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Systematic Phenomics Analysis Deconvolutes
Genes Mutated in Intellectual Disability
into Biologically Coherent Modules

Korinna Kochinke,1,5 Christiane Zweier,2,5 Bonnie Nijhof,1 Michaela Fenckova,1 Pavel Cizek,3

Frank Honti,4 Shivakumar Keerthikumar,3,6 Merel A.W. Oortveld,1 Tjitske Kleefstra,1 Jamie M. Kramer,1,7

Caleb Webber,4 Martijn A. Huynen,3,* and Annette Schenck1,*

Intellectual disability (ID) disorders are genetically and phenotypically extremely heterogeneous. Can this complexity be depicted in a

comprehensive way as ameans of facilitating the understanding of ID disorders and their underlying biology?We provide a curated data-

base of 746 currently known genes, mutations in which cause ID (ID-associated genes [ID-AGs]), classified according to IDmanifestation

and associated clinical features. Using this integrated resource, we show that ID-AGs are substantially enriched with co-expression,

protein-protein interactions, and specific biological functions. Systematic identification of highly enriched functional themes and

phenotypes revealed typical phenotype combinations characterizing process-defined groups of ID disorders, such as chromatin-related

disorders and deficiencies in DNA repair. Strikingly, phenotype classification efficiently breaks down ID-AGs into subsets with signifi-

cantly elevated biological coherence and predictive power. Custom-made functional Drosophila datasets revealed further characteristic

phenotypes among ID-AGs and specific clinical classes. Our study and resource provide systematic insights into the molecular and clin-

ical landscape of ID disorders, represent a significant step toward overcoming current limitations in ID research, and prove the utility of

systematic human and cross-species phenomics analyses in highly heterogeneous genetic disorders.
Introduction

Intellectual disability (ID) affects as much as 2% of our

population and is characterized by significant limitations

in intellectual functioning and adaptive behavior.1,2

Because of its high frequency, limited treatability, and

required lifelong care, ID is an important socioeconomic

and health-care issue.

The clinical presentation of ID is highly heterogeneous.

It can range from learning difficulties to profound cogni-

tive impairment, and it can occur either non-specifically

without further anomalies or in a more complex, syn-

dromic context. A large proportion of ID is caused by mu-

tations in single genes (ID-associated genes [ID-AGs]).

Identification of these genes is still largely incomplete,3,4

limiting our understanding of the underlying biology.

This makes ID a major challenge in diagnostics and trans-

lational medicine.

Whereas studies on specific subgroups of ID dis-

orders have indicated that convergent molecular path-

ways underlie common phenotypic aspects,5–7 ID-AGs

on a more global scale (yet not systematic) have been

argued to differ from genes implicated in autism in that

they show poor biological convergence.8 A comprehen-

sive picture of ID-AGs, ID-AG properties, gene-phenotype
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relations, and molecular modularity of ID is yet to be

established.

Here, we provide a systematic, curated ID-AG catalog

with associated core phenotypes and introduce a clinical

classification system, accessible to other scientists in an

interactive web-based database. Integration of custom-

made and public data into this resource allowed resolving

ID-AGs and ID disorders into biologically meaningful sub-

groups with significantly increased co-expression, protein

interactions, and specific functions. Our analyses also

identified typical phenotype combinations characterizing

ID disorders that are linked to specific molecular processes,

such as chromatin regulation and DNA repair, and found

that public datasets contain patterns that provide insights

into ID pathology and increase predictive power. Finally,

we provide two large-scale functional ID-AG datasets

generated inDrosophila and use these to define further pre-

dictive patterns that underlie ID.
Material and Methods

ID-Associated Gene Catalog
The ID-AG list was compiled from primary and secondary9 litera-

ture and OMIM. Reasons to exclude genes from the ID-AG catalog

were as follows:
d Behaviour, Radboud university medical center, 6525 GA Nijmegen, the

angen-Nürnberg, 91054 Erlangen, Germany; 3Centre for Molecular and Bio-

d university medical center, 6525 GA Nijmegen, the Netherlands; 4Medical

tomy, and Genetics, University of Oxford, Oxford OX1 3QX, UK

r Science, La Trobe University, Bundoora VIC 3086, Australia

ol of Medicine and Dentistry, Western University, London, ON N6G 2M1,

@radboudumc.nl (A.S.)

y of Human Genetics. All rights reserved.

ican Journal of Human Genetics 98, 149–164, January 7, 2016 149

mailto:martijn.huijnen@radboudumc.nl
mailto:annette.schenck@radboudumc.nl
http://dx.doi.org/10.1016/j.ajhg.2015.11.024
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ajhg.2015.11.024&domain=pdf


A

B

Figure 1. Systematic Analyses of Genes Implicated in ID Reveal Functional Groups and Molecular Modules
(A) Gene Ontology-based annotation of ID-AG function. Bar diagrams show enrichments of ID-AGs in each of the indicated Gene
Ontology-based groups against the genome-wide background. The total number of genes per group is displayed in the respective bar.
(Benjamini-Hochberg, *padj < 0.05, **padj < 0.01, ***padj < 0.001.)

(legend continued on next page)
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(1) Low evidence, e.g., genetic data based on only one or

two single individuals with de novo mutations or a single

family with a missense mutation (from 2014 on); gene-dis-

rupting translocations or deletions but no mutational

confirmation of the candidate gene in other individuals;

or clinical description of the disorder without genetic

testing or confirmation.

(2) Pure neurodegenerative manifestation, indicated by sec-

ondary onset of intellectual disability with regression of

initial normal abilities or by a progressive disease course

with deterioration of cognitive abilities.

(3) Very early lethality, thus precluding proper assessment of

psychomotor development.

(4) Treatability, indicated by avoidance of decline in cognitive

ability by substitution of certain factors, e.g., consequences

of hypothyroidism, which can be avoided by thyroid hor-

mone substitution.

(5) Neurologic phenotype without a clear indication of cogni-

tive impairment.

The excluded genes were compiled in an ID-AG candidate list

and are available in the Systems Biology Approaches to ID (SysID)

database (see Web Resources). Two versions of the ID-AG list were

used in this study: (1) a set of 388 ID-AGs, published as of mid-

2010, for the basis of the in-house Drosophila screens and (2) a

larger set of 650 ID-AGs, published as of January 2014, for all

non-Drosophila analyses.

Clinical Classification
The large clinical heterogeneity of ID disorders comprises isolated

(non-syndromic) ID, syndromic ID accompanied by various

specific clinical phenotypes, and multisystemic disorders where

ID constitutes only one of many aspects. Moreover, ID varies in

severity and penetrance. In order to obtain a systematic and ver-

satile yet manageable amount of phenotypic information, we

designed a bipartite phenotype-based classification system for

ID disorders. The classification consists of six higher-order su-

per-classes comprising nine clinical classes according to the

occurrence of non-syndromic or syndromic ID with or without

congenital malformations (‘‘syndromicity,’’ x axis in Figure 2A)

and according to manifestation (e.g., atypical), severity, and

penetrance of ID, the latter two of which correlate with each

other (‘‘manifestation, severity, and penetrance,’’ y axis in

Figure 2A; see also Figure S2). In the case of genetically heteroge-

neous disorders, only gene-specific clinical information was used

for the respective phenotype classification. A clinical expert an-

notated the phenotypic classification, and a second clinical

expert revised the main classes independently. Discrepancies

were discussed and jointly agreed on. In addition, ID-accompa-

nying phenotypes for all ID disorders in the list were assembled.

These comprise 27 additional features describing further symp-

toms and anomalies of various organ systems (Figure 2B and

Figure S2). Letters A–X indicate the presence of specific clinical

features and were added when the (estimated) reported frequency

of the respective symptom was at least 20%–30%. A confidence

criterion ‘‘limited number of affected individuals’’ was imple-
(B) Physical PPI network of ID-AG products. Circles indicate highly c
proximity (Figure S1). Genes directly connecting to communities ar
nected communities. Dark gray indicates nodes without associated
at least a first-degree connection to communities. ID-AGs without co
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mented in the database and indicates limited availability of clin-

ical information.

