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Rett syndrome (RTT) is an X-linked genetic disorder and amajor cause of intellectual disability in girls.Mutations
in the methyl-CpG binding protein 2 (MECP2) gene are the primary cause of the disorder. Despite the dominant
neurological phenotypes,MECP2 is expressed ubiquitously throughout the body and a number of peripheral phe-
notypes such as scoliosis, reduced bone mineral density and skeletal fractures are also common and important
clinical features of the disorder. In order to explorewhetherMeCP2 protein deficiency results in altered structural
and functional properties of bone and to test the potential reversibility of any defects, we have conducted a series
of histological, imaging andbiomechanical tests of bone in a functional knockoutmousemodel of RTT. Bothhemi-
zygousMecp2stop/ymalemice inwhichMecp2 is silenced in all cells and femaleMecp2stop/+mice inwhichMecp2
is silenced in ~50% of cells as a consequence of random X-chromosome inactivation, revealed significant reduc-
tions in cortical bone stiffness, microhardness and tensile modulus. Microstructural analysis also revealed alter-
ations in both cortical and cancellous femoral bone between wild-type and MeCP2-deficient mice. Furthermore,
unsilencing ofMecp2 in adultmice cre-mediated stop cassette deletion resulted in a restoration of biomechanical
properties (stiffness, microhardness) towards wild-type levels. These results show that MeCP2-deficiency results
in overt, but potentially reversible, alterations in the biomechanical integrity of bone and highlights the importance
of targeting skeletal phenotypes in considering the development of pharmacological and gene-based therapies.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).
Introduction

Rett syndrome (RTT), traditionally considered a neurodevelopmental
disorder, mainly affects girls and is due principally to mutations in the
X-linked gene methyl-CpG-binding protein 2 (MECP2) [1,2]. The age of
onset is typically around 6–18 months after birth with characteristic
symptoms including loss of speech, reduced head growth, stereotypic
handmovements, motor dysfunction and autism-like features [2]. Whilst
it is well established that the majority (N95%) of classical RTT cases are
due tomutations in theMECP2 gene, the underlying function and regula-
tion of MeCP2 protein remains unclear [3–6]. MeCP2 is a nuclear protein
and is especially abundant in the brain. However, it is also expressed
throughout the body [7–9] and in addition to the neurological pheno-
types, a number of overt peripheral phenotypes are also common in
RTT. For instance, spinal deformity (principally scoliosis and excessive
and Psychology, West Medical
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kyphosis) is a very common feature,with ~50–90% of patients developing
severe scoliosis [10–12], many of whom require corrective surgery. Other
prominent skeletal anomalies include early osteoporosis, osteopenia,
bone fractures and hip deformities [13–17]. Previous studies have
found that Rett syndrome patients have reduced bone mass [18–21].
As a result, RTT patients have an increased risk of fractures and com-
monly sustain low-energy fractures [22]. Whilst MeCP2 is known to
be expressed in bone tissues and studies have suggested a role of the
protein in osteoclastogenesis [23], the role of MeCP2 in bone homeosta-
sis is poorly defined.

Themonogenic nature of RTT enables the disorder to bemodelled in
experimental animals. Many lines of mice have been developed in
which Mecp2 has been deleted, silenced or mutated to mimic major
humanmutations. These mouse lines replicate many of the features ob-
served in RTT patients [5,24–28] and provide valuable tools for investi-
gating MeCP2-related function/dysfunctions. An initial investigation
into the skeletal system in Mecp2-knockout mice revealed a range of
skeletal phenotypes including alterations in skeletal size, growth plate
abnormalities and alternations in cortical and trabecular bone mass
the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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andmineralization [29]. The authors concluded that these featureswere
consistent with an overall deficit in osteoblast function.

In the current study, we have used a range of anatomical, structural
and biomechanical testing methods to investigate the biomechanical
and material properties of the long bones in mice harbouring a func-
tional knockout ofMecp2. Additionally, we have tested the reversibility
of biomechanical phenotypes following un-silencing of theMecp2 gene.
Material and methods

Experimental animals

Mecp2stop/+ mice in which the endogenous Mecp2 allele is silenced
by a targeted stop cassette (Mecp2tm2Bird, Jackson Laboratories Stock
No. 006849) were crossed with hemizygous CreER transgenic mice
(CAG-Cre/ESR1, Jackson Laboratories Stock No. 004453) to create exper-
imental cohorts [30]. A breeding strategy of crossing C57BL6/J/CBA F1
animals and using the F2 offspringwas adopted as described previously
[30]. The genotype of the mice was determined by polymerase chain
reaction (PCR) [26]. Mice were housed in groups with littermates,
maintained on a 12-h light/dark cycle and provided with food and
water ad libitum. Experiments were carried out in accordance with
the European Communities Council Directive (86/609/EEC) and a
project licence with local ethical approval under the UK Animals
(Scientific Procedures) Act (1986). The unsilencing of theMecp2 (re-
moval of stop cassette, henceforth known as rescue mice) was
achieved by tamoxifen (100 mg/kg) administered via intraperitone-
al injection following regime described previously [30]. Briefly, male
mice (wild-type,Mecp2stop/y andMecp2stop/y, CreER (Rescue))were given
one injection of tamoxifen (100 mg/kg) per week for 3 weeks (age
6–8 weeks) followed by 4 daily injections in consecutive days in the
4th week (age 9 weeks). Mice were then culled at 14 weeks (Fig. 1). Fe-
male mice display a more delayed onset RTT-like phenotype and were
given an equivalent tamoxifen treatment regimen at 18 months of age
(3weekly followed a 4 daily injections) before being culled at 20 months.
Wild type controlmicewere treatedwith tamoxifen in parallel with their
littermates. Samples from the same age-matched cohorts were used for
imaging, biomechanical and histological tests. Mice were culled by cervi-
cal dislocation and stored frozen at−20 °C for biomechanical studies. For
histological studies, mice were deeply anaesthetized with pentobarbi-
tone (50 mg/kg, intraperitoneally) and transcardially perfused with 4%
paraformaldehyde (in 0.1 M phosphate buffer, pH 7.4). To establish
MeCP2 expression in bone tissues, we used a MeCP2-GFP reporter line
as described previously [31] and with sections imaged by laser scanning
confocal microscopy (Bio-Rad Radiance 2100, UK).
Fig. 1. Experimental design of tamoxifen regime (rescuing) of Mecp2stop/y, CreER. Experi-
mental design of the current study showing treatment (A) and sampling phases (B) in
male mouse comparison cohorts. Wild-type (Wt), Mecp2stop/y (non rescue) and Mecp2-
stop/y, CreER (rescue) were given one injection of tamoxifen (100 mg/kg) per week for
3 weeks (age 6–8 weeks) then followed by 4 daily injections in consecutive days in the
4thweek (age 9 weeks). Mice were then culled at 14 weeks and bones sampled for imag-
ing, histology and biomechanical testing.
Specimen preparation and morphometric measurements

