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Osmotic Transport across Cell Membranes in Nondilute Solutions:
A New Nondilute Solute Transport Equation
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†Department of Laboratory Medicine and Pathology, and ‡Department of Chemical and Materials Engineering, University of Alberta,
Edmonton, Canada

ABSTRACT The fundamental physical mechanisms of water and solute transport across cell membranes have long been
studied in the field of cell membrane biophysics. Cryobiology is a discipline that requires an understanding of osmotic transport
across cell membranes under nondilute solution conditions, yet many of the currently-used transport formalisms make limiting
dilute solution assumptions. While dilute solution assumptions are often appropriate under physiological conditions, they are
rarely appropriate in cryobiology. The first objective of this article is to review commonly-used transport equations, and the explicit
and implicit assumptions made when using the two-parameter and the Kedem-Katchalsky formalisms. The second objective of
this article is to describe a set of transport equations that do not make the previous dilute solution or near-equilibrium assump-
tions. Specifically, a new nondilute solute transport equation is presented. Such nondilute equations are applicable to many fields
including cryobiology where dilute solution conditions are not often met. An illustrative example is provided. Utilizing suitable
transport equations that fit for two permeability coefficients, fits were as good as with the previous three-parameter model (which
includes the reflection coefficient, s). There is less unexpected concentration dependence with the nondilute transport equations,
suggesting that some of the unexpected concentration dependence of permeability is due to the use of inappropriate transport
equations.
INTRODUCTION

The fundamental physical mechanisms of water and solute

transport across cell membranes have long been studied in

the field of cell membrane biophysics (1,2). All living cells

are enclosed by a plasma membrane that separates the intra-

cellular solution from its extracellular environment. Mole-

cules must cross the phospholipid bilayer of cell membranes

to enter or leave the cell. The lipid portion of the membrane

is almost always fluid at physiological temperatures. For a

molecule to cross the cell membrane, it must enter the lipid

region (which is hydrophobic), cross it, and leave the other

side of the membrane (3). Since the early 1930s, there have

been numerous articles published on the mechanisms of

water and solute movement across cell membranes (1,4–10).

Water can cross the cell membrane by diffusion through the

lipid bilayer when a concentration gradient is present, but

some cells exhibit a more rapid transmembrane water trans-

port through specialized protein water channels known as

aquaporins (10–12).

Cryobiology is a discipline in which it is important to have

an understanding of osmotic transport across cell membranes

under nondilute solution conditions. The rate of osmotic

transport is critical to cryopreservation protocols. For cells

in suspension, when freezing is initiated, ice forms initially
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outside of the cells, concentrating the solutes in the remain-

ing liquid of the extracellular solution. As a result, water

leaves the cell by exosmosis until osmotic equilibrium is

reached. If exosmosis is slow compared to the cooling rate,

remaining intracellular water will be sufficiently supercooled

to freeze, which is normally lethal. On the other hand, if

exosmosis is rapid compared with the cooling rate, cells

are exposed to increasingly concentrated conditions at rela-

tively high temperatures that are also lethal. To modulate

cell responses to cooling, cryoprotectants are normally

used. In general, the cell will respond osmotically to both

the addition and removal of cryoprotectants as well as to

changes occurring during freezing. As a result, an under-

standing of osmotic transport across cell membranes is

important in predicting successful outcomes from cryopres-

ervation protocols. The water (solvent) and cryoprotectant

(solute) permeability parameters are used to calculate

cellular osmotic responses during the addition and removal

of cryoprotectants, and osmotic responses during cooling

to and warming from low temperatures (13–15). The perme-

ability parameters may also be used to determine whether

solute and water movement occurs through channels or by

solubility-diffusion through the lipid bilayer (4,12,16,17).

Many of the transport formalisms currently used make

limiting dilute-solution assumptions. While dilute solution

assumptions are often appropriate under physiological

conditions, they are rarely appropriate in cryobiology where

cryoprotectants are often used at high concentrations and the

presence of extracellular ice further concentrates the solu-

tions. The first objective of this article is to present a detailed

look at the current status of osmotic transport and to point out
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the explicit and implicit assumptions in commonly-used

transport equations. The second objective of the article is

to present a set of nondilute transport equations, including

a new solute transport equation. An example of how to use

the new transport equations with human corneal epithelial

cell data is provided.

OSMOLALITY AS A FUNCTION
OF CONCENTRATION

There are several different ways to express the concentration

including molarity (C), osmolarity (p(C)), molality (m), and

osmolality (p(m)). The molarity is defined as the number of

moles of solute per liter of solution. Since the molarity

depends on solution volume, there is a temperature depen-

dence. The osmolarity is defined as the number of moles of

solute, per liter of solution, of an ideal, dilute solute that would

be needed to produce the same osmotic activity as a particular

concentration of a nondilute solute. Like the molarity, the

osmolarity is temperature-dependent. A measure of concen-

tration that is as easy to use as the molarity is the molality.