SysID Database
ID-AG-related information includes a short gene description

and the human gene info (Entrez ID, Ensembl ID, HUGO gene

name, Human Protein Reference Database [HPRD] ID, synonyms,

Gene Ontology-based terms, and chromosomal location). Gene-

related disease information is provided per associated disease

and includes OMIM disease numbers and mode of inheritance.

Further clinical information is provided either by a non-vocabu-

lary-controlled summary of characteristic symptoms or by either

a PMID fromGeneTest review entries or a primary reference (Table

S1). Furthermore, Drosophila orthologs and identified phenotypes

were uploaded into the database (CG number; FlyBase ID, gene

name, and symbol; Vienna Drosophila Resource Center [VDRC]

RNAi line identifiers; and phenotypes), as shown in Table S2.

Candidate genes associated with autismwere annotated according

to the Simons Foundation’s SFARI database.10 Only genes of high-

confidence categories S and 1–3 were considered. The URL for the

SysID database is provided in the Web Resources.

Gene Ontology-Based Analysis
We used Golem v.2_111 to manually assemble 32 Gene Ontology-

based groups from related Gene Ontology12 terms, and we down-

loaded associated genes and matched them to Entrez IDs. We used

terms of biological process (BP), molecular function (MF), and

cellular component (CC) according to the authors’ knowledge

and research about processes relevant to ID (Table S3).

Protein-Protein-Interaction Network
For analysis of protein-protein interactions (PPIs), we created a

human-specific PPI network containing physical interactions be-

tween proteins. Using Entrez IDs, we merged BioGrid 3.2.108

(release January 1, 2014)13 interactions based on physical associ-

ations (association, direct interaction, physical interaction, and

co-localization with additional biochemical evidence, together

ca. 97% of all BioGrid interactions) with PPIs from HPRD14

(release 9, April 13, 2010). After removal of duplicates and self-

loops, this reference network contained 15,511 proteins and

138,029 connections, including 610 ID-AGs with 505 connec-

tions (Figure 1). We used this reference PPI network for all

manually performed analyses of enrichment, PIE (physical inter-

action enrichment) scores, and connectivity.

Community Clustering
We hierarchically clustered PPI communities obtained from the

R package linkcomm15 on the basis of the number of shared nodes

(after using the Jaccard coefficient to score the pairwise similar-

ities; tree cutoff ¼ 0.99) and visualized them as circles in

Figure 1B and Figure S2.

Clustering ID-Accompanying Phenotypes
We determined the binary matrix of ID-accompanying

phenotypes per gene on the basis of the computed row and
onnected ID-AG communities; similar colors illustrate functional
e colored if they share Gene Ontology-based terms with the con-
Gene Ontology-based terms, and light gray indicates nodes with
nnections to other ID-AGs are not shown.
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column dendrograms and used gplots to visualize them as a

heatmap.16

Network Visualization and Figures
Network visualization was carried out with Cytoscape (v.3.1.1)17

and Adobe Illustrator CS5.

Multiple-Testing Corrections
When performing multiple comparisons, we applied Benjamini-

Hochberg corrections to control for the false-discovery rate. We

determined Benjamini-Hochberg-adjusted p values (padj) with

the R-stats package (v.2.16.0) and the number (n) of p values

obtained within the test (i.e., n ¼ 10 in a test of nine main clinical

classes [1–8b] plus the group ‘‘all 650 ID-AGs,’’ or n¼ 28 in a test of

27 accompanying phenotypes [A–X] plus the group ‘‘all 650

ID-AGs genes’’).

PIE Score
We calculated PIE scores and associated p values for all ID-AGs

against direct PPIs from our reference network by using the PIE

algorithm18 to account for biases in the number of reported inter-

actions for disease-associated genes. Random protein groups were

formed by number-matched sub-samplings selected from the 650

ID-AG set.

Enrichment Analyses
Enrichment for human and Drosophila datasets was calculated as

follows: (a/b)/[(c � a)/(d � b)], where a is the number of genes

that are in a class or ID-accompanying phenotype and have a spe-

cific feature, b is the number of genes in that class or ID-accompa-

nying phenotype, c is the number of genes with that specific

feature, and d is the total number of genes. For analyses of human

datasets (phenotypes, Gene Ontology-based terms, and human

postsynaptic density [hPSD]), we used the human genome with

an estimated 20,500 genes or the 650 ID-AG set as a background,

as indicated. For analyses of the generated phenotype groups for

the Drosophila orthologs of the 388 ID-AG set, we used the back-

ground of all targeted fly orthologs. Uncorrected p values were

determined with a two-sided Fisher’s exact test in R.

Co-expression Networks Based on BrainSpan and

GTEx
WeusedtheBrainSpan19developmental transcriptomedataset (RNA

sequencing with Gencode v.10) to examine the overrepresentation

of highly co-expressed genes over all or within brain regions and

time points, and we used GTEx20 data to determine overrepresenta-

tion of highly co-expressed genes over various tissues. To examine

the overrepresentation of highly co-expressed genes among all ID-

AGs, ID classes, and ID-accompanyingphenotype groups in relation

to the rest of the genome, we concatenated the expression coeffi-

cients per gene over all time points (embryonic stage to adulthood)

and brain regions in the BrainSpan dataset. Additionally, we calcu-

lated co-expression enrichment for ID-AGs per brain region over

all time points as well as enrichment for all ID-AGs per brain region

at pre- andpostnatal stages. Also, for theGTExdataset, we combined

expression values for all tissues.We calculated the co-expression cor-

relation for gene pairs among 650 ID-AGs, per phenotype group

(main classes 1–8b and ID-accompanying phenotypes A–X), and

for random groups. For each phenotype group and the 650 ID-

AGs, 10,000 random groups out of the entire gene-expression data-

sets met the following criteria: (1) same group size (e.g., main class
152 The American Journal of Human Genetics 98, 149–164, January 7
1 contains 65 genes, so 10,000 random groups contain 65 genes),

(2) similar distribution of coding-sequence (CDS) length (as

described in Honti et al.21), and (3) similar number of co-expressed

genes (i.e., with a correlation coefficient > 0.3) in the complete

network.Wethencalculatedandcomparedthe sumofco-expression

coefficients for the real and random groups, and we again only

included gene pairs with a correlation coefficient > 0.3. We calcu-

lated p values by comparing howmany of the 10,000 co-expression

coefficients of randomgroupswere equal or higher than those of the

corresponding test group, and we corrected for multiple testing. We

calculated the enrichment score by dividing the sum of the co-

expression coefficient per test group by the mean of the 10,000

random groups per group of interest.

For the co-expression of ID classes or phenotype groups, we

compared the sum of co-expression values within ID classes or

phenotype groups with the sum of co-expression values when

the 650 ID-AGs were randomly distributed over the ID classes or

phenotype groups, while considering group size.

Enrichment of Connectivity within ID Phenotype

Classes
We calculated the overall connectivity of main clinical classes and

ID-accompanying phenotypes among 650 ID-AGs by the median

of (1) the number of PPIs based on our reference PPI network per

clinical classe or ID-accompanying phenotype, (2) the co-expres-

sion levels per clinical class according to BrainSpan, and (3) the

co-expression levels per ID-accompanying phenotype according

to GTEx. For randomized classes, all 650 genes were shuffled be-

tween all classes controlled for class size, and the median of con-

nectivity of all classes was calculated. This randomization was

repeated 10,000 times. The enrichment (number of interactions

divided by the median of the connectivity of random samples)

was calculated, and p values (number of random samples with a

connectivity equal to or higher than the real gene set) were ob-

tained. This was done for bothmain clinical classes and ID-accom-

panying phenotypes.

