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In two spatial dimensions, spin characterizes how particle states re-phase under changes of frame that 
leave their momentum and energy invariant. Massless particles can in principle have non-trivial spin 
in this sense, but all existing field theories only describe the trivial case. This letter presents a field 
theory for a massless particle with non-trivial physical spin. These particles are the (2 + 1)-dimensional 
analogues of “continuous-spin” particles in 3 +1 dimensions, but here they have only two real degrees of 
freedom, related by parity. They can be understood as massless generalizations of anyons, but are simpler 
in key respects.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
In two dimensions, particles of momentum �k with Lorentz-
invariant dispersion relations E2 = m2 + �k2 (working with unit 
velocity) can be classified according to their spin. Physically, spin 
characterizes how a single-particle state behaves under changes 
of frame that leave its three-momentum invariant. For a massive 
particle, we can go to a frame where the particle is at rest, so 
that rotations R(θ) by an angle θ leave the energy–momentum 
k = (m, 0, 0) invariant. Such a state |ψ(k)〉 transforms as

|ψ(k)〉 → eiθ s|ψ(k)〉. (1)

That is, the wave-function re-phases under momentum preserving 
changes of frame by an amount determined by the spin quantum 
number s. Famously, in 2 + 1 dimensions, s can take on any real 
value, and the wave-function need not be single-valued — this is 
the phenomenon of fractional spin, as described by anyons [1,2]. 
Of course, the absolute phase of a wave-function is not directly 
observable, but (1) is reflected in the properties of observable in-
teractions.

For massless particles with E2 = �k2, the situation is differ-
ent. Rotations no longer preserve �k in any frame, but appropri-
ately combined boost and rotation do. For concreteness consider 
(k0, kx, ky) = (E, 0, E). Then we find that (R + K ) generates changes 
of frame that leave kμ invariant, where K generates boosts in the 
x direction (transverse to �k), and R is the counter-clockwise ro-
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tation in the spatial plane. Under large transformations T (α) ≡
eiα(R+K ) , such a particle state can transform as

|ψ(k)〉 → eiαs|ψ(k)〉, (2)

where s is again a real number. Unlike the rotation, (R + K ) is 
a non-compact generator — transformation T (α) with arbitrarily 
large α never returns to the identity operator, but rather corre-
sponds to increasingly large boosts in the x direction, followed by a 
rotation that approaches π/2 at large α and a compensating boost 
in the −y direction. Thus, the wave-function can be single-valued 
for all s. Relatedly, the notion of fractional statistics under adiabatic 
exchange of point-localized anyons does not generalize to massless 
particles.

Surprisingly, all familiar massless field theories in 2 + 1 dimen-
sions describe the spinless case s = 0 — even those where the field 
carries a Lorentz index (the appropriate notion of a spin-statistics 
connection in this context was clarified in [3]). For example, prop-
agating modes of a Maxwell vector field Aμ can be written in 
Lorentz gauge with k · A = 0. The action of T (α) on such a field 
simply maps Aμ → Aμ + iαkμ — a pure gauge transformation that 
does not alter the physical state, even by a phase.

This letter describes the quantum mechanics of massless de-
grees of freedom with non-trivial spin in the preceding sense. 
To start, it is helpful to frame the concept of spin in a more 
precise and Lorentz-covariant form. With Jμν the covariant rota-
tion + boost generators and Pμ the translation generators, the 
Lorentz invariant quantity that characterizes spin is the pseu-
doscalar W = 1

2 εμνρ Jμν Pρ . This commutes with all rotations, 
boosts, and translations, so its eigenvalue is an invariant character-
istic of the particle. The only other such invariant is the particle’s 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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mass. With Pμ → kμ , W is also the unique generator of Lorentz 
transformations that leave kμ invariant — it generates the “little 
group” of kμ , as formulated by Wigner [4] and applied to 2 + 1 di-
mensions by Binegar [5]. For a mass-m particle in its rest frame, 
W = m J 12 — a rotation. For a massless particle, W is no longer a 
pure rotation in any frame but rather a combination of a rotation 
and a boost transverse to �k, as considered in (2). We refer to a par-
ticle on which W acts non-trivially as a panyon — a state on which 
all members of the little group act. Going back to kμ = (E, 0, E), we 
have W = (R + K )E (this transformation was mentioned briefly 
in [5], but summarily dismissed).

