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Abstract

The paper describes the methodology of computing gas flows in narrow micro- and nanoscale channels
on the basis of finite-difference solution of the Boltzmann kinetic equation using the conservative projection
method of collision integral calculation. Mathematical framework of the method is considered and the
problem solving environment for calculation of the above mentioned flows is described. Examples of the
flow calculations in the plane and 3D geometry are given.
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1. Introduction

Investigation of gas flows in micro- and nanochannels is now of practical interest due to development
of miniature devices of various purposes using gas transfer between vessels, transfer of heat by gas, or a
change in the gas mixture composition [1, 2]. These devices are characterized by two geometrical scales,
one of which is defined by the channel length and sizes of vessels connected by the channel and the other
by the channel diameter, with the second scale being much less than the first one and commensurate with
the gas molecule free path. The commensurability of the lesser flow scale with molecule free path calls for
application of kinetic theory methods. Due to the large difference in the scales the flow velocity is usually
much less than the sound velocity, while gas parameters slowly change along the flow. A so-called slow
flow pattern is implemented, where the molecular velocity distribution function is little different from the
Maxwellian distribution function almost everywhere. This flow pattern allows optimizing computational
methods as described below.
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A reliable basis for studying flows within the framework of the kinetic theory is the Boltzmann kinetic
equation, however, the complexity of its numerical solution has motivated the search for alternative, less
time-consuming, though not rigorously mathematically justified approaches. One of such approaches is
the Direct Simulation Monte Carlo method (DSMC method) [3] where solution of the kinetic equation is
replaced with computer simulation of movements and collisions of a large number of points representing
gas molecules. This method was successfully used in supersonic aerodynamics, however, its application
for analysis of slightly disturbed flows proved to be extremely inefficient due to non-removable noise [4].
The other commonly used approach is the use of “model” kinetic equations where the complex Boltzmann
collision integral is replaced with a simple relaxation form. Quite a lot of interesting results have been
obtained along this line, but their reliability is not guaranteed since the model equations themselves are not
justified. From physical standpoint, a serious drawback of the model equations is the velocity-independent
relaxation time, while in real gas the molecular collision frequency changes several times over a substantial
molecular velocity range [5].

For the long time, the major challenge in numerical solution of the Boltzmann equation, besides its
high dimensionality, had been associated with the lack of a conservative method of the collision integral
calculation. This problem has been solved in [6] and then the conservative method of calculating the
collision integral has been essentially improved in [7, 8]. In the work presented herein all calculations were
performed using this method and its generalization for a gas mixture.

2. Mathematical and theoretical framework

2.1. Monocomponent gas
The gas density n(x, t), temperature T (x, t), velocity U(x, t) and other parameters are calculated by

numerical integration on velocity ξ of distribution function f(ξ,x, t) determined from solution of the Boltz-
mann equation:

∂f/∂t + ξ · ∂f/∂x = I(f, f) (1)

Equation (1) is solved by the finite-difference method on fixed grid in velocity and coordinate space.
The computational domain in the coordinate space is broken down into cells, in the general case having an
arbitrary shape and a finite volume method is used for approximation of the equation left-hand side. A
spherical domain Ω on a uniform grid with a spacing hv = 2Vmax/N0, where N0 is the number of nodes for
each velocity coordinate, is chosen as the velocity space. The sphere centre may be displaced relative to
zero depending on the problem. The maximum velocity Vmax is taken equal to 4.8

√
kTmax/m, where Tmax

is the maximum temperature.
Equation (1) splits into two parts: the transport equation representing the left side and the relaxation

problem. The splitting takes the form Sτ = Aτ/2CτAτ/2, where Sτ is the operator transforming the solution
at t0 to the solution at t0 +τ , Aτ is the the operator of solving the transport equation ∂f/∂t+ξ · ∂f/∂x = 0
beginning at steps τ and Cτ is the operator of solving the relaxation problem ∂f/∂t = I(f, f).