Precision-Recall Analysis
To test whether the functional coherence of genes associated with

the same ID class, ID super-class, or ID-accompanying phenotype

manifests in their increased predictability, we performed leave-

one-out cross-validations by taking advantage of an integrated

phenotypic-linkage network described elsewhere.21 To assess the

predictability of a class, we rank ordered all 17,011 genes in the in-

tegrated network by the sum of their link weights to the ten class

genes most strongly linked to them, and the highest-ranking

genes were predicted to be associated with the given class. The

results of these analyses were represented by precision-recall

curves, which show the proportion of true positives at different

levels of coverage of known class genes (recall) in the predictions.

To indicate the significance of the results, we evaluated expected

precision values with randomly selected gene sets sub-sampled

from among the 650 ID-AGs; the area they covered was color

coded according to the corresponding p value. For evaluating all

650 ID-AGs, we used random genes controlled for both node de-

gree and CDS length from the integrated network to calculate

the expected precision values.

Controlling for Node Degree and CDS Length
The node degree of a given gene was defined as the number of

genes linked to this gene in the network. To control for both
, 2016



node degree and CDS length during the co-expression randomiza-

tions based on BrainSpan and GTEx and precision-recall calcula-

tion, we selected random genes that matched the node degree

and CDS length of the studied genes. For each of the studied genes,

we assigned a list of 100 genes with the same or most similar node

degree and CDS length by using the longest CDS of each gene. We

normalized the node degrees and CDS lengths and calculated the

Euclidean distance between genes on the basis of these two mea-

sures. We used this Euclidean distance to form lists of the 100

genes most similar to each of the studied genes. We then assem-

bled random gene sets by selecting one random gene from each

of these lists.21

Fly Stocks and Breeding Conditions
For the neuronal screen, we used an elav-Gal4 promoter line from

the Bloomington stock center (BL25750: P{w[þmW.hs] ¼ GawB}

elav[C155] w[1118]; P{w[þmC] ¼ UAS-Dcr-2.D}2), and for the

wing screen, we used the trp05/MS1096 promoter line from

the Bloomington stock center (BL25706: w[1118] P{w[þmW.hs] ¼
GawB}Bx[MS1096]; P{w[þmC] ¼ UAS-Dcr-2.D}2). Stocks and

crosseswere cultured according to standard procedures andon stan-

dard fly food. Crosses for the neuronal screen were raised on 28�C
and 60% humidity, and crosses for the wing-screen were raised on

25�C and 60% humidity, both at a 12/12 hr day/night cycle.

Drosophila Orthology and Genetic Manipulation
We mapped 388 human ID-AGs identified as of mid-2010 to

their corresponding orthologs in Drosophila melanogaster by using

Ensembl’s orthology classes (Ensemblv72_June2013),22 treefam

annotations,23 and manual curation. One-to-one and one-to-

many (fly-to-human) criteria identified 294 orthologs for 388

human ID-AGs. For conditional knockdown, we used the UAS-

GAL4 system24 in combination with UAS-RNAi lines from the

VDRC. Progenies from a cross of the Gal4 driver to the genetic

backgrounds of the UAS-RNAi libraries (vdrc60000, vdrc60100)25

served as controls in all experiments and showed wild-type

morphology and behavior.

Quality-Control Criteria of RNAi Lines
We used at least two independent constructs for each ID-AG (one

from the GD [p-element-based transgenes] and one from the KK

[phiC31-based transgenes] library) when available and selected

RNAi lines with high s19 values, (0.98–1.00 in 97% of all cases;

see the SysID database in the Web Resources), thereby exceeding

the recommended threshold of 0.85 for ensuring high reproduc-

ibility.26 None of the described phenotypes was observed in the

non-induced UAS-RNAi stocks.

Negative-Control Gene Set
We generated random lists of 35 conserved genes until we identi-

fied one that (1) contained no ID-AGs and (2) included genes that

showed average expression in each of the three nervous system tis-

sues (larval CNS, adult brain, and thoracic ganglion) in FlyAtlas.27

Like for ID-AGs, at least two independent RNAi-constructs against

these genes were used if available.

Neuronal Screen with the Island Assay
The assay was performed as previously described28 with minor

modifications. In brief, if gene silencing did not result in lethality,

progenies of the appropriate genotype were collected in batches of

20 and either tested 2 days after collection (4–6 days old) or kept
The Amer
on standard food (changed to fresh food every other day) for later

testing (14–16 days old). Phenotypes observed at the first testing

point were annotated as ‘‘early,’’ and those at the second were an-

notated as ‘‘late.’’ A minimum of 10–20 flies were tested during the

same time window of the day (10 a.m. to 3 p.m.). For the island

assay, we used a soapy water bath with an elevated platform

(‘‘island,’’ 5 3 10 cm) in the middle. We evaluated locomotion

defects by assessing the flies’ ability to immediately fly away after

being dropped from their vial onto the platform from about 10 cm

height. Fractions of the population flying away immediately

(no phenotype) or remaining on the platform (phenotype) were

scored. Behavior of the remaining flies was further evaluated

(‘‘walker’’ [flies walking on the platform], ‘‘sitter’’ [flies not moving

on the platform], ‘‘jumper’’ [flies jumping on the platform], or

a combination thereof). Whenever the independent RNAi

lines tested for a particular gene did not all show the same pheno-

type, abnormal fly behavior or lethality was confirmed by two in-

dependent experiments blind to genotype. The phenotypes ‘‘pro-

gression’’ and ‘‘recovery’’ were assessed according to increasing

phenotype frequency and/or tendency over age. RNAi-to-gene

translation was done in a collective manner (all phenotypes

observed among the tested RNAi lines were associatedwith the tar-

geted Drosophila gene and its human ortholog) for the following

phenotypes: developmental lethality, adult lethality, and all

behavioral phenotypes (early or late walker, early or late sitter,

and early or late jumper). Exceptions were the categories ‘‘pheno-

type progression,’’ ‘‘phenotype recovery,’’ and ‘‘no tendency,’’ for

which only the strongest obtained phenotype was considered

(whereby developmental lethality was stronger than behavioral

phenotype). ‘‘Any phenotype’’ was annotated upon observation

of at least one phenotype, and ‘‘no phenotype’’ was annotated if

no phenotype was found in any of the tested RNAi lines per

gene. See Table S2 for an overview of all observed phenotypes

per gene within the neuronal screen (264 ID-AGs and 31 non-

ID-AGs tested).

Wing Screen
For each genotype, we assessed the viability and the overall

appearance of the wing before mounting the wings for closer

phenotype evaluation. Of each genotype, three to five right wings

of 8-day-old males were collected and dehydrated in a succession

of three solutions (30/70 glycerol/isopropanol, 60/40 glycerol/iso-

propanol, and 90/10 glycerol/isopropanol, each for 10 min).

Wings were mounted in 100% glycerol and stored at 4�C. The
following phenotype categories were evaluated for the screen

(Axio Imager Z1, magnification 53, 103, or 203): wing shape

(curled and cupped, size, and adhesion), posterior margin

(notched or with missing hairs), wing fields (trichome polarity

[missing, density, or disorganized], morphology, and other aspects

[i.e., pigmented spots]), veins (missing and/or extra), and bristles

(sensory organs). RNAi-to-gene translation for the wing screen

was collective (see Neuronal Screen with the Island Assay above).