The molality is defined as the number of moles of solute

per kilogram of solvent. As it is directly related to a weight-

per-unit-weight expression of concentration, the molality

value of a solution does not change with variations in temper-

ature or pressure. Similar to osmolarity, the osmolality is

defined as the number of moles of an ideal, dilute solute,

per kg of solvent, which would be needed to produce the

same osmotic activity as a particular concentration of a nondi-

lute solute.

There are a number of mathematical relationships in the

literature to describe osmolality as a function of concentra-

tion. The osmotic virial equation, first proposed by McMillan

and Mayer in 1945 (18), is one of the most widely-used ther-

modynamic equations of state. The osmotic virial equation

for a solution containing a single solute, i, describes the

osmolality, p, as a polynomial in molality of the solute, mi,

p ¼ mi þ Bim
2
i þ Cim

3
i þ . : (1)

Values for the osmotic viral coefficients, Bi and Ci, can be

determined experimentally (19). For many simple solutes,

the osmotic virial equation can usually be truncated to

include only second-order terms, but the third-order terms

are needed for macromolecules (19).

When determining the osmolality of a multisolute solu-

tion, it is often assumed that the contribution of each solute

to the overall osmolality of the solution is additive (14,20).

Elliott et al. (19) recently pointed out that summing the

osmolalities for individual solutes in a multisolute solution

does not account for the interactions between solutes.

Accounting for the solute-solute interactions is necessary

in nondilute solutions. Consider a form of the osmotic virial

equation (truncated to second-order) that extends to a ternary

solution, with two solutes, i and j:
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p ¼ mi þ mj þ Bim
2
i þ Bjm

2
j þ 2Bijmimj: (2)

The cross-coefficient, Bij, accounts for interactions between

solutes i and j. To determine the cross-coefficient, most

approaches require measurements of the ternary system

and the coefficient is found by regressing ternary data,

similar to the method used to determine the second virial

coefficients from measurements of binary solutions (21).

Elliott et al. (19) derived and proposed a simple arithmetic

mixing rule to predict for the cross-coefficient in the absence

of multisolute data. For a nondilute solution of two solutes,

the osmolality is expressed as (19)

p ¼ mi þ mj þ Bim
2
i þ Bjm

2
j þ ðBi þ BjÞmimj: (3)

Equations 1–3 are easily applied to solutes that dissociate,

i.e., salts like KCl or NaCl, by replacing m by Km, where

K is a dissociation constant for which we also fit. This

form of the osmotic virial equation is a very good approxi-

mation for the biological salts of interest (19).

The osmotic virial equation is just one of many approaches

for determining the osmolalities of a nondilute solution. For

example, the myriad of nondilute equations incorporating

activity coefficients could alternatively have been used (22).

The advantage of the osmotic virial formulation given by

Eq. 3 is that it can predict the osmolalities of ternary and higher

order solutions without requiring ternary measurements a pri-

ori to fit for coefficients. Although summing the osmolalities

of individual solutes in a multisolute solution does not accu-

rately account for interactions between solutes, it nevertheless

leads to predictions of solute osmolalities that are accurate to

a few percent in some cases (23,24). In addition, in the cases

where ternary measurements have been made, accurate empir-

ical equations can be developed for some solutes that could

also have been used in place of Eq. 3 (25,26). However, the

error can be large in some cases, depending on the cryoprotec-

tant used (i.e., dimethyl sulfoxide). In some cases, the addition

of osmolalities is not accurate within a few percent and the

error due to summing osmolalities is larger (19).

THEORIES OF OSMOTIC TRANSPORT

Jacobs and Stewart

In 1932, Jacobs and Stewart (1) quantitatively measured cell

membrane permeability. A mathematical analysis based on

Fick’s Law of Diffusion was developed to describe the

volume of a cell exposed to a solution containing a perme-

ating solute by making five simplifying assumptions:

1. The concentration in the extracellular solution remained

constant during the course of the experiment.

2. Diffusion across the cell membrane was slower than in

the body of the solution or the interior of the cell so

that the only gradient that needed consideration was

that across the membrane.
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3. The concentration gradient across the cell membrane may

be expressed as Co�Ci

l , where Co is the concentration

outside, Ci is the concentration inside the cell, and l is

the thickness of the membrane.

4. The thickness of the membrane remained constant during

the course of the experiment.

5. The osmotic pressure for a given substance may be taken

as directly proportional to its concentration.

Based on these assumptions, they developed two coupled

differential equations to describe the simultaneous transport

of water and a permeable solute,

dVw

dt
¼ k1A

�~S þ CoVo

V
� Cs � Cn

�
; (4)

where dVw

dt is the rate of change in cell water volume (Vw) with

time (t), k1 is the water permeability constant, A is the cell

surface area, ~S is the amount of internal permeating solute,

Co is the initial internal concentration of nonpermeating

solutes, Vo is the initial volume of water in the cell, Cs is

the external concentration of the permeating solute, and Cn

is the external concentration of nonpermeating solute,

d~S

dt
¼ k2A

�
C~s �

~S

V

�
; (5)

where d~S
dt is the rate of change in the amount of internal perme-

ating solute ð~SÞ with time and k2 is the solute permeability

constant. In both of the equations, Jacobs and Stewart stated

that the concentrations are taken to be osmolar (1,2), indi-

cating that the expression for concentration should be in units

of osmolarity, but used molarity in that study. They also

recognized (1) that they were making the limiting assumption

that the osmotic pressures of the solutions were linearly

related to the concentration. Hence, they developed a set of

equations in which a dilute solution assumption was made.