The covariant way of expressing the spin transformations (1)
and (2) together is, therefore, that the momentum-preserving 
change of frame eiκW (k) transforms a state of any momentum as

|ψ(k)〉 → eiκρ |ψ(k)〉, (3)

where ρ = ms and κ = θ/m for a massive particle at rest (as in 
(1)), while ρ = Es and κ = α/E for a massless particle (as in (2)). 
The eigenvalue ρ of W characterizes the spin of physical states of 
any mass, yet no field theory of massless particles with non-zero 
ρ is known.1

1. Vector superspace and the panyon action

The remainder of this letter presents a free field theory whose 
elementary degrees of freedom are two panyons with non-zero 
“spin” eigenvalues W |ψ±〉 = ±ρ|ψ±〉, related to one another by 
parity. The theory is a (2 + 1)-dimensional version of the one in 
[6]. Panyons cannot arise from any finite tensor action, because 
any rank-n tensor field is annihilated by W n+1, in conflict with 
the desired action of W on states. Roughly speaking, we will need 
a gauge theory with an infinite tower of fields, in which all but 
two components are either pure gauge or non-dynamical. Such 
constructions are familiar from the field theory for elementary 
anyons developed by Jackiw and Nair [7]. Like anyons, an infinite-
component description of elementary panyons does not preclude 
their appearance as composites in a theory built from a finite num-
ber of familiar fields [2].

We introduce a bosonic field 
(ημ, xμ) that depends not only 
on a space–time coordinate x, but on a new auxiliary “coordinate” 
ημ . The dependence on η is restricted to be real-analytic, so that 
we can Taylor-expand


(η, x) =
∑

n

ημ1 . . . ημnψ(n)(x)μ1...μn
, (4)

with coefficients ψ(n)(x) that are rank-n tensor-valued functions. 
Under Lorentz transformations 
(η, x) → 
(�−1η,�−1x + a),
the coefficients ψ(n)(x) transform covariantly, i.e. ψ(0)(x) →
ψ(0)(�−1x), ψ

(1)
μ (x) → �ν

μψ
(1)
ν (�−1x), etc. Thus, the field con-

tent of 
 is entirely equivalent to an infinite tower of fields, but 
viewing it as a function over the auxiliary η-space will be both 
technically simpler and more illuminating in what follows. As we 
will show, only two degrees of freedom (which can loosely be 
thought of as arising from ψ(0) and ψ(1)) are dynamical; here, un-
like in other known massless theories, boosts will mix the states 
described by these fields.

The length of an η-vector is unphysical, as it can be absorbed 
into changes of the tensor fields’ normalization. This motivates 
studying actions localized on a Lorentz-invariant surface in η. The 

1 Such particles can, however, appear in the spectrum of a (2 + 1)-dimensional 
bosonic string in light-cone quantization [12], as do massive anyons.
orientation of η along that surface, meanwhile, will be used to en-
code a panyon’s spin. The action for a panyon is∫

d3x[d3η]δ′(η2 + 1) 1
2 (∂μ
)2 + 1

4 δ(η2 + 1)(�
)2, (5)

which is invariant under gauge transformations

δ
ε,χ = (η · ∂x − 1
2 (η2 + 1)�)ε(η, x) + (η2 + 1)2χ(η, x), (6)

where δ′(x) = d
dx δ(x), � = ∂η.∂x + ρ , and ε and χ are, like 
 , ar-

bitrary smooth functions of x and η. The brackets around [d3η]
denote that this integral must be regulated. For example, the con-
tribution of the scalar component ψ(0) to the action involves the 
divergent integral 

∫ [d3η]δ′(η2 + 1). As discussed in [6], integrals 
of this form are entirely determined by their symmetry properties 
up to an overall normalization, or equivalently they can be de-
fined by analytically continuing η0. The analytic continuation turns 
the integral over a hyperboloid in η into a simple integral over a 
sphere. Generating functions (following the normalization conven-
tions of [6])

G(w) ≡
∫

[d3η]δ(η2 + 1)eiη.w = sin(x)

x
|
x=

√
−w2 (7)

G ′(w) ≡
∫

[d3η]δ′(η2 + 1)eiη.w = cos(x)

2
|
x=

√
−w2 (8)

can be used to recast the action and other localized η-space inte-
grals as operators acting on functions of η:∫

[d3η]δ(η2 + 1)F (η) = [
G(i∂η)F (η)

]
η=0 , (9)

and similarly for δ′ . The expressions (9) satisfy identities equiv-
alent to integration by parts and δ(η2 + 1)(η2 + 1) = 0, so that 
manipulations in the tensor decomposition and in superspace are 
equivalent.