For monatomic gas, the collision integral takes the form [5]:

I(f, f) =

∞∫

−∞

2π∫

0

bm∫

0

(f ′f ′
∗ − ff∗)gbdbdϕdξ∗ (2)

By introducing the following notation: φ(ξγ) = δ(ξ − ξγ) + δ(ξ∗ − ξγ) − δ(ξ′ − ξγ) − δ(ξ′
∗ − ξγ), where δ is

the Dirac delta function and ξ′ and ξ′
∗ are post collision velocities that are arguments of functions f ′ and

f ′
∗, we present the collision integral in point ξγ as follows:

I(ξγ) =
1
4

∞∫

−∞

∞∫

−∞

2π∫

0

bm∫

0

φ(ξγ)(f ′f ′
∗ − ff∗)gbdbdϕdξdξ∗ (3)
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In equation (3), integration is performed numerically on the grid ξαν
, ξβν

, bν , ϕν consisting of Nν nodes
in the 8-dimensional domain Ω × Ω × [0, 2π] × [0, bmax]. Pre-collision velocities ξαν

, ξβν
are selected in the

velocity grid nodes. Post-collision velocities ξ′
αν

and ξ′
βν

do not get in the nodes in the general case. For
each velocity ξ′

αν
there is determined a pair of nodes ξλν

and ξμν
that approximates the velocity on the

velocity grid and for velocity ξ′
βν

there are chosen nodes ξλν+sν
and ξμν −sν

that are symmetric about the
total velocity gν = ξαν

+ ξβν
, after which the delta function in formula (3) is represented in the following

form: δ(ξ′
αν

−ξγ) = (1−rν)δ(ξλν
−ξγ)+rνδ(ξμν

−ξγ), where factor rν is found from the energy conservation
law: (ξ′

αν
)2 +(ξ′

βν
)2 = (1 − rν)(ξ2

λν
+ ξ2

μν
)+ rν(ξ2

λν+sν
+ ξ2

μν −sν
). The following power interpolation is used

for approximation of the product of distribution functions after the collision:

f ′
αν

f ′
βν

= (fλν fμν )1−rν (fλν+sν fμν −sν )rν (4)

This interpolation provides strict equality of the collision integral of the Maxwellian distribution function
to zero, which is especially important for simulation of slow flows and flows containing slightly disturbed
regions.

Let the solution take the form f = fM +εf (1) where εf (1) is the deviation from the Maxwell distribution
and ε � 1. Substituting this solution in the collision integral and considering (4), we arrive at:

I(f, f) = I(fM , fM ) + 2εI(fM , f (1)) + ε2I(f (1), f (1)) (5)

Since the principal part of integral I(fM , fM ) is calculated exactly, it follows from (5) that the collision
integral calculation error reduces approximately (2ε)−1 times.

Thus in the projection method only one 8-fold integral (3) is calculated instead of calculating N0 5-
fold integrals (2), which is more economical. Irrespective of the number of integrating grid nodes, strict
observance of the collision integral conservation laws and its equality to zero on the Maxwellian distribution
function are ensured.

The calculation of collision integral (3) consists of a preparation step that is performed only once and
calculation of collision integrals in each space node and at each time step. At the preparation step, a set of
a large number of 8-dimensional integrating grids ξαν

, ξβν
, bν , ϕν is generated on the basis of Korobov grids

[9]. Korobov grids ensure higher accuracy of multidimensional integral evaluation compared to random
node grids. Post-collision velocities ξ′

αν
and ξ′

βν
, relative velocities gν and factors rν are calculated for

each integrating grid ξαν
, ξβν

, bν , ϕν at a specified molecular potential. During the calculation, one of such
extended grids is selected in a random manner at each time step and used for calculation of integral (3) in
all nodes of the physical space.

2.2. Gas mixture
Generalization of the conservative projection method of calculating the collision integral for the case of

gas mixture is implemented by going from the velocity space ξi to the molecule momentum space pi = miξi,
where mi is the molecular mass of the i-th mixture component [10, 11]. The system of kinetic equations for
the N -component gas mixture will take the form:

∂fi

∂t
+

pi

mi
· ∂fi

∂x
=

N∑

j=1

∫
(f ′

if
′
j − fifj)gijbdbdϕdpj (6)

The collision integral for the i-th equation is defined by the following formula:

Ii(pγ) =
1
4

∑

k

∑

j

∞∫

−∞

∞∫

−∞

2π∫

0

bm∫

0

φi(pγ)(f ′
kf ′

j − fkfj)gbdbdϕdpkdpj (7)

Operator φi(pγ) in (7) is similar to the projection operator for a monocomponent gas. The other
calculations are performed similarly to the monocomponent gas case.
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2.3. Consideration of rotational degrees of freedom
Consideration of the effect of rotational degrees of freedom may be required for molecular gases since the

characteristic time of rotational relaxation is comparable with the time between molecular collisions. To this
end the generalized Boltzmann equation (Wang Chang-Uhlenbeck equation) can be used [12]. The method
of solving this equation is proposed in [13], however this calls for significant computational resources and
we use an approximate approach based on application of the 2LRT model of rotation-translation transitions
[14].