Modern two-parameter formalism

The two parameter (2-P) formalism, developed from the

work of Jacobs and Stewart (1,2), is commonly used today

to describe cellular osmotic responses in the presence and

absence of a permeable solute,

dVw

dt
¼ �LpART

�
pe � pi

�
; (6)

where Lp (mm3/mm2/min/atm) is the membrane hydraulic

conductivity and is a measure of the rate of water movement

across the cell membrane, R is the universal gas constant, T is

absolute temperature, pe is the extracellular solution osmo-

larity, and pi is the intracellular solution osmolarity. To

describe the solute flux, the following equation is sometimes

used in the literature (27–29):

dNs

dt
¼ PsA

�
Ce

s � Ci
s

�
: (7)
Here dNs

dt is the rate of change in the intracellular number of

permeating solute molecules with time, Ps (cm/s) is the

solute permeability and is a measure of the rate of solute

permeability across the cell membrane, Ce
s is the extracellular

solute molarity, and Ci
s is the intracellular solute molarity. To

convert from a solute flux to a volume flux, we can multiply

by the partial molar volume of the solute, vs, as

dVs

dt
¼ vs

dNs

dt
¼ vsPsA

�
Ce

s � Ci
s

�
: (8)

These equations are coupled by the definition of the intracel-

lular molarity (14): �
Ci ¼ Ci

n þ Ci
s

�
:

Note that for a dilute solution, pi¼mi¼ Ci (where again it

is understood that for salts, m should be replaced by Km).

In attempting to generalize Eq. 5 from dilute solutions to

more general solutions, it has been common to use molality

or osmolality as a proxy for solute activity. The osmolarity

represents the water activity. As a result, Eq. 4 is correctly

generalized to Eq. 6 for nondilute solutions by using osmo-

larity rather than molarity as the concentration units. In

contradiction to the body of literature existing (14,30), it is

not thermodynamically correct to generalize Eqs. 5 and 7

to a nondilute form in an analogous manner (by replacing

molarity with osmolarity), since it is the solute chemical

potential difference that is the driving force and osmolarity

is related to the chemical potential of water in the presence

of solute. As long ago as 1976, it was pointed out that the

correct driving force for the solute was activity of the solute

(31); however, this is not always put into practice. Equation 5

was developed based on Fick’s Law—an ideal, dilute equa-

tion stating that solute flux is proportional to the gradient in

solute concentration.

For the concentration appearing in the parentheses of Eq. 6

osmolarity is often used interchangeably with osmolality.

For the hydraulic conductivity in Eq. 6 to have units of

(mm3/mm2/min/atm), the concentration must be in terms of

osmolarity (or molarity). To convert between the two expres-

sions of concentration, one must use the value for the density

of water. For a dilute solution, the molarity is proportional to

the molality with the proportionality being the water density.

The density of water is equal to 1 g/cm3 at 4�C and 1 atm of

pressure. This may be why, in biological literature, osmo-

lality and osmolarity are often used interchangeably.

However, this is strictly only true for a dilute solution at

4�C at 1 atm. Furthermore, because the solute volume is

included in the denominator of molarity, but not the solute

weight in the denominator of molality, molarities and

molalities (and likewise osmolarities and osmolalities) differ

appreciably when the solute makes up a significant portion of

the solution. Thus, even if willing to neglect the temperature

affect on osmolarity, while either osmolarity or osmolality

could be used when fitting Eq. 6, care should be exercised
Biophysical Journal 96(7) 2559–2571
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when using coefficients fit in one set of units to make predic-

tions from the other units in highly concentrated solutions.

In their work, Jacobs and Stewart (1,2) did indicate that the

expression for concentration should have units of osmolar,

but it appears that they were actually using molar, not

osmolar, concentrations. In using molar concentration instead

of osmolar, an implicit dilute solution assumption is being

made. Equation 6 developed by Jacobs and Stewart could

be extended to include nondilute solutions if the expression

for concentration used is actually osmolarity. In the literature

it is often assumed that if the 2-P model is being used, there are

no dilute solution restrictions on the equations (14), and that

the equations are a good approximation for molar solute

concentrations up to a few molar when osmolality and

molality are used in the water and solute flux equations.