See Table S2 for an overview and more detailed description of all

observed phenotypes per human gene of the 261 ID-AGs and 31

non-ID-AGs tested.
Results

Mutations in More Than 650 Genes Cause ID

We assembled a systematic, manually curated catalog of

650 ID-AGs (as of January 2014; Table S1) according to
ican Journal of Human Genetics 98, 149–164, January 7, 2016 153



criteria specified in the Material and Methods. Of the 650

ID-AGs, 101 (16%) are implicated in more than one spe-

cific ID disorder. Mutations in 400 of the genes (62%)

follow autosomal-recessive inheritance, mutations in 139

genes (21%) are autosomal dominant (mostly de novo),

and 103 ID-AGs (16%) are X-linked. Our SysID database

(see Material and Methods) currently covers 777 ID-AGs

(updated December 2015) with related phenotypic and

functional data plus 389 ID-associated candidate genes.

Biological Functions of ID-Associated Genes

To characterize the functional coherence and connectivity

among the complete set of 650 ID-AGs, we collected data

from genome-wide resources of annotated gene function,

physical PPIs, and gene co-expression. We used Gene

Ontology-based annotations to ask, given the genome-

wide frequency of genes in each of these processes, which

of them are most enriched and thus most prone to bear

ID-AGs. We found 560 ID-AGs (86%) to associate with at

least one of the 32 Gene Ontology-based annotations

shown in Figure 1A. Whereas the largest groups of ID-AGs

were associated with metabolism, transporters, nervous

system development, RNA metabolism, and transcription,

the most enriched terms were hedgehog signaling, gluta-

mate signaling, peroxisomes, glycosylation, and cilia

(Figure 1A). Frequently discussed themes in ID, such as

synaptic and chromatin-related processes,29–32 although

statistically significant enriched, were found to belong to

neither the biggest nor the most enriched groups.

ID-Associated Genes Show High Connectivity and

Significant Co-expression

We next asked whether ID-AGs and their products,

ID-associated proteins, also show increased molecular

connectivity, modularity, and co-expression. Constructing

PPI networks from HPRD14 and BioGRID13 physical-inter-

action data, we found that nearly half (308 [47%]) of

all ID-associated proteins physically interact with other

ID-associated proteins. Of these, 66 are connected in small

modules (pairs and tri- and quadromers), whereas 242 ID-

associated proteins together form a single major network

with 462 interactions (Figure 1B). Using the PIE approach

to correct for inquisitional biases18 revealed that the 650

ID-AGs show more than a 30% increase in connectivity

(PIE ¼ 1.32, p < 0.0001) over randomly chosen proteins

with the same number of known interactions.

To identify molecular units within the identified ID

networks, we applied unsupervised community clustering

on the protein interactions.15 This identified a molecular

landscape of 21 highly intraconnected and partly intercon-

nected ID modules (Figure 1B and Figure S1).

Furthermore, we found that ID-AGs, on average, show

significantly enriched co-expression in two recently gener-

ated high-content gene-expression datasets, one specif-

ically relevant to the brain (BrainSpan;19 E ¼ 1.04, p ¼
0.0001) and one representing multiple organ systems

(GTEx;20 E ¼ 1.1, p < 0.0001). Interestingly, within the
154 The American Journal of Human Genetics 98, 149–164, January 7
brain, the hippocampus, a primary region controlling

learning and memory, shows the highest level of co-

expression of ID-AGs (E ¼ 1.21, padj < 0.0001; Table S4).

In summary, despite their extreme genetic heteroge-

neity, known ID-AGs show significantly elevated co-

expression in the brain, particularly in a region relevant

to cognitive processes. Moreover, the encoded proteins

converge on a limited number of molecular networks

and show considerable functional coherence.

An Expert-Curated, Phenotype-Based ID-

Classification System

In order to obtain a systematic and versatile yet manage-

able amount of phenotypic information on clinically

extremely heterogeneous ID disorders, we designed a

bipartite phenotype-based classification system and anno-

tated all ID disorders and genes accordingly. First, we

defined ten main clinical classes relating to (1) manifesta-

tion, severity, and penetrance and (2) syndromicity of ID,

and these are summarized in six super-classes (Figure 2A).

The number of ID-AGs in the ten clinical classes varies

from 19 (class 3) to 183 (class 5), with the exception of

class 9, which harbors only one gene (Figures S2A and

S2C). Second, 27 ID-accompanying phenotype categories,

including structural malformations of various organ sys-

tems and functional or behavioral anomalies, were estab-

lished (Figures 2B and S2B).

ID-Accompanying Phenotypes Are Characteristic of

the Underlying Molecular Processes

We first performed hierarchical clustering of ID-AGs

and their associated ID-accompanying phenotypes to

map phenotypically similar groups of ID-AGs and to sys-

tematically unravel which ID-accompanying clinical fea-

tures co-occur most frequently (Figure 3). Furthermore,

Gene Ontology-based analysis revealed that one to several

molecular processes were significantly overrepresented in

ID-AGs associated with specific ID-accompanying pheno-

types than among all ID-AGs. For example, short stature

and ectodermal anomalies were much more co-morbid

and enriched in genes operating in MAPK, growth factor

signaling, and DNA repair than in all ID-AGs (Figure 3,

right-hand side) and especially the whole genome (data

not shown). Endocrine abnormalities and obesity were

tightly linked with each other and co-occurred in a cluster

of 18 ID-AGs and ID disorders dominated by genes with a

function in cilia (Figure 3, red box). Epilepsy, neurological

and metabolic abnormalities, myopathy, lethality, and

non-structural MRI abnormalities co-occurred in a cluster

of 20 genes enriched with mitochondrial function (blue

box). Microcephaly and behavioral abnormalities were

linked to two adjacent ID clusters comprising 20 genes en-

riched with chromatin-related function (yellow boxes).

Twenty ID-AGs presenting merely with behavioral abnor-

malities were enriched with synaptic function (turquoise

box). Of note, each of these clusters also contains genes

that have not been previously associated with these
, 2016
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Figure 2. Bipartite Clinical ID-Classifica-
tion System
(A) Main clinical classes. The ‘‘syndro-
micity’’ axis of ID entities is defined as
follows: classes 1, 4, and 7 comprise
disorders that are syndromic with struc-
tural malformations (SWSM); classes 2,
5, and 8 include disorders that are syn-
dromic without structural malforma-
tions (SWOSM); and classes 3, 6, and 9
comprise non-syndromic (NS) ID disor-
ders. The ‘‘manifestation, severity, and
penetrance’’ axis of ID entities is defined
as follows: classes 1–3 contain disorders
with severe and fully penetrant manifes-
tation of ID (CS), classes 4–6 include dis-
orders with mild to moderate or very var-
iable ID (CM), and classes 7–9 comprise
disorders with ID in a rare (8a) or atypical
(e.g., progressive, neurodegenerative fea-
tures) (8b) manifestation (NC).

(B) ID-accompanying phenotypes: ID-accompanying clinical features that occur with an estimated frequency of >20% within the
respective disorder. Abbreviations are as follows: lifesp, lifespan; and an, anomalies. Clinical features marked with an asterisk
are explained as follows: progression/regression, progression of disease and regression of development; neurological symptoms,
e.g., hypotonia, ataxia, and tremor; metabolic/mitochondrial an., e.g., enzymatic defects; vegetative anomalies, e.g., breathing anom-
alies and increased sweating; behavioral anomalies, e.g., autism and aggression; ectodermal anomalies, e.g., skin, hair, and nail anom-
alies; and eye anomalies, structural and functional. Figure S2 shows the numbers of genes per clinical class and ID-accompanying
phenotype, a network view of the distribution of genes per clinical class, and a distribution of ID-accompanying phenotypes over
main clinical classes.
molecular processes. Hence, this unsupervised analysis

predicts amultitude of previously undescribed ID-AG func-

tions (Figure 3 and Discussion).

In summary, phenotype-based cluster analyses systemat-

ically established gene-phenotype relationships in ID and

revealed compromised molecular processes and machin-

eries that underlie specific phenotype-defined subgroups

of ID disorders.