2.4. Organization of calculations
We have developed a problem-solving environment [15] that allows simulating flows in channels of different

geometry at specified physical properties of the gas and gas/surface interaction model. It includes algorithms
of building grids in the coordinate space and in the velocity (momentum) space, algorithms of finite-difference
approximation of the advection operator of the kinetic equation of the first and second order of accuracy,
parallel computing algorithms built around the domain decomposition technique, data input/output interface
and graphics programs.

The number of computational nodes varied from 107 to 109, and the size of the Korobov grids laid in
the interval from 5 · 104 up to 106 points depending on the problem. The paralleling algorithm provides
the linear growth of the performance with increasing number of computational nodes [15, 16]. The largest
computational time was for the problem from chapter 3.4, it took 24 hours using 20 dual-core Xeon 5160
3HGz (the simulation was performed with the MIPT-60 supercomputer).

3. Examples of simulation

Presented below are fragments of numerical investigations of various flows performed using the method-
ology described above.

3.1. Flow structure of thermal creep

h/2

x

T

T1

T2

n,T1 n,T1

Figure 1: (a) Thermal creep problem geometry (b) Streamlines in steady state, Kn = 0.1

Thermal creep flow develops along a nonuniformly heated surface and is a driving force of thermomolec-
ular Knudsen pumps operating in the rarefied gas regime. The simplest Knudsen pump is shown in Figure
1(a). It represents two vessels connected by a narrow channel where a temperature gradient is established.
The flow is considered in plane geometry. Let the wall temperature of the left-hand vessel be T1 and the
wall temperature of the right-hand vessel be T2 = 2T1. A gas flow to the hot vessel will develop near the
channel walls due to thermal creep, which will cause a reverse flow along the channel center. In steady-state
conditions, these flows equilibrate, which produces vortex flows in the channel and vessels. The flow was
calculated on a rectangular grid with a variable spacing in the physical space. The left-hand side of the
Boltzmann equation was approximated by the explicit TVD scheme of the second order of accuracy.

738 Y.A. Anikin et al. / Procedia Computer Science 1 (2012) 735–744



Yu.A. Anikin, E.P. Derbakova, O.I. Dodulad, Yu.Yu. Kloss, D.V. Martynov, O.A. Rogozin, P.V. Shuvalov,
F.G. Tcheremissine / Procedia Computer Science 00 (2010) 1–10 5

The flow structure is shown in Figure 1(b) in the form of streamlines taking into account the flow
symmetry. The Knudsen number Kn = λ/h is defined from the molecular mean free path λ in the left-hand
vessel and from the channel width h. The free path at T1 = 300K and atmospheric pressure is λ ≈ 0.1 μm,
which gives h ≈ 1 μm and the maximum dimensional velocity value vmax = 3.5 m/s.

2L

H/2h/2

x

T

T1

T2

n,T1 n,T1

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 0  20  40  60  80  100  120

P
x

Figure 2: (a) Geometry of a simple multistage Knudsens pump and its wall temperature (b) Distribution of pressure along the
channel axis of the 10-stage pump

Another pump design is shown in plane geometry in Figure 2(a). The pump consists of two channels of
different width that produces a gas flow directed from the narrow channel to the wide one. It was precisely
this design that was studied by Knudsen in 1910 [17].

The calculation was performed for the following values of dimensionless parameters: T1 = 1, T2 = 2,H =
2h, L/h = 16/7.

Figure 3 shows steady-state flow fields for two Knudsen numbers defined from the half-width of the
narrow channel. Figure 2(b) shows steady-state distribution of pressure along the channel axis for a cascade
of 10 pumping units at Kn = 0.5 as shown in Figure 2(a).

3.2. Simulation of a 3D single-stage Knudsen pump
The device represents a long cylindrical tube consisting of a narrow channel with radius r and a wide

channel of radius R > r. Along the wide channel, the temperature increases linearly from T1 to T2 > T1,
and along the narrow one the temperature decreases linearly from T2 to T1. An unstructured tetrahedral
grid is built in the physical space as shown in Figure 4(a).

The grid was built with the GMSH code [18] using the Delaunay triangulation method optimized by
means of the Netgen algorithm.

Let us describe the pumping process for argon at r/λ = 1.25, T2/T1 = 1.5. The pumping level will
be characterized by the pressure ratio a = p2/p1, where p1 is the gas pressure in the vessel being pumped
out and p2 the gas pressure in the vessel being pumped in. The value t0 =

√
kT0/(mλ2) is taken as time

unit. Figure 5(a) shows the level of pumping versus time for the hard spheres potential and Lennard-Jones
potential.