Staverman

Most natural processes, such as diffusion and permeation,

are irreversible (3). Much of our understanding of transport

phenomena is based on linear irreversible thermodynamics,

and cell volume change due to solute and solvent flow across

cell membranes is an example of such a phenomenon. In

1951–1952, Staverman approached the problem of osmotic

transport across cell membranes by using the linear theory

of irreversible thermodynamics (32,33), which was formal-

ized most notably by Onsager in 1931 (34,35). Staverman

examined permeability in leaky membranes (i.e., those

permeable to solutes). The leakage of a membrane was

described by a reflection coefficient, ~s, ranging from 0 for

a completely permeable membrane (unselective membrane)

to 1 for a semipermeable membrane (permeable to the

solvent only and impermeable to the solute molecules). A

value of ~s ¼ 1 indicated that 100% of the solutes get

reflected back from the membrane. The reflection coefficient

is concentration-dependent and describes the selectivity of

the membrane to a specific solute (32) so the value of ~s is

determined by both the properties of the membrane and the

permeable solute. Staverman specified that these conditions

were for a dilute system with a single permeating solute

and were inappropriate to use for concentrated or multicom-

ponent systems, but could be generalized to cover systems

for which linear flux equations were applicable (32,36).

Kedem and Katchalsky

In 1958, Kedem and Katchalsky modified and extended the

work of previous authors also using Onsager’s irreversible

thermodynamics approach (37). The theory is based on the

premise that for a system sufficiently close to equilibrium,

any flux (such as heat flux or mass flux) is linearly propor-

tional to a driving force (or a gradient in an intensive property

such as pressure or concentration). Kedem and Katchalsky

developed a formalism to describe osmotic transport across

a cell membrane when water and solute transport across

a membrane are coupled, usually through cotransport in a
Biophysical Journal 96(7) 2559–2571
common channel. As a result, the water and solute interact

and the degree of interaction between the solvent and solute

was characterized by a reflection coefficient, s. However, the

equations developed were general enough to be applied

empirically to a number of transport situations in the presence

or absence of cotransport channels. In the Kedem-Katchalsky

(K-K) equations, three parameters are used to characterize the

membrane permeability: the water permeability (hydraulic

conductivity, Lp); the solute mobility ð~uÞ; and the reflection

coefficient (s). The solute mobility may be expressed as

a solute permeability, Ps ¼ ~uRT, where R is the universal

gas constant and T is absolute temperature.

Assuming dilute solutions and near-equilibrium condi-

tions, Kedem and Katchalsky developed transport equations

by considering mass transport across a cell membrane. The

rate of total volume change of the cell was described by (37)

dVwþ s

dt
¼ �LpART

��
Ce

n � Ci
n

�
þ s

�
Ce

s � Ci
s

��
; (9)

where Lp is the membrane hydraulic conductivity, A is the

surface area of the cell, R is the universal gas constant, and

T is absolute temperature. The value C is the molarity with

the superscripts denoting the internal cell solution (i) and

the solution external to the cell (e) and the subscripts denot-

ing the nonpermeating solutes (n) and the permeating solutes

(s). Although they used Staverman’s concept of a reflection

coefficient, Kedem and Katchalsky used a reflection coeffi-

cient s, that has a different physical meaning than the reflec-

tion coefficient ~s used by Staverman.

The equation to describe the change in intracellular,

permeating solute is given as

dNs

dt
¼ ð1� sÞ

�
1

2

��
Ce

s þ Ci
s

�dVwþ s

dt
þ PsA

�
Ce

s � Ci
s

�
;

(10)

where Ns is the number of moles of solute in the cell and Ps is

the membrane solute permeability.

The value s is constrained by the condition

0 % s % 1� Psvs

RTLp

: (11)

Kedem and Katchalsky assumed that the solute and solvent

transport were physically coupled (37) and that the degree

of interaction was characterized by the reflection coefficient.

They assumed that solvent and solute interacted with each

other, and that the extent of the interaction in the passage

through the membrane depended on the nature of the system.

Systems in which the solvent and solute followed different

paths through the membrane had the lowest degree of inter-

action, such as aqueous solutions of lipid-soluble substances

passing through a mosaic membrane. The highest degree of

interaction of solvent and solute occurs in free aqueous diffu-

sion, such as in coarse capillary membranes (37).
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Kleinhans

In 1998, Kleinhans pointed out that the K-K formalism and

s were often unnecessary and demonstrated that the 2-P

formalism worked just as well as the K-K formalism and

essentially gave the same results for a number of different

transport situations in which a common channel for solute

and solvent was not present. Using simulations, he demon-

strated this to be true for a number of circumstances

including 1), bilayer transport in which the solute and water

diffuse across the bilayer; 2), transport in which water only

moves through a selective channel and the solute diffuses

across the bilayer; and 3), transport in which the water and

solute use separate channels. Kleinhans noted that the 2-P

model and the K-K model deviated from each other at high

concentrations, but that there were no practical differences

between the two models up to solute concentrations of

several molar (14).