Both right and left femurs and tibias along with the 5th lumbar ver-
tebrae from each mouse were carefully dissected out. Femur and tibia
whole bone wet weight measurements were taken using an analytical
balance (APX60, Denver Instruments, UK). The femur and tibiawere im-
aged using a WolfVision Visualizer VZ9.4F (WolfVision Ltd., Maiden-
head, UK) and gross lengths were measured using Axiovision 4.8
Software (Carl Zeiss Ltd., Cambridge, UK). Femoral length measure-
ments were taken from the proximal aspect of the greater trochanter
to the distal end of bones, along the line of the shaft. Tibial length
measurement was taken from the proximal aspect of the head of the
tibia to the distal most aspect of the medial malleolus. Samples were
then stored at−20 °C in 0.1Mphosphate buffer prior to further testing.
Right femurs were used for mechanical testing (the proximal part for
the femoral neck test, the midshaft for microindentation) and left
femurs were used for the bone histology (the proximal femur for sirius
red andTRAP staining, the distal femur for scanning electronmicroscopy).
Right tibias were used for μCT and three-point bending tests. The
5th lumbar vertebrae were used for bone mineral density and trabecu-
lar bone structure measures. The right humeri were used for analysis
of the bone mineral structure using Small Angle X-ray Scattering
(SAXS).

Micro-computed tomography (μCT)

Tibias and lumbar 5 vertebras were scanned with a SKYSCAN®
1172/A μCT Scanner (Bruker, Belgium). Images were reconstructed
and analysed using the NRecon 1.6.6.0 and CT-Analyser 1.8.1.3 software
(Bruker, Belgium). For the tibia, 34 μm resolution was used and the
X-ray tube was operated at 54 kV and 185 μA. Bone samples were
scanned in physiological 0.9%NaCl solution. For cortical bone parameter
analyses, tibial 2 mm midshaft regions of interest (ROI) were selected,
starting from the anatomical point of the tibiofibular junction in each
specimen. A lower grey threshold value of 113 andupper grey threshold
value of 255 was used as thresholding values in each cortical bone
sample. Individual two dimensional object analyses were performed
on six sections per specimen within each comparison genotype group
to calculate the inner and outer perimeters of bone. Three dimensional
analyses were further used to calculate cortical thickness, marrow
area, cortical area, total area, bone volume and second moment of area.

Lumbar 5 vertebrae were scanned at a resolution of 5 μm. The X-ray
tube was operated at 41 kV and 240 μA. A lower grey threshold value of
81 and upper grey threshold value of 252 was used as thresholding
values in each trabecular bone sample. A cylindrical region of interest
(150 slices or 0.774mm)was selected from the centre of each vertebral
body. Calibration of the standard unit of X-ray CT density from Houns-
field units to volumetric bone mineral density (vBMD) was conducted.
ROIs were analysed for the following parameters: trabecular thickness,
trabecular separation, trabecular bone volume, trabecular porosity, as
well as degree of anisotropy (DA) and structure model index (SMI).

Mechanical tests

Right tibial and femoral shafts from each comparison groupwere sub-
jected to mechanical testing (three point bending and microindentation
tests respectively) after the μCT. The mechanical tests were designed
to test the cortical part of bone. The tests were performed using a
Zwick/Roell z2.0 testing machine (Leominster, UK) with a 100 N load
cell [32].

Three-point bending test

Tibias were placed on the lower supports, at 8 mm separation, with
the posterior surface of the tibia facing down. Load was applied with a
loading rate of 0.1 mm s−1 on the shaft of the tibia using the Zwick/
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Roell testing machine until the fracture occurred (Fig. 3A). Data were
analysed to determine values of stiffness, ultimate load and Young's
modulus using the following formula:

Young0smodulus ¼ stiffτ � Ls3
48 � I ð1Þ

where stiffτ is the stiffness. Ls is the separation of the supports and I is
the second moment of area of the tibias. The stiffness was calculated
by measuring the slope of the force-displacement graph and the ulti-
mate load by measuring the maximum force that the bone was able to
resist. The second moment of area was calculated using the microCT
data and ImageJ software v1.47 and the plug-in Bone J.

Micro indentation hardness test

The micro indentation hardness test was performed on equivalent
transverse distal mid-shaft sections of right femur for each mouse/
genotype. Bone sections were air dried and embedded in metallurgical
mounting resin (EPO Set Resin, Meta Prep, UK) and themoulds allowed
to solidify at room temperature for 24 h. The bone cross-section surface
was subsequently polished using silicon carbide paperswith decreasing
grain size (240, 400, 600, 800, 1200) and diamond paste (15, 6 and
1 μm) to produce a smooth surface.