Phenotype Delineation of Groups of Process-Defined

ID Disorders

To define the typical phenotypic make-up of ID pathol-

ogies that are linked to specific biological processes, we

calculated enrichments of ID-accompanying phenotypes

among Gene Ontology-defined groups of ID-AGs in rela-

tion to their occurrence among all ID disorders (Figure 4).

ID disorders linked to mitochondria, for example, were

characterized by metabolic defects, myopathy, regression,

neurological features, lethality, non-structural MRI brain

defects, blood cell anomalies, and epilepsy, as commonly

appreciated.33 These features were between 1.6- and

6.9-fold more enriched in ID-AGs linked to specific pro-

cesses than in all ID-AGs (0.044 > padj > 2.45 3 10�29).

Among cilia-associated ID disorders, we found strong

enrichment of obesity and urogenital, renal, skeletal, eye,

and brain malformations, which are widely recognized

features of ciliopathies34 (4.4 < E < 13.1; 1.8 3 10�4 >

padj > 7.6 3 10�12), but also endocrine defects (E ¼ 5.2;

padj ¼ 2.3 3 10�4) and behavioral anomalies (E ¼
3.4; padj ¼ 1.6 3 10�3). ID-associated deficiencies in DNA

repair were defined by malignancies, ectodermal anoma-

lies, short stature, and microcephaly (4.1 < E < 8.8;
The Amer
3.23 10�4 > padj > 1.6 3 10�4). Chromatin-related ID dis-

orders can be identified by clefts, cardiac problems, other

malformations, limb anomalies, and short stature (2.6 <

E < 3.2; 1.1 3 10�2 > padj > 9.7 3 10�4). Clinical features

reached even higher enrichment among ID disorders

linked to specific signaling pathways, such as MAPK

signaling (top features: ectodermal anomalies and cardiac

malformations; E ¼ 3.0), Wnt signaling (top feature: other

malformations; E ¼ 7.0), hedgehog signaling (top feature:

limb anomalies; E ¼ 9.7), and BMP signaling (top feature:

vertebral and skull anomalies; E ¼ 103.3) (Figure 4).

In summary, systematic analyses of ID-AGs permitted

clinical delineation of groups of process-defined ID

disorders.

Clinical Classification of ID Disorders Disentangles

ID-Associated Genes into Biologically Meaningful

Modules

To reveal the extent to which human phenotypes can be

used for disentangling the large network of ID-AGs into

biologically meaningful, physically interacting modules,

we determined PIE scores for the clinical classes and for

the ID-accompanying phenotype categories and asked

whether these show a higher degree of connectivity than

the complete group of all ID-AGs (PIE ¼ 1.32, see above).

Most clinical classes (2–5, 7, and 8b) had significantly

higher PIE scores (1.7 % PIE % 10.8, padj < 0.05;

Figure 5A and Figure S3). Comparing the total number of

‘‘within-class’’ PPIs with the number of interactions in

randomly scrambled classes demonstrated that the dis-

ease-based classification successfully captures the molecu-

lar modularity of ID (E ¼ 1.68, p < 0.0001). The same
ican Journal of Human Genetics 98, 149–164, January 7, 2016 155



Figure 3. Relationships among Genes, Phenotypes, and Molecular Function in ID
Hierarchical clustering of ID-AGs and ID-accompanying phenotypes. Phenotypic similarity of (groups of) ID-AGs is indicated by the
proximity of genes (x axis) and the proximity of ID-accompanying clinical features based on their co-occurrence in ID disorders (y
axis). Gene Ontology-based terms that were significantly enriched after multiple-testing corrections in two or more adjacent ID-accom-
panying phenotypes are displayed on the right-hand side. Colored rectangles highlight randomly chosen clusters. These are highly en-
riched with cilia (red), chromatin (yellow), synapses (turquoise), and mitochondria (blue). Genes within the clusters are shown in the
boxes below in the same color code. Those genes that are already associated with the respective Gene Ontology-based term are high-
lighted in bold. Abbreviations are as follow: an, anomalies; malf, malformation; non-struct, non-structural MRI anomalies; hedgehog,
hedgehog signaling; Wnt, Wnt signaling; MAPK, MAPK signaling; and response to GF, response to growth factor.
was true for the ID-accompanying phenotype categories

(24 of 27 had PIE scores between 1.4 and 10.0 [Figure S3]

and were significantly enriched in ‘‘within accompanying

phenotype category’’ connectivity [E ¼ 1.96; p < 0.0001]).

We next asked whether discernible patterns that vali-

date biological coherence of clinically defined ID classes

also exist in other genome-wide data. In BrainSpan

gene-expression data, most clinical classes showed an

elevated level of co-expression in brain when they were

compared to the genomic background and all ID-AGs

(Figure 5B), and the level of co-expression of ID-AGs

within ID classes was significantly higher than for ID-

AGs that were randomly distributed over the ID classes

(E ¼ 1.07; p ¼ 0.012). Likewise, co-expression levels across

human tissues (GTEx) were elevated among most ID clas-

ses (Figure 5C) and among 24 of 27 ID-accompanying

phenotype categories (padj < 0.05 [except F, I, Ub, and E

¼ 1.13], p < 0.0001 for ID-accompanying phenotype clas-

ses versus randomly distributed ID-AGs).

In conclusion, annotation of ID-AGs to clinical classes

and ID-accompanying phenotypes demonstrated that

phenotype classification can deconvolute the large group
156 The American Journal of Human Genetics 98, 149–164, January 7
of ID-AGs into modules with elevated biological

coherence.

Added Value of Human Phenotype Classification for

Prediction of Disease-Associated Genes

We wondered whether publically available functional or

phenotype datasets would be enriched with specific ID

classes. Given that synapse biology has been proposed to

play a central role in ID,29,32 we first determined the dis-

tribution of 1,458 previously reported hPSD proteins.35

Although genes encoding hPSD proteins were highly rep-

resented among all ID-AGs (105 proteins, E ¼ 2.37, p <

0.0001), they were particularly enriched in ID classes 1,

3, and 6 while being strikingly underrepresented in classes

4 and 7 (Figure 5D). A similar distribution (highest enrich-

ment in non-syndromic classes 3 and 6 and striking under-

representation in class 7) was found when we matched

genes associated with co-morbid autism spectrum disorder

phenotypes (SFARI database)10 to ID classes (Figure 5E).

We then performed precision-recall analysis by using

a recently established phenotypic-linkage network21 to

determine the ability of ID-AGs to predict each other on
, 2016



Figure 4. Phenotype Delineation of
Groups of Process-Defined ID Disorders
The typical phenotype combinations char-
acterizing ID disorders associated with a
specific molecular process or system were
defined according to the Gene Ontology-
based groups shown in Figure 1A. The vol-
cano plots show relative enrichments (x
axes in log10 scale) of ID-accompanying
phenotypes (A–X) among the indicated
molecular process or system in relation to
their occurrence among all 650 ID-AGs,
plotted against the corresponding p values
(y axes in �log10 scale). Letters (A–X) refer
to ID-accompanying phenotypes as listed
in Figure 2B. ID-accompanying pheno-
types highlighted in red show significant
specificity (Benjamini Hochberg, padj <
0.05), thus identifying clinical features
that are characteristic of the respective mo-
lecular-process-defined ID disorder group.
the basis of their increased functional similarity (compared

to that among random genes) (Figure 5F). The resulting

precision-recall curve was highly significant (p < 0.001),

reinforcing our findings that known ID-AGs show

considerable functional coherence to an extent that can

be exploited for prioritization and prediction of disease-

associated genes.

Strikingly, testing the added predictive value of individ-

ual ID clinical classes and categories (in comparison to that

of randomly selected ID-AGs) validated that particular clas-

ses of ID-AGs form sub-clusters of significantly increased

coherence and power. This was true for individual main

clinical classes (1, 4, and 8b), super-classes (syndromic ID

with structural malformations), and ID-accompanying

phenotypes (e.g., ID disorders with brain malformations,
The American Journal of Human G
obesity, behavioral abnormalities,

and limb malformations; Figure 5G

and data not shown).