THE REFLECTION COEFFICIENTS s AND ~s

It has been recognized by many in the literature that there are

often many interpretational problems with the reflection coef-

ficient when using the K-K equations (14,22,38–40) and the

validity and necessity of s has been questioned (22,41). The

K-K equations were designed to deal with cotransport across

cell membranes. In deriving the limits for s, Kedem and

Katchalsky used the solute driving force, which was based

on the chemical potential of the solute. In deriving the solute

driving force equations, both a near equilibrium and a dilute

solution assumption were made. The limits of s for the K-K

equations are based on a hydrodynamic interaction. When

water and solute move across the membrane using indepen-

dent pathways, this is the noninteracting case and s ¼
1� Psvs

RTLp
. In this case, s is completely dependent on the values

of Lp and Ps and is, therefore, not an independent parameter.

For situations where solute and solvent move through a

common channel, there is a greater possibility of a hydrody-

namic interaction in the membrane. For this interacting

case, s < 1� Psvs

RTLp
, and in this situation, s is an independent

parameter, which depends on the strength of the flux interac-

tion (37). In the literature it is often thought that the limits of

s for the K-K equation are the same as those of ~s in Staver-

man’s original equations. As pointed out by Kleinhans as

well (14), people often mistakenly believe that a s< 1 means

that there is a solute-solvent interaction (42), which is not true.

In Kleinhans’ article, he discusses the issue and misconcep-

tions that are often present when people assume a value of

s ¼ 1. Let us first recall that a s ¼ 1 means that there is

100% reflection of the solute back from the membrane

(no solute permeability, i.e., Ps ¼ 0). If we substitute s ¼ 1

into the K-K equations, then Eq. 9 takes the form

dVwþ s

dt
¼ �LpART

�
Ce � Ci

�
: (12)
Kleinhans points out that it is often thought that substituting

s¼ 1 into the K-K equation, Eq. 12, leads to an equation that

looks like the 2-P formalism (Eq. 6). Recall that the 2-P

equation in terms of molarity had the form

dVw

dt
¼ �LpART

�
Ce � Ci

�
: (13)

Kleinhans argues that when comparing Eq. 13 with Eq. 12, we

can see that the 2-P equation accounts for only the water

volume flux, whereas Eq. 12 is total volume flux of both the

solute and the solvent, so the two equations are not the same.

As Kleinhans discusses, if s ¼ 1 is substituted into the

K-K solute flux equation Eq. 10, it reduces to

dNs

dt
¼ PsA

�
Ce

s � Ci
s

�
; (14)

which is identical to the 2-P solute flux equation, Eq. 7,

dNs

dt
¼ PsA

�
Ce

s � Ci
s

�
: (15)

He argues that when s ¼ 1, there should be no solute flux

present and this is part of the confusion when using s and the

K-K equations. This, compounded with the fact that people

often use the incorrect limits for s when using the K-K equa-

tions, leads to much confusion. However, it is important to

note that by Staverman’s definition, s ¼ 1 means that there

is 100% reflection of the solute back from the membrane and

no solute permeability (Ps ¼ 0). If Ps ¼ 0, it means that
dVs

dt ¼ 0. As a result, there is no problem when comparing

Eq. 6 with Eq. 12. So even though Kleinhans argues that

the two equations look different, they are in fact the same,

since by definition s ¼ 1 means that dVs

dt ¼ 0. Kleinhans

argued that when s ¼ 1, there should be no solute flux

present, but says when substituting s¼ 1 into the K-K solute

flux equation we get Eq. 14. However, again there is no

problem with this because when s ¼ 1, Ps ¼ 0, dNs

dt ¼ 0,

and Eq. 14 is correct. In the literature when using the K-K

equations and solving for Lp, Ps, and s, people often end

up with a value of s ¼ 1 (43) even when Ps s 0. However,

in doing this they are violating the conditions of the K-K

equations because s cannot equal 1 if Ps s 0.

In the literature, the 2-P model is often preferred over the

K-K model because of the fewer parameters required to

describe the osmotic response of cells. People have noted

that despite the fact that the K-K model accurately describes

cell volume data, the model lacks the capability to detect

changes in s and that it is often phenomenologically incon-

sistent with application for high permeability solutes (44). It

has also been pointed out that the interpretational value of

s to identify the transport pathway can be problematic (5).

Comparing the 2-P and the K-K equations

To look at the total solute and solvent volume flux using the

2-P equations, we add together the water volume flux given
Biophysical Journal 96(7) 2559–2571
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in Eq. 6 in terms of molarity, with the solute volume flux

given in Eq. 8 and use the definition of the extracellular solu-

tion molarity ðCe ¼ Ce
n þ Ce

sÞ and the intracellular solution

molarity ðCi ¼ Ci
n þ Ci

sÞ to get the following:

dVwþ s

dt
¼ dVw

dt
þ dVs

dt
¼ �LpART

��
Ce

n � Ci
n

�
þ
�

1� Psvs

LpRT

��
Ce

s � Ci
s

�	
:

(16)

We can compare the total volume flux obtained from the

2-P equations with the total volume flux of the K-K equa-

tions as given in Eq. 9:

dVwþ s

dt
¼ �LpART

��
Ce

n � Ci
n

�
þ s

�
Ce

s � Ci
s

��
: (17)