After the sample preparation,micro hardness testingwas performed
using a Wilson Wolport Micro-Vickers 401MVA machine (UK), with an
applied load of 25 g for 100 sec. The bone was tested at seven points for
each specimen (Fig. 4A). The Vickers pyramid hardness number (HV)
was calculated using Eq. 2 where the load (L) is in grammes force and
the average length of the two diagonals (D) is in millimetres:

HV ¼ 1:854
L
D2

: ð2Þ

Femoral neck fracture test

The femoral neck fracture testwas used to test themechanical prop-
erties of the femoral neck. The shaft of the femurwas fixed in amechan-
ical chuck and placed in the Zwick/Roell mechanical testing machine.
The bone was clamped at a 9° angle lateral to the vertical axis of the
bone as described previously [32]. Load was applied to the femoral
head until fracture occurred. Stiffness was obtained from the slope of
the force-displacement curve and the ultimate load obtained was from
the maximum force that the bone was able to resist.

Bone histology

Proximal parts of the femurs were decalcified in 11% EDTA (pH 8.0,
5 N NaOH) for 14 days. Samples were embedded in paraffin wax and
5 μm longitudinal sections were cut on a microtome (Leica RM2035,
Milton Keynes, UK). Alternate sections were stained with sirius red
staining for collagen content and Tartrate-resistant acid phosphatase
(TRAP) staining for osteoclasts. The sirius red staining was completed
using the picro-sirius red method as described [33] followed by
counterstainingwith haematoxylin. To standardize staining, all sections
were stained in a single batch. To assess the collagen content, sections
from the proximal femur shaft were stained with sirius red and bright
field images collected (n = 5 for each mouse) using an Axioskop50
microscope with a 40× objective (Zeiss, Cambridge, UK) and Carl Zeiss
AxioCam MRc camera (Zeiss, Cambridge, UK). Five regions of interest
(approximately 219 μm × 164 μm), were selected for quantification,
and averages per section were taken as the final measures for each
genotype. The % area of red pixels corresponding to collagen fibres,
relative to total tissue area, was estimated using a colour segmenta-
tion plugin in ImageJ (Biomedical Imaging Group, EPFL, Switzerland:
http://bigwww.epfl.ch/sage/soft/colorsegmentation/) using inde-
pendent colour channels and the K-means algorithm.

Scanning electron microscopy

Distal femurs were sectioned transversely just above the condyles
and stored in 2.5% paraformaldehyde in 0.1 M sodium phosphate buffer
(pH 7.4) at 4 °C for 48 h. Adherent soft tissue was removed by immer-
sion in 3% hydrogen peroxide solution for 48 h. After rinsing with dis-
tilled water, specimens were defatted in 50:50 methanol/chloroform
for 24 h at room temperature and transferred to a 5% trypsin solution
(0.1 M PB, pH 7.4) at room temperature for 48 h. After cleaning with
distilled water, specimens were desiccated prior to preparing on
a sputter coater (Polaron E5000, East Sussex, UK). Images were ob-
tained using a scanning electron microscope (Stereoscan 250 MK3,
Cambridge, UK).

Small Angle X-ray Scattering

Small Angle X-ray Scattering (SAXS) was used to assess the nano-
scale bone mineral structure of the cortical bone in the humerus of the
female mice. Five right humeri from each group of the female mice
were formalin fixed, dehydrated in a series of increasing concentration
alcohol solutions and embedded in methylmethacrylate resin. A trans-
verse slice was cut from the mid shaft and polished down to 100 μm
thickness.

The I911-SAXS beamline of the MAX II ring (1.5 GeV) at the MAX IV
Laboratory (Lund University, Lund) was used [34]. A monochromatic
beam of wavelength 0.91 Å was obtained using a Si(111) crystal and
collimated down to 100 μm by 100 μm at the sample. The q-range
measured was 0.01–0.30 Å−1. Measurements were conducted with
the samples mounted on an x–y motorised stage and a step size of
100 μm with an exposure time of 5 s at each point was used to scan
the cross-section of the bone [35]. The detector used was a PILATUS
1M (Dectris Ltd.). Themineral plate thickness, predominant orientation
and degree of orientation of the mineral crystals were calculated for
each scattering image as described earlier [35–37]. Only scattering
images where the signal level indicated the presence of cortical bone
were analysed.

Data analysis and statistics

Unless states otherwise, all data is given as mean ± standard
deviation (S.D.). For statistical analysis of imaging, biomechanical and
histological data, one way ANOVA with Tukey's post hoc test were
conducted using Prism 5.0 (Graphpad, USA) with alpha being 0.05.

Results

MeCP2 protein is particularly abundant in post-mitotic cells of the
brain, but is also widely expressed throughout the body [7,9,38]. In
order to confirm that bone cells express MeCP2 we used a reporter
mouse line in which MeCP2 expresses a C-terminal GFP tag [31]. We
observed that all bone cells express nuclear GFP fluorescence in both
wild type male (Fig. 2A) and female mice (data not shown). In contrast,
GFP fluorescence is absent in hemizygousMecp2stop/y mice (Fig. 2B), in
which Mecp2 is silenced by a stop cassette, and is observed in ~50% of
nuclei in heterozygous Mecp2+/stop mice in which one Mecp2 allele is
silenced to mimic the mosaic expression pattern seen in human female
Rett syndrome [26,30] (Fig. 2C). In order to determine any gross skeletal
abnormalities caused by MeCP2 deficiency, the tibia and femur of male
Mecp2stop/ymice togetherwithwild-type littermateswere examined for
gross morphometric and weight measures (Table 1). No difference in
whole body weights was observed between genotypes in male mice
(Wt = 31.88 ± 3.85 g; Mecp2stop/y = 28.14 ± 4.07 g; Mecp2stop/y,
CreER = 27.74 ± 2.68 g; n = 5 per genotype; p b 0.05, ANOVA

http://bigwww.epfl.ch/sage/soft/colorsegmentation/


Fig. 2.MeCP2 is expressed widely in bone tissues. (A) Low power and (ii–iv) high power
micrographs of transverse sections taken from mid shaft mouse femur showing GFP ex-
pression in all DAPI-labelled nuclei in a male Mecp2+/y mouse in which the native
MeCP2 is taggedwith a C-terminal GFP. Note that MeCP2 is restricted to the nucleus of os-
teocytes as indicated by the complete overlap with DAPI staining but present in all nuclei.
(B) GFP expression is not observed in mice in which MeCP2 expression is functionally
silenced by a neo-stop cassette. (C) Low power (i) and (ii–iv) high power micrographs
showing mosaic expression of GFP-tagged MeCP2 protein in ~50% of DAPI positive nuclei
in a female heterozygous Mecp2+/stop mouse in which one Mecp2 allele is functionally
silenced. All scale bars: 100 μm.