2. Physical degrees of freedom

Varying (5) with respect to 
(η, x) we obtain the covariant 
equation of motion

δ′(η2 + 1)�x
 − 1
2 �(δ(η2 + 1)�
) = 0. (10)

This equation simplifies when we transform to a convenient “har-
monic” gauge where δ(η2 + 1)�
 = 0. This gauge can be reached 
from an arbitrary 
 by taking ε = − 1��
 . In this gauge, we 
have δ′(η2 + 1)�x
 = 0, or equivalently �x
 = (η2 + 1)2β(η, x)
for an arbitrary smooth function β . A further transformation by 
χ = − 1�β reduces the equation of motion to

�x
 = 0 δ(η2 + 1)�
 = 0. (11)

The above demonstrates that the excitations of the field 
 are 
massless. A residual gauge redundancy with �xε = �xχ = 0 pre-
serves this gauge choice. There are several ways to see that (11)
has exactly two gauge-inequivalent propagating solutions, notwith-
standing the infinite tower of tensors in 
 .

We first consider an arbitrary plane wave solution of (11), 
which can be written as 
k(η, x) = eik.xψk(η) where k2 = 0 is 
null and δ(η2 + 1)�ψk(η) = 0, or in other words �ψk(η) = (η2 +
1)αk(η) for some smooth function αk(η) (for momentum-space 
plane waves of momentum k, � = i k.∂η + ρ). The gauge param-
eters ε and χ that preserve the harmonic gauge (11) can also be 
decomposed into plane waves; we can reach a gauge where

�ψk(η) = 0, (12)
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i.e. where the residual function αk vanishes, by a gauge trans-
formation satisfying �2εk(η) = 2αk(η), which has solutions for 
any αk .

To fully fix gauge and identify the physical degrees of freedom, 
we introduce reference vectors q and ε for each null momen-
tum k, with q.k = −ε2 = 1 and q2 = q.ε = k.ε = 0. For example, 
we can take q to be (k0, −�k)/|�k|2 and ε to be the spatial vector 
for which (�k, ε) forms a right-handed coordinate system. One can 
fix a gauge in which ψk(η) = eiρη.q ∑

n cn(η.ε)n (the logic closely 
follows §IV.B of [6]), with residual gauge freedoms of the form 
δψk = eiρη.q[(η.ε)n+2 − (η.ε)n] generated by εn ∝ eiρη.qη.q(η.ε)n

for each n ≥ 0 (where we have decomposed the metric as gμν =
qμkν + kμqν − εμεν ). These gauge transformations relate all terms 
in ψk(η) with even n to one another, and similarly for odd n. 
It follows that any plane wave of momentum k satisfying (11)
can be decomposed into two physical modes ψk,0(η) = eiρη.q and 
ψk,1(η) = η.εeiρη.q plus pure gauge contributions.

In the ρ → 0 limit, these basis wave-functions are precisely the 
scalar and vector components of 
 . The fact that we have only two 
propagating degrees of freedom, despite infinitely many tensors, is 
closely related to the fact that massless symmetric tensor gauge 
fields with rank ≥ 2 have no propagating degrees of freedom in 
two spatial dimensions.

To sharpen this connection, we can explicitly count degrees 
of freedom in the various tensor components ψ(n)(x) of (4) in 
a covariant gauge, starting from (12). We note first that for any 
function ξ(η, x), the gauge variation of 
 generated by ε = (η2 +
1)ξ(η, x) is precisely equivalent to the variation generated by 
χ = − 1

2 �ξ . To avoid this double-counting, we should restrict ε
(or ξ ) — a convenient choice is ∂2

ηε = 0. Choosing a gauge where 
(∂2

η)2
 = 0 fully fixes χ . Decomposing 
(η, x) into tensor com-

ponents ψ(n)(x) as in (4) (and similarly for ε(η, x)), the above 
constraints amount to fixing ψ(n) to be double-traceless and ε(n)

to be traceless for all n.
It is further possible to reach a gauge where ψ(n) is traceless 