Note that the two equations look identical except there is a s in

Eq. 9 and in the 2-P equation, Eq. 16, there is instead the

expression ð1� Psvs

LpRTÞ, which is the upper limit of s in the

K-K equations. The upper limit of s (the noninteracting

case) occurs in the situation when water and solute move

across the membrane using independent pathways. Therefore,

for situations when there is no interaction between the water

and solute, the 2-P and the K-K total volume flux equations

are identically the same. Kleinhans demonstrated, using simu-

lations, that when cotransporting channels are absent, the 2-P

and the K-K equations essentially give the same result. In the

literature people have even stated that the 2-P model is more

consistent than the K-K model for the assumption of indepen-

dent pathways, which assumes that water and solute use

different pathways to permeate the cell membrane (45).

However, the two formalisms arrive at the same equation

for the total volume flux in the noninteracting case. People

often use the K-K equations with the noninteracting case

(42,46). In 1994, Du et al. (22) reported on permeability

of human spermatozoa to glycerol using the 2-P model

and the noninteracting case of the K-K model. They found

that the two models gave essentially identical results. We

can understand now that this is because the total volume

flux equations are the same. An article in 2003 by Xu

et al. (29) reported measurements of chondrocyte membrane

permeability to a number of cryoprotectants and compared

them using the 2-P model and the K-K model. Examination

of their graphs of normalized volume change during

dimethyl sulfoxide addition in that study indicates that the

2-P model and the K-K model gave identical results. We

calculated the noninteracting value of s—i.e., ð1� Psvs

LpRTÞ
—for that system, and found it resulted in a value of s ¼
0.918. The value of s reported in their article when fitting

the K-K equation was 0.91 � 0.09, again demonstrating

that the 2-P and K-K models give identical results for s

in the noninteracting case.

Kleinhans noted that the 2-P model and the K-K model

deviated from each other at high concentrations, but there

were no practical differences between the two models up
Biophysical Journal 96(7) 2559–2571
to solute concentrations of several molar (14). It is possible

then that the fitting of s is simply adjusting for nondilute

behavior, since in both equations a dilute solution assump-

tion is being made. In the literature, it has been reported

that there is no pattern that emerges to define how the solute

concentration effects membrane permeability characteristics

(46,47), and at times researchers found solute inhibition of

Lp (46). In some reports, the hydraulic conductivity

decreases in the presence of increased solute concentrations

(48); in other reports, exposing cells to a permeable solute

increases the hydraulic conductivity (49). It is possible that

some proportion of these reported variations of the hydraulic

conductivity are a result of dilute solution expressions being

used in the transport equations and may not appear if nondi-

lute transport equations were utilized. It has been shown in

the literature that different values for the hydraulic conduc-

tivity and the solute permeability are obtained depending

on the set of transport equations used (42,43). This may be

problematic when comparing transport results or utilizing

the transport values obtained from different research groups

to determine optimal cryopreservation protocols.

The confusion of using a reflection coefficient as well as the

dilute solution assumptions currently made in the commonly

used transport formalisms suggest a need for new nondilute

transport equations.

Nondilute solvent transport equations

Consider a cell immersed in a hypertonic or hypotonic solu-

tion that undergoes osmotic shrinkage or swelling (Fig. 1),

where the intracellular solution contains molecules of water,

denoted by Ni
1, a permeating solute such as a permeating

cryoprotectant like dimethyl sulfoxide (DMSO), denoted as

Ni
2, and a nonpermeating intracellular solute such as KCl, de-

noted by Ni
3. Assume that the extracellular environment

contains molecules of water, Ne
1, the permeating solute, Ne

2,

and a nonpermeating extracellular solute such as NaCl,

denoted by Ne
4.

FIGURE 1 A system of water, a permeating solute, an intracellular

nonpermeating solute, and an extracellular nonpermeating solute.
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For the solvent transport equation, the change in the

number of water molecules with time will be proportional

to a water permeability coefficient denoted by ~L, the cell

surface area, A, and the difference between the chemical

potentials of the water outside ðme
wÞ and inside ðmi

wÞ the cell:

dNi
w

dt
¼ ~LA

�
me

w � mi
w

�
: (18)

The chemical potential is the thermodynamic property of

a solution that drives passive mass transport across a cell

membrane. The chemical potential of the water can be

derived from solution theory. As an example, a particular

form of the osmotic viral equation can be used. The deriva-

tion of such a chemical potential of the water has been

described elsewhere (19). Briefly, assuming a regular solu-

tion, the Gibbs free energy may be written as

GðT;P;N1;N2;N3Þ ¼ N1m�1ðT;PÞ þ N2jðT;PÞ þ N3fðT;PÞ

þ N1RT ln

�
N1

N1 þ N2 þ N3

�
þ N2RT ln

�
N2

N1 þ N2 þ N3

�

þ N3RT ln

�
N3

N1 þ N2 þ N3

�
þ u12N1N2

ðN1 þ N2 þ N3Þ

þ u13N1N3

ðN1 þ N2 þ N3Þ
þ u23N2N3

ðN1 þ N2 þ N3Þ
; ð19Þ

where subscript 1 refers to the solvent, m�1 is the chemical

potential of the pure solvent, j is a function of temperature

and pressure related to the standard state (infinite dilution)

of the solute denoted by subscript 2, and 4 is another func-

tion of temperature and pressure. The uij values are the inter-

change energies of species i with species j. To arrive at a

theory that does not require ternary data or solute-solute

molecular interaction information to obtain values of param-

eters, the last term of Eq. 19 must be neglected. This will be

a good assumption when u23N2N3 << u12N1N2 or u13N1N3.