109B. Kamal et al. / Bone 71 (2015) 106–114
with Tukey's post hoc test) or in the female comparison genotypes
(Wt = 32.72 ± 5.59 g; Mecp2+/stop = 41.70 ± 7.15 g; Mecp2+/stop,
CreER = 39.47 ± 9.77 g; n = 5 per genotype; p b 0.05, ANOVA
with Tukey's post hoc test). Mecp2stop/y mouse femurs showed a
significantly reduced weight in comparison with wild-type (Wt) lit-
termate controls and Mecp2stop/y, CreER (Wt = 51.90 ± 3.77 mg;
Mecp2stop/y = 44.80 ± 3.41 mg; Mecp2stop/y, CreER = 51.80 ±
5.87 mg; n = 5 per genotype; p b 0.05, ANOVA with Tukey's post hoc
test). A similar trend was observed in Mecp2stop/y mouse tibias, weight
measures (Wt = 55.50 ± 2.11 mg; Mecp2stop/y = 49.20 ± 1.21 mg;
Mecp2stop/y, CreER = 52.12 ± 2.96 mg; n = 5 per genotype; p b 0.05,
ANOVAwith Tukey's post hoc test). There was an accompanying reduc-
tion in tibial length (p b 0.01), but no significant difference in femoral
length between groups (p N 0.05) (Table 1). Female Mecp2+/stop

showed no significant difference in tibial weight or length in compari-
sonwithWt orMecp2+/stop, CreERmice inwhichMecp2was reactivated
7 weeks prior to testing (all p N 0.05) (Table 1).

Biomechanical testing revealed genotype differences in bone properties

In order to explore possible differences in themechanical andmate-
rial properties of MeCP2-deficient bone, tests were applied to femurs
Table 1
Morphmetric measurements of male and female mice.

Male mouse

Wild-type Mecp2stop/y Mecp2

Femur weight (mg) 51.90 ± 3.77 44.80 ± 3.41⁎, a 51.80
Femur length (mm) 13.78 ± 0.23 13.62 ± 0.22 13.70
Tibia weight (mg) 55.50 ± 2.11 49.20 ± 1.21⁎⁎, a 52.12
Tibia length (mm) 17.66 ± 0.84 15.94 ± 0.48⁎⁎, a 16.88
Average body weights (g) 31.88 ± 3.85 28.14 ± 4.07 27.74

Boneweight and bodyweight measures inmale and female cohorts. All data given as mean ± S
ANOVA with Tukey's post hoc test.
⁎ p b 0.05.
⁎⁎ p b 0.01.
a Comparison betweenWt and Mecp2stop/y.
b Comparison betweenMecp2stop/y and Mecp2stop/y, CreER.
and tibias isolated frommale hemizygousMecp2stop/y mice and from fe-
male heterozygousMecp2+/stop mice together with their wild-type and
treated (unsilenced Mecp2) littermates.

Three point bending test

In order to test the mechanical properties (stiffness, ultimate load
and Young's modulus) of compact bone a three point bending test
was applied to tibial shafts (Fig. 3A). It revealed a reduced structural
stiffness (Fig. 3B; Wt = 106.8 ± 17.88 N/mm; Mecp2stop/y = 64.7 ±
10.50 N/mm; Mecp2stop/y, CreER = 90.7 ± 14.83 N/mm, n = 5 per
genotype; p b 0.01, ANOVA with Tukey's post hoc test), ultimate
load (Fig. 3C; Wt = 17.50 ± 2.45 N; Mecp2stop/y = 12.09 ± 1.94 N;
Mecp2stop/y, CreER = 15.7 ± 0.08 N; n = 5 per genotype; p b 0.01,
ANOVA with Tukey's post hoc test) and Young's modulus (Fig. 3D;
Wt = 10.52 ± 0.69 GPa; Mecp2stop/y = 7.14 ± 1.61 GPa; Mecp2stop/y,
CreER = 11.92.4 ± 2.06 GPa; n = 5 per genotype; p b 0.01, one way
ANOVA with Tukey's post hoc test) measures in male Mecp2stop/y

mice. Samples from Mecp2stop/y, CreER mice revealed that stiffness,
ultimate load and Young's modulus measures were not different from
wild-type values (Fig. 3B–D).

The same tests when conducted on tibias from female Mecp2+/stop

mice showed no significant difference in stiffness, load or Young's mod-
ulus (Fig. 4; all p N 0.05).

Microindentation hardness test

To assess the material hardness of bone, mid-shaft femur was dis-
sected from each mouse and subjected to micro indentation testing
(Fig. 5A). Results from male mice showed significantly reduced bone
hardness in Mecp2stop/y mice compared to wild-type littermates
(Fig. 5B). Moreover, tamoxifen-treated Mecp2stop/y, CreER mice did
not differ significantly from wild-type and showed a significant treat-
ment effect when compared with the Mecp2stop/y cohort (Fig. 5B;
Wt = 73.7 ± 1.3 HV, Mecp2stop/y = 65.4 ± 1.2 HV, Mecp2stop/y,
CreER = 72.1 ± 4.7 HV, n = 5 per genotype, p b 0.01, ANOVA with
Tukey's post hoc test). A significant deficit in bone hardness was also ob-
served in female Mecp2+/stop femurs (Fig. 5C; Wt = 72.8 ± 6.3 HV,
Mecp2+/stop = 63.2 ± 3.0 HV, Mecp2+/stop

, CreER = 75.7 ± 2.2 HV,
n = 3–5 per genotype; p b 0.01, ANOVA with Tukey's post hoc test).
Again, rescue mice showed a significant treatment effect and measures
were not found significantly different from wild-type.