Together, our findings prove the

importance of phenotype consider-

ation in ID-AG prediction and demon-

strate the added value of our human-

phenotype-based classification system

to the predictive power.

Patterns in ID Are Revealed by

Custom-Made Drosophila

Phenotype Data

Lastly, because human phenotypic

information is often limited, we

also aimed to provide proof of

concept that relevant functional

and phenotypic information can be

generated in a customized manner.

We used Drosophila melanogaster, an

established model for ID genetics
and pathology,36 to generate two large-scale functional,

multiparametric datasets for ID-AGs annotated in an

earlier version of the SysID database (388 ID-AGs) by

RNAi-mediated knockdown of their fly orthologs. We

chose two assays covering different functional domains:

behavior and morphology. The RNAi approach is a

suitable global approximation to model the human

disease conditions because (partial) loss of gene function

is thought to be the causative mechanism for the vast

majority of these ID-AGs.37 We used a total of 570

RNAi lines, including two independent RNAi constructs

per gene whenever available (Table S2), and character-

ized ID knockdown models (1) in a behavioral assay

upon neuronal knockdown at two different time points

to distinguish early- and late-onset phenotypes
enetics 98, 149–164, January 7, 2016 157
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Figure 5. Genomic, Proteomic, and Phenotype Datasets Define Predictive Patterns in ID
(A–E) 650 ID-AGs and clinical subsets were matched to public datasets and show patterns relating to clinical classes. (A) PPIs, (B) co-
expression in BrainSpan, (C) co-expression in GTEx, (D) hPSD, and (E) autism candidate genes. Enrichment scores are provided for
nine main classes (1–8b) and the total set of 650 ID-AGs (outer frame). (Benjamini-Hochberg, *padj < 0.05; **padj < 0.01; ***padj <
0.001.) Note that class 8b, belonging to the SWOSM super-class column, is depicted in the third column because of symmetry reasons
and because class 9 contains only a single gene.
(F) The predictive power of 650 ID-AGs to identify ID-AGs in leave-one-out analysis on the basis of proximity in the reference gene
network is illustrated by standard precision-recall analysis. Precision is defined as the number of correctly predicted ID-AGs as a propor-
tion of all genes predicted for a given recall. Recall is the proportion of all ID-AGs that are recovered. The significance of these predictions
was determined by comparison with precision-recall curves obtained with number-matched random genes. These are represented by
gray areas shaded to indicate the p values as shown in the legend and reveal the highly significant power of the 650 ID-AGs to predict
each other from the genome-wide background.
(G) Examples of precision-recall for individual ID clinical classes and ID-accompanying phenotype categories, notably from the 650
ID-AG background. Thus, deconvoluting ID-AGs according to phenotypes results in added predictive value (compared to that of random
IDA-Gs).
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(Figure 6A) and (2) in a morphological assay using

the wing as a model (Figures 6A and 6B and Tables

S2.1–S2.6).

We found that specific Drosophila phenotypes within

both screens were significantly more or less abundant

among ID-AGs than among non-ID-associated control

genes (Material and Methods). Upon neuronal ablation,

ID-AGs showed a consistent tendency for early-onset phe-

notypes (developmental lethality and all early behavioral

phenotypes), but not late-onset phenotypes (Figure 6C).

Progressive phenotypes (which become more frequent at

late testing time points than at early time points) could

be observed in more than 70% of controls but in only

40% of the ID-AG set, which was probably at least

partially attributable to increased developmental lethality

in the latter. In general, the congenital or early-onset

phenotype of ID as a (neuro)developmental disorder ap-

pears to be reflected in corresponding fly phenotypes

such as developmental lethality and early-onset behav-

ioral phenotypes. In the second screen, ID-AG ablation

in the wing revealed that phenotype rates associated

with ID-AGs were higher than those associated with the

control gene set. In particular, specific morphological phe-

notypes such as trichome and vein defects were highly

enriched (Figure 6D).

Resolving ID-characteristic Drosophila phenotypes such

as early behavioral phenotypes and wing morphological

phenotypes according to our human-ID-classification

system, we found that the identified ID phenotype pat-

terns did not arise from an overall enrichment of the

fly phenotype among ID models but rather derived

from specific clinical ID classes. For example, in the

neuronal screen, the phenotypes ‘‘early walker’’ and

‘‘early sitter’’ derived from a high enrichment of pheno-

types associated with ID-AG orthologs of classes 4 and

7 and 1, 4, and 7, respectively (Figure 6E). In the wing

screen, classes 4 and 7 were highly enriched with

Drosophila phenotypes ‘‘wing trichome density,’’ and

classes 3 and 7 were enriched with ‘‘wing veins missing,’’

suggesting that these can be considered phenologs38 of

these human phenotype classes (Figure 6F). Precision-

recall analysis21 of the fly phenotypes ‘‘early sitter’’ and

‘‘wing veins missing’’ (Figures 6D and 6E), analogous

to analysis of the human phenotypes (Figures 5F and

5G), revealed their predictive value (p < 0.01) (Figures

6E0 and 6F0). No striking patterns of enrichment were

observed for ID-atypical Drosophila late behavioral and

gross wing-growth phenotypes or for a number of other

phenotypes.

Together, the data generated inDrosophila provide exper-

imental support that ID-AGs exert important functions

during development, in agreement with the strong devel-

opmental origin of the human pathologies. Moreover, rela-

tions can be established between distinct phenotypes in

Drosophila and humans, providing evidence that cross-spe-

cies phenotyping can contribute to ID-AG prediction and

identification.
The Amer
Discussion

To demonstrate that highly heterogeneous ID disorders can

be systematically broken down into biologically coherent

modules, we set up a curated inventory of currently known

ID-AGs and their associatedphenotypes, classified in anum-

ber of clinical categories and linked to various publically

available and previously undescribed functional data. We

provide an easily exploitable database (SysID database, see

Web Resources) representing a comprehensive resource

of ID-AGs, their properties, functional connectivity, and

gene-phenotype relations. These aspects are fundamental

to a better understanding of the molecular processes under-

lying cognitive (dys)function for furthering genetic diagnos-

tics and developing treatment strategies that aim to target

shared pathways and processes rather than single genes.

Apart from comprehensiveness, the main achievements

of our work in comparison to those of previous studies re-

porting ID-AG lists8,9,39–41 include (1) manual curation, (2)

a conservative annotation of ID-AGs only when indepen-

dent evidence from several individuals exists, and (3) a strat-

egy that integrates genes andphenotypes. In order to reduce

phenotypic complexity and to create amanageable amount

of clinical data, we applied a bipartite ID-classification sys-

tem based on (1) the manifestation, severity, penetrance,

and ‘syndromicity’ of ID and (2) recurrently reported

ID-accompanying phenotypes. Because inconsistent termi-

nology, incomplete phenotype annotation or functional

knowledge, diagnostic biases in published reports, and dis-

orders with only a few affected individuals limit reliability

in systematic phenotyping and are most likely more pro-

nounced in complex, high-resolution approaches (such as

that established by the Human Phenotype Ontology42,43),

we used a limited amount of 27 ID-accompanying pheno-

types covering main organ systems and features. Growing

clinical data and ongoing attempts to improve annotation

and curation of phenotyping and phenotype ontol-

ogies43–45 still need investment,44,46 but they hold potential

forphenomicsapproacheswitheventuallyhigher resolution.

This study systematically revealed quantitative overrep-

resentation of biological processes and molecular modules

in ID and used phenotypic information to distinguish

various biologically meaningful subgroups of ID-AGs.