If the interchange energies are similar, this will be a good

assumption if N2 << N1 or N3 << N1. Such an assumption

in the Gibbs free energy can be thought of as a semidilute

solution assumption, since it still allows second-order terms

in the chemical potentials but does not introduce any adjust-

able parameters in the mixing of second-order terms.

The chemical potential of the solvent, m1, can then be

found by differentiation:

m1 ¼ mw ¼
�

vG

vN1

�
T;P;N2;N3

: (20)

dNi
w

dt
¼ �~LART

" �
xe

2 þ xe
4

�
þ Bþ2

�
xe

2�
xi

2 þ xi
3

�
� Bþ2

�
xi

2

�

The natural logarithms can be expanded and terms to

second-order can be kept. By simplifying and using the

following definitions,

Bþ2 ¼
1

2
� u12

RT
; (21)

Bþ3 ¼
1

2
� u13

RT
; (22)

the chemical potential of the water inside the cell in terms of

the mole fraction, x, is

mi
w ¼ m�w � RT

�
xi

2 þ xi
3

�
� Bþ2 RT

�
xi

2

�2

� Bþ3 RT
�
xi

3

�2�
�
Bþ2 þ Bþ3

�
RTxi

2xi
3; ð23Þ

where m�w is the chemical potential of pure water, R is the

universal gas constant, T is the temperature, xi
2 is the mole

fraction of the intracellular permeating solute, and xi
3 is the

mole fraction of the intracellular nonpermeating solute. Bþ3
is the second osmotic virial coefficients in terms of mole

fraction for the nonpermeating intracellular solute.

The chemical potential of the water outside the cell in

terms of the mole fraction is given as

me
w ¼ m�w � RT

�
xe

2 þ xe
4

�
� Bþ2 RT

�
xe

2

�2

� Bþ4 RT
�
xe

4

�2�
�
Bþ2 þ Bþ4

�
RTxe

2xe
4; ð24Þ

where xe
2 is the mole fraction of the extracellular permeating

solute, and xe
4 is the mole fraction of the extracellular nonper-

meating solute. Bþ2 and Bþ4 are the second osmotic virial

coefficients in terms of mole fraction for the permeating

solute and the nonpermeating extracellular solute, respec-

tively.

Substituting Eqs. 23 and 24 into Eq. 18 yields the expres-

sion

Equation 25 represents the nondilute solvent transport

equation without any dilute solution or near equilibrium

assumptions. To write the dilute solution expression for

Eq. 25, we would neglect the second-order terms in the equa-

tion to yield

dNi
w

dt
¼ �~LART


�
xe

2 þ xe
4

�
�
�
xi

2 þ xi
3

��
: (26)

This equation is identical to the modern-day two-parameter

formalism, but is written in terms of mole fraction. It is

important to note that Eq. 25 is equivalent to Eq. 6 but with

a specific expression for osmolality, p. Therefore, the litera-

ture is correct in using Eq. 6 for nondilute solutions.

�2þBþ4
�
xe

4

�2þ
�
Bþ2 þ Bþ4

�
xe

2xe
4�

2�Bþ3
�
xi

3

�2�
�
Bþ2 þ Bþ3

�
xi

2xi
3

#
: (25)
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Nondilute solute transport equations

In the literature, many of the nondilute adjustments to the

transport equations correct the solvent transport equations

but not the solute transport equations. In the solute transport

equations currently utilized in the literature, either a dilute

solution assumption or near-equilibrium assumption or

both assumptions are made. Unlike the solvent transport

equations, the solute transport equations cannot be extended

to nondilute situations by simply replacing molality with

osmolality. To derive a new set of solute transport equations,

we will again consider an example situation of a cell that is

immersed in a hypertonic or hypotonic solution and

undergoes osmotic shrinkage or swelling (Fig. 1).