Femoral neck fracture test

This test was conducted to assess possible group differences in the
mechanical properties of the femoral neck (Fig. 6A). In male mice,
no significant differences were observed in stiffness (Fig. 6B; stiff-
ness: Wt = 130 ± 35.1 N/mm; Mecp2stop/y = 119 ± 28.2 N/mm;
Mecp2stop/y, CreER = 131 ± 13.9 N/mm, n = 5 per genotype;
Female mouse

stop/y, CreER Wild-type Mecp2+/stop Mecp2+/stop, CreER

± 5.87⁎, b 84.66 ± 9.47 79.50 ± 8.64 87.40 ± 6.99
± 0.20 14.15 ± 0.57 13.45 ± 0.87 14.02 ± 0.02
± 2.96 68.84 ± 4.08 66.60 ± 2.98 68.80 ± 10.40
± 0.51 16.33.0 ± 0.66 15.90 ± 1.52 15.31 ± 0.59
± 2.68 32.72 ± 5.59 41.70 ± 7.15 39.47 ± 9.77

.D. for each group of samples (n ≥ 5 per genotype). Significance was assessed by oneway

image of Fig.�2


Fig. 3. Three-point bending test reveals mechanical deficits in the tibia of male
MeCP2-deficient mice. (A) Mouse tibia were placed on the posterior surface across
two supporting bars with a distance of 8 mm apart and a load was applied to the
anterior surface of shaft until the bone fractured. In male mice the measures of
(B) cortical bone stiffness (p b 0.01; one way ANOVA with Tukey's post hoc test; n = 5
tibia per genotype), (C) ultimate load (p b 0.01) and (D) Young's modulus (p b 0.05)
were significantly reduced in Mecp2stop/y (Stop) mice as compared to wild-type (Wt),
and genetically rescuedMecp2stop/y; CreER (Rescue) mice. Abbreviation: ns = not signifi-
cant; *p b 0.05, **p b 0.01. Plots show mean ± S.D.
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p N 0.05, ANOVA with Tukey's post hoc test), or ultimate load (Fig. 6C;
Wt = 15.9 ± 3.9 N; Mecp2stop/y = 12.6 ± 2.4 N; Mecp2stop/y, CreER =
13.4 ± 2.2 N, n = 5 per genotype, p N 0.05, ANOVA with Tukey's post
hoc test). Similar findings were obtained in the female groups (Fig. 7).
Fig. 4. Three-point bending test reveals nomechanical deficits in the tibia of heterozygous
Mecp2+/stop mice. Bar plot showing measures of (A) cortical bone stiffness, (B) ultimate
load and (C) Young's modulus in female wild-type (Wt), Mecp2stop/+ (Stop) and
Mecp2stop/+ (Rescue) mice (one way ANOVA with Tukey's post hoc test; n = 3–5 per
genotype). Abbreviation: ns = not significant; plots show mean ± S.D.

Fig. 5.Microindentation hardness test reveals a significant but reversible reduction in cor-
tical bone hardness in MeCP2-deficient mice. (A). Mouse femur (i) was sectioned at mid-
shaft, mounted, polished and assessed by microindentation (ii; indentation marks shown
by arrows). B. Microindentation test in male mice revealed a significant reduced cortical
bone hardness inMecp2stop/y (Stop) mice when compared with the wild-type (Wt) con-
trols (p b 0.05, one way ANOVA with Tukey's post hoc test, n = 5 femurs per genotype).
In contrast, microhardness measures in rescued Mecp2stop/y, CreER (Rescue) mice were
not different from controls (p N 0.05; n = 5 femurs). (C) Microindentation hardness test
results in female mice showed a similar pattern with reduced cortical bone hardness in
Mecp2+/stop (Stop) mice when compared with wild-type (Wt) controls and rescued
mice (n= 3–5 femurs per genotype, one way ANOVAwith Tukey's post hoc test). Abbre-
viations: ns = not significant (* = p b 0.05, ** = p b 0.01, *** = p b 0.001). Plots show
mean ± S.D.
Mecp2stop/y mice showed reduced collagen content and altered trabecular
bone structure

Picrosirius red staining of the femurwas used to assess collagen con-
tent (Fig. 8A) as described previously [39]. Mecp2stop/y mice showed a
significant decrease (−24%) in collagen content compared to Wt mice
(Fig. 8B; Wt = 65.1 ± 8.6%; Mecp2stop/y = 48.8 ± 9.1%; Mecp2stop/y,
CreER = 55.63 ± 11.4%; n = 10 per genotype, p b 0.01, one way
ANOVA with Tukey's post hoc test).

TRAP staining was conducted to assess resorption activity (osteo-
clast number per bone surface), but showed no difference between ge-
notypes (Wt= 12.61± 8.51;Mecp2stop/y = 17.48± 6.13;Mecp2stop/y,
CreER = 18.90 ± 4.61; n = 5 per genotype, p N 0.05, one way ANOVA
with Tukey's post hoc test).