The differential representation of genes encoding synaptic

(hPSD) proteins35 among clinical classes (Figure 5D), for

example, is striking. Differently selected groups of affected

individuals are thus likely to account for the reported dis-

crepancies in the contribution of genes with synaptic func-

tion to ID.30,47 Furthermore, genes associated with autism

spectrum disorders show a similar pattern, in agreement

with the notion that synapse biology is a major theme in

these disorders.32,48,49

Phenotypic and Molecular Coherence in ID and

Related Disorders

Our findings of phenotype-based functional modules

add to widely accumulated evidence that similar clinical
ican Journal of Human Genetics 98, 149–164, January 7, 2016 159
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Figure 6. Custom-Made Functional Datasets in Drosophila Reveal Additional Patterns
(A) Schematic representation of the neuronal screen and assessed phenotypes. Viable pan-neuronal knockdown IDmodels were tested at
two different time points for their ability to escape from a platform.
(B) Phenotypes evaluated in the wing screen. Examples of genes (human orthologs) and associated phenotypes are shown.
(C) Phenotypes and their frequencies upon neuronal knockdown. Note that knockdown of ID-AGs (green) tended to cause early
phenotypes, whereas knockdown of non-ID-AGs (gray) caused significantly more late phenotypes.
(D) Phenotypes and their frequencies upon knockdown in the wing. ID-AGs are highly enrichedwith lethal, posterior-margin, andwing-
field phenotypes. Broad morphological phenotypes are evenly represented among ID-AGs and non-ID-AGs.
Bar graphs in (C) and (D) show genes in each phenotype group as a percentage of all genes in each dataset (264 ID-AGs in the neuronal
dataset, 261 ID-AGs in the wing dataset, and 31 non-ID-AGs in both assays). The p values were determined with Fisher’s exact test and
corrected for multiple testing (Benjamini-Hochberg, *padj < 0.05; **padj < 0.01; ***padj < 0.001). Note that each gene can be associated
with more than one phenotype.

(legend continued on next page)

160 The American Journal of Human Genetics 98, 149–164, January 7, 2016



phenotypes are caused by genetic defects in common path-

ways and processes.50 However, phenotype-based system-

atic deconvolution of highly heterogeneous disorders has

not been accomplished previously.

Interestingly, a recent study reported significant con-

nectivity and anatomical specificity of ASD, but not

ID, on the basis of analysis of a single brain region, the

cerebral cortex, during a limited time window.8 Applying

our analysis to the published list of ASD-associated genes

(118 genes indicated as ASD, but not ID; 11 of these

genes are, however, convincingly implicated in syn-

dromic ID disorders) surprisingly revealed an overall

lower molecular connectivity of ASD-associated genes

(PIE ¼ 0.89) than of random genes (PIE ¼ 1) and our

ID-AG catalog (PIE ¼ 1.32). Likewise, co-expression in

the cerebral cortex across all stages was 2.4-fold higher

for all 650 ID-AGs than for the indicated ASD-associated

genes and even up to more than 4-fold higher in clinical

classes 1 and 4. This illustrates the extensive nature of

biological coherence in ID. Given that the observed co-

expression of ID-AGs can primarily be attributed to their

increased co-expression in the embryonic brain (E ¼ 1.05

[p < 0.0001] versus postnatal E ¼ 1.02 [p ¼ 0.06]), it will

be interesting to further map ID modules onto specific

embryonic stages and brain regions such as the cortex

and hippocampus.

Fundamental and Translational Potential of Human

and Drosophila Phenotypes

By establishing the relationships among genes, phe-

notypes, and molecular function, we have generated

knowledge and predictive value. First, clustering ID-AGs

according to their accompanying clinical features resulted

in a landscape of human phenotypes (Figure 3) and sug-

gested previously undescribed biological functions for

many of them, given that genes close to one another

are likely to share function. Five of 18 ID-AGs in our

highlighted, red cluster in Figure 3 have not yet been

annotated with cilia-related Gene Ontology terms. Strik-

ingly, a recent study demonstrated that one of these,

the GNAS (MIM: 139320)-encoded protein Gas, is highly

enriched at the primary cilium of granule neuron precur-

sors and regulates ciliary trafficking of hedgehog-pathway

components.51 HDAC8 might function in analogy to

HDAC6 and regulate cilia disassembly via acetylation of

tubulin.52 MAGEL2 was shown to co-immunoprecipitate

with BBS4,53 a ciliary protein present in the same cluster.

Second, this phenotype-based approach can also identify

indirect gene functions. The turquoise-labeled cluster,

enriched with genes encoding synaptic proteins, also con-

tains transcription factors DEAF1 and FOXP1, which have
(E and F) Enrichment of early behavioral (early walker and early sitt
missing veins, F), resolved according to ID clinical classes, shows t
(Figure 6C) arises from enrichment of phenotypes in specific clinical
shows the significant predictive power of the custom-made phenot
phenotype. p value curves from number-matched, randomly sub-sam
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already been implicated in memory and synaptic func-

tion, respectively.54,55 Third, a specific combination of

phenotypes, biological processes, and gene function al-

lowed the recognition of typical phenotype combinations

characterizing groups of process-defined ID disorders,

such as chromatin-related ID disorders, ciliopathies, and

ID-associated deficiencies in DNA repair. Fourth, preci-

sion-recall analyses of phenotype-defined groups of ID-

AGs unambiguously demonstrated the added predictive

value of phenotypes and the phenotype-based classifica-

tion systems.

How can further informative phenotype data be gener-

ated in a fast, customized, and large-scale approach?

Cross-species phenotyping using efficient genetic models

has emerged as a promising approach with translational

potential.26,37,56,57 We generated two ID datasets in

Drosophila. Both highlight ID-AGs with important roles

in development, in perfect agreement with their associa-

tion with clinical classes 1, 4, and 7 (Figures 6E and 6F)

and thus with the super-class of syndromic ID with struc-

tural malformations. It is conceivable that other experi-

mental readouts in Drosophila would produce enrichments

among different clinical classes. Synapse or learning and

memory phenotypes, for example, might support non-

syndromic classes 3 and 6. Such patterns of a particular

fly phenotype similar to a specific human phenotype could

be exploited to support the causative nature of mutations

in ID-associated candidate genes by rapid, custom-made

assays in Drosophila.

In addition to providing insights into the biology and

modularity of ID, our study has immediate translational

benefit, including the broad applicability of our database,

which now contains 746 high-confidence ID-AGs and

associated data. The ID-AG catalog can serve as a basis for

either targeted sequencing of diagnostic gene panels or

evaluating data from exome or genome sequencing, as

already implemented in our diagnostic centers. Further-

more, we propose exploiting the patterns identified in

our study to not only contribute to the evaluation of novel

ID-AG candidates but also pursue the systematic char-

acterization of the underlying biological mechanisms.58

Because our experiments provide proof of principle that

functional data with translational value can be generated

in Drosophila on demand, application of efficient disease

models in diagnostic settings should be encouraged. In

conclusion, our gene catalog, human and cross-species

phenotype annotations, integrated analyses, and flexible

database provide a significant step toward overcoming cur-

rent limitations in ID research and diagnostics and the

basis for objective application of human phenotype and

functional annotations.
er, E) and wing morphological phenotypes (trichome density and
hat the increased abundance of the phenotypes among ID-AGs
classes. (E0 and F0) Precision-recall analysis (see Figure 5 for details)
ypes to identify other ID-AG orthologs associated with the same
pled ID-AG sets are indicated.
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Web Resources

The URLs for data presented herein are as follows:

Ensembl, http://www.ensembl.org/index.html

FlyAtlas, http://flyatlas.org/atlas.cgi

FlyBase, http://flybase.org/

Gene Ontology, http://geneontology.org/

GeneReviews, http://www.ncbi.nlm.nih.gov/books/NBK1116/

HUGO, http://www.genenames.org

Human Protein Reference Database (HPRD), http://www.hprd.org

NCBI Gene, http://www.ncbi.nlm.nih.gov/gene

OMIM, http://www.ncbi.nlm.nih.gov/omim/

Simons Foundation SFARI database, http://sfari.org/

SysID database, http://sysid.cmbi.umcn.nl/

Vienna Drosophila Resource Center (VDRC), http://stockcenter.

vdrc.at/control/main
References

1. Schalock, R.L., Borthwick-Duffy, S.A., Bradley, V.J., Buntinx,

W.H.E., Coulter, D.L., Craig, E.M., Gomez, S.C., Lachapelle,

Y., Luckasson, R., Reeve, A., et al. (2010). Intellectual

Disability: Definition, Classification, and Systems of Supports

(American Association on Intellectual and Developmental

Disabilities).