(i.e. in η-space, ∂2
η
 = 0) via a gauge transformation satisfying

2
(
∂η.∂x − ( 3

2 + η.∂η)�
)
ε = −∂2

η
. (13)

In components, this takes the form An∂.ε(n) + Bnρε(n−1) = ∂2
ηψ(n)

where An and Bn are numerical coefficients. This equation is 
clearly invertible at each rank n. What is less obvious is that an 
ε that preserves ∂2

η
 = 0 (i.e. ε satisfies the homogeneous form of 
(13)) can also satisfy the �2ε = 0 condition required to keep 
 in 
the gauge (12). But in fact, by acting on (13) with � we can show 
that (13) guarantees �2ε = 0.

To summarize, for null momenta k we can reach a gauge where 
�ψk = ∂2

ηψk = 0, which is preserved by gauge transformations εk

for which (13) vanishes and ∂2
ηεk = 0. These conditions can be ex-

pressed in tensor form by the covariant gauge fixed equation of 
motion

�ψ(n) = 0, Tr[ψ(n)] = 0, ∂ · ψ(n) = ρ
n ψ(n−1), (14)

with residual gauge symmetry generated by ε(n) satisfying
Tr[ε(n−1)] = 0 and ∂ · ε(n−1) = anρε(n−2) . The coefficient an fol-
low from (13) but its value is unimportant. We can now count 
the number of unconstrained components in ψ(n) , subtracting 
the number of unconstrained gauge parameters in ε(n−1) . For the 
scalar n = 0, all of the conditions above are trivial so the single 
component ψ(0) describes one degree of freedom. At n = 1 the 
vector has three components, of which one is related to ψ(0) by 
the “transverse” condition, while one is pure gauge associated with 
the unconstrained ε(0) . This leaves one dynamical degree of free-
dom in ψ(1) . At n = 2, the tensor has 6 components, of which 
one is removed by the trace condition and three are fixed by the 
“transverse” condition. The remaining two degrees of freedom are 
pure gauge associated with the two non-transverse components 
of ε(1) . For higher ranks there continue to be no unconstrained 
components in 
 . This counting is precisely the same as for fa-
miliar gauge theories. In the case of ρ = 0, only ψ(0) and ψ(1)

are non-vanishing for the propagating modes. For non-zero ρ , the 
basis functions ψk,0 and ψk,1 introduced earlier are particular solu-
tions of the conditions (14), which (as expected from (14)) have all 
tensor components non-zero. Of course, when ρ = 0 higher-rank 
gauge fields can have important topological effects, even though 
they do not contain propagating modes; similar phenomena could 
be important in the present context.

We can now check how the “spin” operator W acts on the two 
basis modes. The Lorentz-invariant form of W = iεμνρημ∂ν

ηkσ can 
be re-expressed in terms of our reference vectors as W = i(k · η ε ·
∂η − ε · ηk · ∂η), so that

W ψk,0(η) = ρψk,1(η), (15)

W ψk,1(η) = eiρη.q(−i k.η + ρ(ε.η)2) 
 ρψk,0(η), (16)

where 
 denotes identity up to a gauge transformation, generated 
in this case by ε = (−1 + 2iη.q)ψk,0. The eigenmodes of W at mo-
mentum k are therefore ψk,± ≡ ψk,0 ± ψk,1, with eigenvalues ±ρ ,
respectively.

This is all we need to carry out a general mode decomposition 
of the real field 
(η, x) as


(η, x) =
∫

d2k

2|k|
∑
i=±

(
ai(k)ψk,i(η)e−ik·x + a∗

i (k)ψ∗
k,i(η)eik·x) .