Qualitative analysis using scanning electron microscopy (SEM) of
the distal femur (n = 5 per genotype) revealed porous structure in
cortical bone (3 of 5 mice) as well as alterations in the architecture
of trabecular bone in Mecp2stop/y mice (Fig. 9A–B). The central
metaphyseal region in Mecp2stop/y mice showed a sparse trabecular
mass consisting of short, thin trabecular rod and plate structures. In
contrast, a more robust trabecular structure, with a network of shorter
and thicker rods and plates was found in wild-type control tissue
(Fig. 9Ai–ii). The porosity and altered trabecular structure was less evi-
dent in rescued Mecp2stop/y, CreER mice (Fig. 9C). These features were
investigated further and a quantitative manner using μCT (below). In
contrast to the male mice, we did not observe overt tissues differences
in heterozygous Mecp2stop/+ mice.
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Fig. 6. Femoral neck test revealed no alteration in bio-mechanical properties in
MeCP2-deficient mice. (A) Image showing femoral neck test in which load was applied
downward onto the femoral head until the femoral neck fractured. Results in male mice
showed no significant difference in measurements of (B) bone stiffness or (C) ultimate
load between wild-type (Wt), Mecp2stop/y (Stop) and Mecp2stop/y, CreER (Rescue) mice
(p N 0.05; one way ANOVA; n= 5 per genotype). Plots showmean ± S.D. Abbreviations:
ns = not significant.

Fig. 8. Sirius red staining revealed a reduced collagen content in MeCP2-deficient mice.
(Ai) Longitudinal section of proximal femur stained with sirius red to reveal collagen.
Regions of interest (ROI) from shaft of proximal femur were selected for quantification.
Collagen content was measured in (ii) wild-type (Wt), (iii) Mecp2stop/y (Stop) and
(iv) Mecp2stop/y, CreER (rescue) comparison groups. (B) Bar chart showed that %
Collagen content was reduced in Mecp2stop/y (Stop) mice as compared to wild-type
(Wt; p b 0.01). Abbreviations: ns = not significant (* = p b 0.05, ** = p b 0.01; one
way ANOVA with Tukey's post hoc test). Plots show mean ± S.D.
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Micro computed tomography (μCT) show altered trabecular and cortical
bone parameters in Mecp2stop/y mice

Three dimensional μCT analysis was performed to obtain a quantita-
tive measure of trabecular architecture in wild-type, Mecp2stop/y and
Mecp2stop/y, CreER mouse lumbar 5 (L5) vertebrae (Fig. 10A). A signifi-
cant reduction of L5 trabecular thickness (~30%) was observed in
Mecp2stop/y mouse tissues compared to the wild-type control. Interest-
ingly Mecp2stop/y, CreER mouse L5 μCT results, showed a significant in-
crease (+80%, p b 0.01) in trabecular rod and plates thickness
compared to Mecp2stop/y mice (Fig. 10B–E; Wt = 0.073 ± 0.01 mm;
Mecp2stop/y = 0.051 ± 0.02 mm; Mecp2stop/y, CreER = 0.09 ±
0.02 mm; n = 7 per genotype; p b 0.01, ANOVA with Tukey's post
hoc test). No significant differences were observed in trabecular sep-
aration, trabecular bone volume, trabecular porosity, bone mineral
density (BMD), degree of anisotropy (DA) and structure model index
(SMI) between genotypes (Table 2). μCT analysis of tibia showed a sig-
nificant difference in cortical bone thickness, outer perimeter length,
inner perimeter length, marrow area, total area and bone volume in
Mecp2stop/y mouse compared to wild-type controls (p b 0.05, n = 7
per genotype, ANOVA with Tukey's post hoc test). Bone perimeter,
total area and bone volume values remained decreased in Mecp2stop/y,
CreER mice. These data are summarized in Table 2. μCT analysis of fe-
male tibia showed no difference in cortical bone parameters between
the three comparison genotypes (data not shown).

SAXS shows negligible changes in mineral particle size and orientation

No differences could be seen between the mineral plate thickness
in the three groups when calculated using the Bünger method (Wt=
Fig. 7. Femoral neck test revealed no alteration in bio-mechanical properties in female
MeCP2-deficient mice. Bar plots showing no significant difference in measures of
(A) bone stiffness or (B) ultimate load between wild-type (Wt), Mecp2stop/+ (Stop) and
Mecp2stop/+, CreER (Rescue) mice (all p N 0.05; ANOVA; n = 3–5 per genotype). Plots
show mean ± S.D. Abbreviations: ns = not significant.
3.24 ± 0.26 nm, Stop = 3.20 ± 0.15 nm and Rescue= 3.31 ±0.12 nm).
Similarly the degree of orientation (where 0 = no alignment and 1 =
perfect alignment) showed no significant difference (Wt = 0.572 ±
0.009, Stop = 0.575 ± 0.005 and Rescue = 0.576 ± 0.014). In general
the mineral orientation was circumferential, thus making an average
mineral orientation calculation irrelevant. However, when the data
was considered in detail, the Stop bones showed more pixels
where the scattering intensity signal was below the level normally con-
sidered to be cortical bone, indicating the decreased organisation of the
tissue.

Discussion

The results of our current study show thatMeCP2-deficiency inmice
results in altered material, structural and functional properties of bone
tissues. There is a growing awareness of skeletal anomalies (low energy
fractures, scoliosis, kyphosis) in Rett patients [8,10,11,13–15,18–21,
40–56] and the aim of the current project was to assess further the na-
ture and tractability of bone phenotypes. Our morphometric analysis
showed a reduction in long bone weight and, in the case of the tibia, a
reduction in length inMecp2stop/ymice. Such findings are generally con-
sistent with those reported in the Mecp2-null mouse by O'Connor and
colleagues [29] and reflect the fact that MeCP2-deficient male mice
are generally smaller and display a kyphotic appearance [25]. However,
the Mecp2-stop line used in the current experiments did not show
differences in bodyweight. Furthermore, our study showed that adult
female heterozygous Mecp2+/stop mice did not show differences in
gross tibia and femur length/weight measures. Female Mecp2+/stop

mice are a gender appropriate and accurate genetic model of RTT yet
show more subtle and delayed onset (4–12 months) neurological fea-
tures [26] compared to hemizygous male mice.

