d[ν(θ)]∥∥� 1,



552 J.M. Ferreira, A.M. Pedro / J. Math. Anal. Appl. 269 (2002) 533–555

0∫
−1

∥∥d[ν(θ)]∥∥< em(τ)‖r‖ log
[‖r‖e∣∣µ(η1(0))

∣∣],
0∫

−1

1

eτ(θ)
dVν(θ)+

0∫
−1

log[|µ(η1(0))|r(θ)e]
|µ(η1(0))|r(θ) d(µ ◦ η1)(θ) < 0.

One can apply these theorems whenµ is one of the following well known
matrix measures of a matrixC = [cik] ∈ R

n×n,

µ1(C)= max

{
ckk +

∑
i �=k

|cik|: k = 1, . . . , n

}
,

µ∞(C)= max

{
cii +

∑
k �=i

|cik|: i = 1, . . . , n

}
,

which correspond, respectively, to the induced norms inR
n×n given by

‖C‖1 = max

{
n∑
i=1

|cik|: k = 1, . . . , n

}
,

‖C‖∞ = max

{
n∑
k=1

|cik|: i = 1, . . . , n

}
.

Going back to the scalar case, both Theorems 23 and 24 can be applied to
Eq. (6) through the matrix measuresµ1 or µ∞. For that purpose, observe that
for any real numberc one hasµ1(c) = µ∞(c) = c, and so the assumption (A)
reduces to haveq(θ) decreasing. Therefore, from those theorems, the following
corollary is obtained.

Corollary 25. Letq(θ) be decreasing on[−1,0], p ∈ BV andτ, r ∈ C+ be such
that r is monotonic,‖r‖> ‖τ‖ and

1+
0∫

−1

|dp(θ)| � e
∫
J

(‖τ‖ − r(θ)) dq(θ), (42)

whereJ is a finite union of closed intervals such thatr(θ) > ‖τ‖ whenθ ∈ J . If
at least one of the following assumptions is verified:

0∫
−1

|dp(θ)| � 1, (43)
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0∫
−1

|dp(θ)| � em(τ)

‖r‖ log[‖r‖e∆q ], (44)

0∫
−1

1

eτ(θ)
dVp(θ)+

0∫
−1

log(∆qr(θ)e)

∆qr(θ)
dq(θ) < 0, (45)

then Eq.(6) is totally oscillatory.

The main advantage of this corollary, with respect to the Theorems 1 and 6 of
Section 2, is in the fact that the functionp(θ) can be nonmonotonic. This situation
is illustrated in the following example.

Example 26. For τ ∈ C+ andk > 0, let the equation

d

dt

[
x(t)−

0∫
−1

sin(2πθ)x(t − τ (θ)) dθ
]

=
0∫

−1

θx(t − kθ2 − 1) dθ, (46)

corresponding to

p(θ)= − 1

2π
cos(2πθ), q(θ)= θ2

2
, and r(θ)= kθ2 + 1.

Notice thatq(θ) andr(θ) are decreasing, andp(θ) satisfies (43), since

0∫
−1

|dp(θ)| = 2

π
.

As ‖r‖ = k+ 1, takingτ (θ) such that‖τ‖ = 1, we have‖r‖> ‖τ‖ and the right-
hand term of (42) can be taken as

−e
0∫

−1

kθ3dθ = −ke
[
θ4

4

]0

−1
= ke

4
.

Thus, for any realk > 0 such that

1+ 1

2π
� ke

4
,

(42) is fulfilled and the corresponding equation (46) is totally oscillatory.

For the differential-difference system (5), specific versions of Theorems 23
and 24 can be obtained, such as the given in the following corollary.
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Corollary 27. For j = 1, . . . ,m let µ(Aj) ∈ ]−∞,0] (not all zero), τ1 < · · ·<
τm, 0< r1< · · ·< rm0−1 � τm < rm0 < · · ·< rm for somem0 ∈ {1, . . . ,m}, and

1+
m∑
j=1

‖Bj‖ � e
m∑

j=m0

(rj − τm)|µ(Aj)|. (47)

Then (5) is totally oscillatory if at least one of the following assumptions is
verified:

m∑
j=1

‖Bj‖ � 1, (48)

m∑
j=1

‖Bj‖< eτ1
rm

log

(
rme

∣∣∣∣∣µ
(
m∑
j=1

Aj

)∣∣∣∣∣
)
, (49)

∣∣∣∣∣µ
(
m∑
j=1

Aj

)∣∣∣∣∣
m∑
j=1

‖Bj‖
τj

< e

m∑
j=1

|µ(Aj)|
rj

log

(
erj

∣∣∣∣∣µ
(
m∑
j=1

Aj

)∣∣∣∣∣
)
. (50)

Proof. As µ(A1) � 0, µ(Am) � 0, and by the property (II) of the matrix meas-
ures

µ

(
p∑
j=1

Aj

)
−µ

(
p−1∑
j=1

Aj

)
� µ(Ap)� 0,

µ

(
m∑
j=q

Aj

)
−µ

(
m∑

j=q+1

Aj

)
� µ(Aq)� 0

for p = 2, . . . ,m, q = 1, . . . ,m− 1, the assumption (A) is fulfilled. On the other
hand, for this case conditions (47) and (50) imply, for example, the conditions of
Theorem 23 corresponding to (35) and (38), respectively. Conditions (48) and (49)
are direct reformulations of (36) and (37), respectively.✷
Remark 28. Excluding the conditions (49) and (50), a result of this kind is
obtained in [4].

For the norms introduced above, we illustrate the preceding corollary in the
following example.

Example 29. Consider the system

d

dt

[
x(t)−B1x(t − 1)−B2x(t − 2)

]=A1x(t − 1)+A2x(t − 4), (51)

where
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B1 =
[−1 1

0 1

]
, B2 =

[
1 −1
1 −1

]
,

A1 =
[−2 −1

1 −2

]
, A2 =

[−2 0
1 −2

]
.

As ‖B1‖∞ = ‖B2‖∞ = 2, µ∞(A1) = µ∞(A2) = −1 andµ∞(A1 + A2) = −2,
conditions (47) and (50) of Corollary 27 are easily satisfied, and so (51) is totally
oscillatory. Notice that since the matrixB1 has a negative real eigenvalue, it is not
possible to apply [2] to this system.
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