The detailed quantization of the action in 2 +1 dimensions mirrors 
the analysis of the (3 + 1)-dimensional action given in [6], so we 
only sketch the final results. The mode coefficients a±(k) become 
annihilation operators for single particle states satisfying commu-
tation relations

[a±(k),a±(k′)∗] = 2|k|δ2(k − k′). (17)

The action of W follows directly from (15) and (16) as

[W ,a±(k′)∗] = ±ρa±(k′)∗, (18)

and so single particle states |k, ±〉 = a±(k′)∗|0〉 satisfy

eiκW |k,±〉 = eiκρ |k,±〉, (19)

as desired for a massless particle with spin.
We can add current interactions of the form

Sint =
∫

d3x[d3η]δ′(η2 + 1)
(η, x) J (η, x), (20)

provided the current J satisfies a “continuity condition” (for ρ �= 0)

δ(η2 + 1)(∂x.∂η + ρ) J = 0 (21)

or, with an appropriate component expansion of J (η, x) (so that 
(20) takes the form 

∑
n(−1)nφ(n)(x) · J (n)(x) in components — see 

[6]),

∂ · J1 + ρ J0 = 0

∂ · Jμ2 + ρ Jμ1 = 0

〈∂ · Jμν
3 + ρ Jμν

2 〉 = 0 . . .

where 〈. . .〉 denotes the traceless part of the enclosed tensor. This 
reproduces the continuity conditions for familiar interactions when 
ρ = 0. We do not yet know how this condition can be satisfied 
by an interacting theory with ρ �= 0, but can gain some intuition 
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from power-counting. If the scalar current J0(x) is non-zero, the 
first continuity condition requires a Jμ1 (x) at O (ρ), with non-zero 
divergence, and the next continuity condition implies non-zero 
Jμν

2 (x) at O (ρ2), and so on. Thus, the dominant interacting mode 
would be scalar-field-like. In the absence of a J0 coupling, we 
could instead start with a conserved vector current Jμ1 (x) at O (ρ0), 
in which case continuity implies an O (ρ) Jμν

2 (x) with non-trivial 
divergence, and so on. In this case we would expect the dominant 
interaction to be gauge-field-like. This is a (2 +1)-dimensional ver-
sion of the helicity correspondence discovered in [8–10].

Symmetry arguments also shed light on some physical effects 
of non-zero ρ . For example, if a panyon has a 3-point interaction 
with a scalar matter particle, we can constrain the panyon emis-
sion and absorption amplitudes in the limit that the panyon mo-
mentum kμ is much softer than the matter particle’s momentum 
pμ , as in [11]. In this limit, the soft factor appearing in scatter-
ing amplitudes where single |k, ±〉 emission occurs must take the 
form

S±(p,k) ∝ e±iρz, (22)

where z = ε·p
k·p . This is the only function of k and p that transforms 

correctly as a single panyon state. Recall that the states |k, ±〉 =
|k, 0〉 ± |k, 1〉, so the “scalar” and “gauge-field” soft factors are

S0(p,k) ∝ cosρz, S1(p,k) ∝ sinρz. (23)

In the ρ → 0 limit, the ψ0 mode dominates emission, with cor-
rections at O (ρ2), while emission amplitudes for the ψ1 mode are 
O (ρ). Such soft factors would lead to modified emission and ab-
sorption, relative to a massless scalar field, in the forward and/or 
soft limits where ρz becomes large.

3. Discussion

Of course, a re-phasing of states as in (3) is only physical in 
the presence of Lorentz-invariant interactions. The free field the-
ory presented here is, however, a key prerequisite to understanding 
panyon interactions. There are several reasons to further explore 
the physics of panyons. First, it would be remarkable if interact-
ing panyons, like anyons, can arise as quasi-particles in effectively 
(2 + 1)-dimensional physical systems. Second, the similarity of pa-
nyons to anyons at the level of little group transformations — 
both are invariantly characterized by arbitrary real spin eigenvalues 
W |ψ〉 = ρ|ψ〉 — suggests potentially interesting relations between 
the two in field theory. For example, perhaps panyons can arise 
from the massless limit of appropriate anyon theories, or con-
versely anyons may appear in a broken phase of panyon gauge 
theories. Finally, panyons are analogous to continuous-spin parti-
cles (CSPs) in 3 + 1 dimensions [8–10], which are poorly under-
stood but might have interesting phenomenological applications. 
Indeed, CSP interactions in 3 + 1 dimensions necessarily approx-
imate familiar gauge theory interactions dominated by only two 
helicity modes in the ρ → 0 limit [8–10], raising the possibility 
that known long-range forces are mediated by CSPs. Since panyons 
have only two degrees of freedom (or one, in parity non-invariant 
theories), compared to the infinite tower of dynamical states in 
3 + 1 dimensions, they may offer a more theoretically tractable toy 
model for CSP dynamics. We anticipate that the theory of panyons 
presented here will facilitate progress answering these questions.
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