A major finding of the current study was the demonstrated robust
deficits in mechanical properties and micro-hardness of bone seen in
themaleMecp2stop/y mice. Such deficiencies inmechanical andmaterial
properties were profound (32.1% reduction in stiffness in the three
point bending test; 31% reduction in maximum load and 12.3% reduc-
tion in microhardness). Males with Rett syndrome are extremely rarely
diagnosed, possibly due to the early death of these patients, prior to
neurological diagnosis of Rett syndrome and there are no clinical re-
ports of bone phenotypes in males. However the above findings could
nevertheless explain the occurrence of low energy fractures reported
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Fig. 9. Scanning electron microscopy reveals pitted cortical bone and altered trabecular structure in distal femur of male MeCP2-deficient mice. Scanning electron micrographs of distal
femur in (Ai) wild-type (Wt) and (Bi)Mecp2stop/y (Stop). Higher powered images of cortical (ii) and metaphyseal (iii) regions (areas indicated in A) reveal a more porous structure in
cortical bone (arrows in Bi indicate pores) and a sparse trabecular structure inMecp2stop/y micewhen compared with representativewithWt controls. (Ci–iii) Representativemicrograph
from a Mecp2stop/y, CreER (Rescue) mouse.
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in female Rett syndrome patients [15–17,50,57]. Whilst Mecp2-
knockout mice display many of the neurological features seen in
Rett patients (motor impairments and abnormal breathing), there
are important differences in Rett-like phenotypes in mice and
those observed in patients. In particular, females with RTT develop
symptoms as young children whereas heterozygous Mecp2-KO mice
develop overt phenotypes late on in adulthood and they are generally
muchmilder. For instance, spontaneous seizures and autonomic abnor-
malities are common in patients but rarely seen in mice. As such RTT-
like phenotypes in mice are considered much less severe and in this re-
spect is could be argued that the RTT-like phenotypes seen in male
Mecp2-KO mice are somewhat closer to the clinical picture (juvenile
onset of symptoms which then become very severe) although, like
Fig. 10. μCT scans of L5 vertebrae revealed thinner trabecular mass in MeCP2-deficient
mice. (A) μCT image showing trabecular region of interest (ROI) selected within the 5th
Lumbar vertebral body. (B–D) Micrographs showing representative trabecular samples
from wild-type (Wt), Mecp2stop/y (Stop) and Mecp2stop/y, CreER (Rescue) mice. (E) Bar
plot showing quantitative analysis of trabecular thickness (arrows in B–D). Note the re-
duced thickness in Mecp2stop/y samples (p b 0.05; n = 7 per genotype). Scale bar: A,
200 μm; B–D, 50 μm. Abbreviations: ns = not significant (* = p b 0.05, ** = p b 0.01;
one way ANOVA with Tukey's post hoc test). Plots showmean ± S.D.
RTT in male patients, the consequence of mutation/KO is invariably
fatal beyond early/mid adulthood. Whilst we have not observed overt
signs of spontaneous fractures in experimental colonies of mice, such
a magnitude of reduced bone stiffness and load properties could mirror
the 4 times increased risk of fracture in Rett patients compared to the
population rate [15]. That a similar reduction in microhardness (and a
trend towards reduced biomechanical properties) was seen in female
mice (Figs. 4, 5 and 7) that are heterozygous andmosaic for the mutant
allele, demonstrate that the bone deficits are not restricted to the more
severemale RTT-like phenotype but are seen in a gender andMeCP2 ex-
pression pattern appropriate model of RTT, albeit one that is milder
than RTT in human females. Analysis of femoral neck fracture showed
no difference between genotypes. It is possible that the complexmicro-
structure of bone in the femoral neck (cf. the simple cortical shaft geom-
etry) is a confounding factor and limits the sensitivity of this test.
Indeed, we also noted greater variance in this test than in the other bio-
mechanical tests which may also limit our ability to resolve subtle
changes in this parameter. However, it is also possible that any deficits
are too subtle to be detected given the power of the current study.
Whilst group sizes of the order used in the current experiments enable
the unambiguous detection of overt neurological phenotypes, it is likely
that bone phenotypes are more subtle and thatmuch larger group sizes
would be required to detect subtle changes in histological and biome-
chanical phenotypes, especially in heterozygous Mecp2+/− mice.

An important finding of the current study and one with therapeutic
implications is that the observed deficits in cortical bone material and
biomechanical properties were rescued by delayed postnatal activation
of the Mecp2 gene. This finding mirrors the improvements seen in
multiple non-bone phenotypes seen in the Mecp2stop/y mice after
delayed activation of the Mecp2 gene including survival, normal-
ized bodyweight, locomotor and behavioural activities [26,30].
These results suggest that the bone abnormalities present in RTT
patients may be at least partially reversible using gene-based ther-
apies that are currently being developed [58,59]. However, it is also
possible that significant amelioration of bone phenotypes may also
be achieved using pharmacological strategies. Of particular impor-
tance for this approach is to identify the mechanisms by which
MeCP2 deficiency results in altered bone properties. Whilst we
show that MeCP2 is expressed in osteocytes, the protein is widely
expressed throughout the body and it is possible that metabolic
and endocrine perturbations elsewhere in the body also impact
on bone homeostasis.
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Table 2
μCT results showing cortical and trabecular bone parameter in Wt, Mecp2stop/y andMecp2stop/y, CreER.