2. Ropers, H.H. (2010). Genetics of early onset cognitive impair-

ment. Annu. Rev. Genomics Hum. Genet. 11, 161–187.

3. Grozeva, D., Carss, K., Spasic-Boskovic, O., Tejada, M.I., Gecz,

J., Shaw, M., Corbett, M., Haan, E., Thompson, E., Friend, K.,

et al.; Italian X-linked Mental Retardation Project; UK10K

Consortium; GOLDConsortium (2015). Targeted Next-Gener-
162 The American Journal of Human Genetics 98, 149–164, January 7
ation Sequencing Analysis of 1,000 Individuals with Intellec-

tual Disability. Hum. Mutat. 36, 1197–1204.

4. Redin, C., Gérard, B., Lauer, J., Herenger, Y., Muller, J., Quart-

ier, A., Masurel-Paulet, A., Willems, M., Lesca, G., El-Cheha-

deh, S., et al. (2014). Efficient strategy for the molecular

diagnosis of intellectual disability using targeted high-

throughput sequencing. J. Med. Genet. 51, 724–736.

5. Bahi-Buisson, N., Poirier, K., Fourniol, F., Saillour, Y., Valence,

S., Lebrun, N., Hully, M., Bianco, C.F., Boddaert, N., Elie, C.,

et al.; LIS-Tubulinopathies Consortium (2014). The wide spec-

trum of tubulinopathies: what are the key features for the

diagnosis? Brain 137, 1676–1700.

6. Zenker, M. (2011). Clinical manifestations of mutations in

RAS and related intracellular signal transduction factors.

Curr. Opin. Pediatr. 23, 443–451.

7. Zaghloul, N.A., and Katsanis, N. (2010). Functional modules,

mutational load and human genetic disease. Trends Genet.

26, 168–176.

8. Parikshak, N.N., Luo, R., Zhang, A., Won, H., Lowe, J.K.,

Chandran, V., Horvath, S., and Geschwind, D.H. (2013).

Integrative functional genomic analyses implicate specific

molecular pathways and circuits in autism. Cell 155, 1008–

1021.

9. Inlow, J.K., and Restifo, L.L. (2004). Molecular and compara-

tive genetics of mental retardation. Genetics 166, 835–881.

10. Basu, S.N., Kollu, R., and Banerjee-Basu, S. (2009). AutDB: a

gene reference resource for autism research. Nucleic Acids

Res. 37, D832–D836.

11. Sealfon, R.S., Hibbs, M.A., Huttenhower, C., Myers, C.L., and

Troyanskaya, O.G. (2006). GOLEM: an interactive graph-

based gene-ontology navigation and analysis tool. BMCBioin-

formatics 7, 443.

12. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H.,

Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig,

J.T., et al.; The Gene Ontology Consortium (2000). Gene

ontology: tool for the unification of biology. Nat. Genet. 25,

25–29.

13. Stark, C., Breitkreutz, B.J., Reguly, T., Boucher, L., Breitkreutz,

A., and Tyers, M. (2006). BioGRID: a general repository for

interaction datasets. Nucleic Acids Res. 34, D535–D539.

14. Keshava Prasad, T.S., Goel, R., Kandasamy, K., Keerthikumar,

S., Kumar, S., Mathivanan, S., Telikicherla, D., Raju, R.,

Shafreen, B., Venugopal, A., et al. (2009). Human Protein

Reference Database–2009 update. Nucleic Acids Res. 37,

D767–D772.

15. Kalinka, A.T., and Tomancak, P. (2011). linkcomm: an R pack-

age for the generation, visualization, and analysis of link com-

munities in networks of arbitrary size and type. Bioinformatics

27, 2011–2012.

16. Warnes, G.R., Bolker, B., Bonebakker, L., Gentleman, R.,

Huber, W., Liaw, A., Lumley, T., Maechler, M., Magnusson,

A., Moeller, S., et al. (2014). gplots: Various R programming

tools for plotting. https://cran.r-project.org/web/packages/

gplots/index.html.

17. Cline, M.S., Smoot, M., Cerami, E., Kuchinsky, A., Landys, N.,

Workman, C., Christmas, R., Avila-Campilo, I., Creech, M.,

Gross, B., et al. (2007). Integration of biological networks

and gene expression data using Cytoscape. Nat. Protoc. 2,

2366–2382.

18. Sama, I.E., and Huynen, M.A. (2010). Measuring the physical

cohesiveness of proteins using physical interaction enrich-

ment. Bioinformatics 26, 2737–2743.
, 2016

http://dx.doi.org/10.1016/j.ajhg.2015.11.024
http://dx.doi.org/10.1016/j.ajhg.2015.11.024
http://www.ensembl.org/index.html
http://flyatlas.org/atlas.cgi
http://flybase.org/
http://geneontology.org/
http://www.ncbi.nlm.nih.gov/books/NBK1116/
http://www.genenames.org
http://www.hprd.org
http://www.ncbi.nlm.nih.gov/gene
http://www.ncbi.nlm.nih.gov/omim/
http://sfari.org/
http://sysid.cmbi.umcn.nl/
http://stockcenter.vdrc.at/control/main
http://stockcenter.vdrc.at/control/main
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref1
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref1
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref1
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref1
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref1
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref1
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref2
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref2
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref3
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref3
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref3
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref3
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref3
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref3
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref4
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref4
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref4
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref4
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref4
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref5
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref5
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref5
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref5
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref5
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref6
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref6
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref6
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref7
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref7
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref7
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref8
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref8
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref8
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref8
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref8
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref9
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref9
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref10
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref10
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref10
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref11
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref11
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref11
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref11
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref12
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref12
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref12
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref12
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref12
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref13
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref13
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref13
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref14
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref14
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref14
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref14
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref14
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref15
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref15
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref15
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref15
https://cran.r-project.org/web/packages/gplots/index.html
https://cran.r-project.org/web/packages/gplots/index.html
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref17
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref17
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref17
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref17
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref17
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref18
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref18
http://refhub.elsevier.com/S0002-9297(15)00495-4/sref18


19. BrainSpan (2013). Atlas of the Developing Human Brain.

http://www.brainspan.org.

20. GTEx Consortium (2013). The Genotype-Tissue Expression

(GTEx) project. Nat. Genet. 45, 580–585.

21. Honti, F., Meader, S., and Webber, C. (2014). Unbiased func-

tional clustering of gene variants with a phenotypic-linkage

network. PLoS Comput. Biol. 10, e1003815.

22. Flicek, P., Ahmed, I., Amode, M.R., Barrell, D., Beal, K., Brent,

S., Carvalho-Silva, D., Clapham, P., Coates, G., Fairley, S., et al.

(2013). Ensembl 2013. Nucleic Acids Res. 41, D48–D55.

23. Ruan, J., Li, H., Chen, Z., Coghlan, A., Coin, L.J., Guo, Y.,
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