Figure 4(b) shows steady-state pressure distribution produced with the help of the Paraview code [19].
Figure 5(b) presents a plot of gas pumping versus Knudsen number. The most efficient mode of the pump
operation is implemented at λ = r.

3.3. Gas mixture separation in a Knudsen pump
The possibility of separating a gas mixture in a Knudsen pump is studied in plane geometry. The system

geometry is shown in Figure 8(a). There is considered a binary mixture of molecules representing hard
spheres having the same diameter but different masses m1 = 10m, m2 = m, which corresponds to the
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Figure 3: Steady-state flow distribution for different Knudsen numbers: (a) Kn = 0.1, (b) Kn = 1.5

Figure 4: (a) Unstructured mesh for 3D Knudsen pump (b) Steady-state pressure distribution

helium-argon mixture. The initial ratio of gas concentrations was chosen as n1/n2 = 2/1 and the initial
pressure in the system p = const. The wall temperature of the left-hand and right-hand vessels is maintained
at T1 = T and T2 = 0.5T , respectively and decreases linearly from T1 to T2 along the walls of the slit channel.

Main parameters under observation is the pumping Δp(t)/p and concentrations of the mixture compo-
nents in the left-hand and right-hand vessels η1(t) = n1(t)/(n1+n2) and η2(t) = n2(t)/(n1+n2). Respective
curves are shown in Figures 6(a), 6(b), 6(c). The pressures and concentrations were measured in points A
and B. It should be noted the pumping does not monotonically vary with time. This can be explained by
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Figure 5: (a) Pumping versus time (b) Pumping versus Knudsen number
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Figure 6: (a) pumping evolution (b) concentrations in the left-hand vessel (c) concentrations in the right-hand vessel

light molecules fairly quickly transferring to the left-hand vessel thus building up pressure in that vessel,
with heavy molecules leaving the vessel at a much lower rate. The maximum pumping falls on the 15000-th
time step, which corresponds to τ = 100. At the 75000-th step the pumping attains a constant level of 4.8%.
Figures 7(a), 7(b) show the pressure fields and concentration ratios fields at the 75000-th time step.

3.4. Shock wave incidence on a periodic slit structure
Incidence of a plane shock wave (SW) on a periodic structure consisting of microslits is considered. The

problem geometry is shown in Figure 8(b), where CDE is the diffuse reflection slit wall. The length of
segment CD is twice the width of slit h. The wall temperature is equal to the undisturbed gas temperature,
AC and HF are symmetry lines with mirror boundary conditions. The boundary condition set on AH
represents the Maxwellian function with parameters beyond the SW, that on EF – the Maxwellian function
with undisturbed gas parameters and on BG – the initial position of the SW. The initial structure of the
incident wave in the form of molecular velocity distribution function is calculated in advance on the basis
of a one-dimensional SW problem and placed in the computational domain with the center on line BG.

The simulation was performed for the incident wave Mach number M = 3 and several Knudsen numbers
Kn = 2λ/h, where λ is the free path in the undisturbed gas and h is the slit width. Figures 9(a), 9(b)
present results of calculations for the gas of hard spheres molecules at Kn = 0.05 and times 9.6, 138.2,
respectively. Values of main parameters of the gas along the slit center (density, temperature, longitudinal
velocity component and local Mach number) are shown at the top of each figure. Early in the process,
at t = 9.6, the gas velocity on the flow symmetry line behind the slit entrance is higher than the velocity
beyond the entrance. The SW is slightly amplified. It is seen from the flow fields that at that moment the
maximums of the velocity and temperature are at some distance from the symmetry line rather than in the
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Figure 7: (a) Pressure field at the 75000-th step (b) Concentration ratio field at the 75000-th step
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Figure 8: (a) Device geometry (b) Computational domain for shock wave problem

slit center. Near the symmetry line the SW structure is close to that of the plane SW. Subsequently the flow
decelerates and the temperature and velocity maximums move to the central line. Reflected SW forming
can be observed to the left of the slit entrance.

4. Conclusion

The examples above show that the developed methodology of solving the Boltzmann equation allows one
to efficiently calculate flows of simple gases and gas mixtures in micro- and nanosize channels. It can be
used both for calculation of slow slightly disturbed flows and for simulation of nonsteady supersonic flows
with shock waves.
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Figure 9: (a) Gas parameters for Kn = 0.05 at t = 9.6 (b) Gas parameters for Kn = 0.05 at t = 138.2
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