Trabecular bone parameters Cortical bone parameters

Trabecular bone parameters Wild-type Mecp2stop/y Mecp2stop/y, CreER Cortical bone parameters Wild-type Mecp2stop/y Mecp2stop/y, CreER

Bone volume fraction% 12.35 ± 5.75 11.13 ± 4.67 16.99 ± 8.92 Outer perimeter (mm) 1.65 ± 0.22 1.32 ± 0.07⁎, a 1.38 ± 0.05⁎, c

Bone mineral density g/cm3 0.96 ± 0.07 0.93 ± 0.068 0.94 ± 0.60 Inner perimeter (mm) 1.26 ± 0.08 1.12 ± 0.07⁎, a 1.08 ± 0.05⁎⁎, c

Bone surface density mm2/mm3 8.15 ± 3.05 8.93 ± 3.11 11.29 ± 5.99 Cortical thickness (mm) 0.41 ± 0.17 0.19 ± 0.07⁎, a 0.21 ± 0.08⁎, c

Specific bone surface mm2/mm3 70.25 ± 12.73 78.10 ± 17.92 66.14 ± 9.90 Marrow area (mm2) 0.48 ± 0.14 0.30 ± 0.02⁎⁎, a 0.29 ± 0.03⁎⁎, c

Connectivity density 1/mm3 215.90 ± 93.80 180.90 ± 47.80 271.60 ± 111.25 Cortical area (mm2) 0.81 ± 0.08 0.75 ± 0.13 0.69 ± 0.04
Structure model index 1.03 ± 0.56 0.72 ± 0.67 1.00 ± 0.48 Total area (mm2) 1.26 ± 0.17 1.05 ± 0.11⁎, a 0.98 ± 1.04⁎⁎, c

Trabecular number 1/mm 1.65 ± 0.52 2.12 ± 0.63 1.81 ± 0.72 Bone volume (mm3) 1.75 ± 0.21 1.39 ± 0.19⁎, a 1.39 ± 0.11⁎, c

Trabecular thickness mm 0.07 ± 0.02 0.05 ± 0.02⁎, a 0.09 ± 0.02⁎⁎, b

Trabecular separation mm 0.62 ± 0.36 0.48 ± 0.26 0.14 ± 0.31
Degree of anisotropy 2.63 ± 1.31 2.95 ± 0.88 2.46 ± 0.59
Mean intercept length 0.15 ± 0.04 0.11 ± 0.03 0.32 ± 0.35

Summary table showing μCT analysis of cortical (tibia midshaft) and trabecular (body of 5th lumbar vertebrae) bone. All data given asmean ± S.D. for each group of samples (n ≥ 5 per
genotype). Significance was assessed by one way ANOVA with Tukey's post hoc test.
⁎ p b 0.05.
⁎⁎ p b 0.01.
a Comparison betweenWt and Mecp2stop/y.
b Comparison betweenMecp2stop/y and Mecp2stop/y, CreER.
c Comparison between Wt andMecp2stop/y, CreER.
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The precise molecular role of MeCP2 in the nucleus remains unclear
[4,6,60,61], but it is generally considered to regulate gene expression. As
collagen is themost abundant gene product and structural determinant
in bone, we conducted an initial analysis of collagen content and distri-
bution using sirius red staining. The decreased levels of intense sirius
red stain observed in the MeCP2-deficient mice is consistent with re-
duced collagen [56] and the patches of reduced staining resemble
those features characteristic of early osteoporosis [17]. Indeed, the
osteopathic features of RTT (minimal bone deformity, low energy
bone fractures, and tendency towards spinal curvature) are similar
to those reported in collagen type 1 genetic disorder (osteogenesis
imperfecta; brittle bone disease) [62] pointing towards the possible im-
portance of collagen defects in RTT. In addition to structural protein, we
also investigated the resorptive properties of the bone in terms of TRAP
staining. The lack of any difference in osteoclast number between geno-
types is consistentwith a previous report [29] and suggests the possible
absence of any primary defect in bone remodelling. Similarly, the limit-
ed effects seen in SAXS analysis the bone at the nanometre scale
indicates minimal change in the mineral phase of bone, but there is an
indication that the amount and slightly more macroscale tissue organi-
sation is affected.

Despite this finding, qualitative analysis by scanning electron mi-
croscopy did reveal altered trabecular architecture (widely spaced and
thin trabeculae) in Mecp2stop/y mice, consistent with the overall osteo-
porotic picture and suggesting clear structural differences between
genotypes which would be consistent with reduce bone integrity. The
cortical area surrounding the central rod andplatemass showed charac-
teristic pits inMecp2stop/y whichweremuch less numerous inwild-type
controls. These could result from increased nutrient foramina or poorly
laden osteoporotic bone due to osteoblast dysfunction. The quantitative
μCT findings from only the trabecular portion of L5 vertebrae were
carried out and the results are consistent with the SEM findings in
that the trabecular thickness was significantly reduced in Mecp2stop/y

mice. As with the functional tests on long bones, trabecular thickness
was normalized to wild type levels upon unsilencing Mecp2 in the
Mecp2stop/y, CreER cohort, indicative of a pronounced phenotypic rescue
and evidence of structural remodelling upon activation of MeCP2 anal-
ogous to structural remodelling demonstrated in the brain [30].

A surprising finding of the current study was the absence of any
bone mineral density (μCT) differences between genotypes. Reduced
bone mass is commonly associated with osteoporotic phenotypes [50,
63–65] and bone mineral content differences have been reported in
Mecp2-null mice [29]. The lack of observed differences (weight, length,
density) in the current study may be due to differences betweenmouse
models (strain, mutation type, age). Both the synthesis of collagen and
its mineralization are crucial for the bone tissue biomechanical proper-
ties and % collagen content is an important marker of biomechanical
strength of bone, independent of the bone density [66]. Given this, it is
possible that the functional deficits identified in the current study are
due to abnormalities in structural proteins of bone tissue rather than
the gross mineral content. We aim to resolve this issue in future studies
by exploring further the nanostructure of cortical bone as well as indi-
vidual structural proteins.
Conclusions

In this study we have identified a range of anatomical, biomaterial
and biomechanical abnormalities in bone of MeCP2-deficient mice and
have shown that many of these features are potentially reversible by
reactivating theMecp2 gene, even in fully adult mice. These results sug-
gest that bone phenotypes may be important yet tractable features of
RTT and should be considered in future studies aimed at developing
pharmacological and generic interventions for the disorder.
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