For the solute transport equations, the change in the

number of solute molecules as a function of time will be

proportional to a solute permeability coefficient denoted by
~P; the cell surface area, A; and the difference in the chemical

potential of the permeating solute outside ðme
sÞ and inside

ðmi
sÞ, the cell given by Eq. 27,

dNi
s

dt
¼ ~PA

�
me

s � mi
s

�
: (27)

The chemical potential of the solute in terms of the mole

fraction, x, can be derived from solution theory. As an

example, consider a regular solution (Eq. 19). In an analo-

gous manner to the solvent chemical potential, the chemical

potential of the solute, m2, can be found by differentiating

Eq. 19,

m2 ¼ ms ¼
�

vG

vN2

�
T;P;N1;N3

: (28)

With the same assumptions as described previously for

Eq. 20, the chemical potential of the permeating solute inside

the cell in terms of the mole fraction is given as

mi
2 ¼ j2 þ RT ln

�
xi

2

�
þ RT

�
1

2
� Bþ2

��
1� xi

2 � xi
3

��
1� xi

2

�
� RT

�
1

2
� Bþ3

��
1� xi

2 � xi
3

�
xi

3; ð29Þ

where the function j2 is related to the standard state for the

permeating solute (usually taken to be infinite dilution).

Similarly, the chemical potential of the permeating solute

outside the cell in terms of the mole fractions is

dNi
s

dt
¼ ~PART

"
ln
�
xe

2

�
þ
�

1
2
� Bþ2

��
1� xe

2 �
�ln

�
xi

2

�
�
�

1
2
� Bþ2

��
1� xi

2 �
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me
2 ¼ j2 þ RT ln

�
xe

2

�
þ RT

�
1

2
� Bþ2

��
1� xe

2 � xe
4

��
1� xe

2

�

� RT

�
1

2
� Bþ4

��
1� xe

2 � xe
4

�
xe

4:
ð30Þ

Although there are many other thermodynamic approaches

to finding chemical potential for the solute (such as those

based on solute activity), we note that it is important to

choose a thermodynamically consistent form of the solute

chemical potential. Equations 23 and 29, and similarly,

Eqs. 24 and 30, satisfy the Gibbs-Duhem equation to

second-order (i.e., Eqs. 29 and 30 are the thermodynami-

cally consistent solute chemical potentials that should be

used if the osmotic virial equation has been chosen for

the solvent).

Substituting Eqs. 29 and 30 into Eq. 27 yields the expres-

sion

Equation 31 is a new nondilute solute transport equation

without dilute solution assumptions applicable to regular,

semidilute solutions. To write the dilute solution expression

for Eq. 31, the higher order terms in the equation would be

neglected to yield

dNi
s

dt
¼ ~PART

�
ln

�
xe

2

�
ðxi

2Þ


: (32)

Equation 31 is very different from the one used in the modern-

day two-parameter formalism, which is written as a simple

difference in concentration. Equation 32 is similar to the

modern-day two-parameter formalism. Kedem and Katchal-

sky (37) also arrived at this expression, but then made

a near equilibrium assumption, in addition to the nondilute

assumption (50). Linearizing the logarithms in Eq. 32 yields

dNi
s

dt ¼ ~PART
�

co
s � ci

s
caverage

�
;

where caverage ¼
co

s þ ci
s

2
:

(33)

Comparing Eq. 33 with Eq. 7, a relationship between the

solute permeability Ps (mm/min) and solute permeability

coefficient ~P (mol2/(min$atm$mm5), which have different

units, can be obtained as

Ps ¼
~PRT

caverage

: (34)

xe
4

��
1� xe

2

�
�
�

1
2
� Bþ4

��
1� xe

2 � xe
4

�
xe

4

xi
3

��
1� xi

2

�
þ
�

1
2
� Bþ3

��
1� xi

2 � xi
3

�
xi

3

#
: (31)
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New total volume change transport equations

The total volume flux is the sum of the water and solute

fluxes. The total cell-volume change as a function of time

may therefore be written as

dVwþ s

dt
¼ vw

dNw

dt
þ vs

dNs

dt
: (35)

Substituting Eqs. 25 and 31 into Eq. 35 yields the expression

The total cell volume, VC, is given as

VC ¼ Vw þ Vs þ Vb; (37)

where Vw is the volume of water, Vs is the total solute volume

(permeating and nonpermeating solutes), and Vb is the

osmotically inactive volume.

Equation 36 represents the complete nondilute transport

equation (for semidilute regular solutions assumptions). In

this equation there are no near-equilibrium or dilute solution

assumptions made. If we were to write the dilute solution

expression, we would again neglect any second-order terms

and Eq. 36 would take the form

dVwþ s

dt
¼ �vw

~LART

�

xe
2 þ xe

4

�
�
�
xi

2 þ xi
3

��
þ vs

~PART

�
ln

�
xe

2

�
ðxi

2Þ


: (38)

COMPARING TO DATA AND GOODNESS OF FIT

To examine the effects of using our new transport equation,

Eq. 36, compared to traditional transport formalisms, we re-

analyzed data for human corneal epithelial cells exposed to

various concentrations of DMSO (0.5 M, 1 M, and 2 M) at

13�C (51). The solutions had measured osmolalities of

631, 1227, and 2589 mOsm/kg, respectively. The data had

been obtained and previously analyzed using a three-param-

eter formalism and fitting for Lp, Ps, and s (51,52). Cell

volume measurements for the human corneal epithelial cells

were reanalyzed using our new transport equation, Eq. 36.

The values for the osmotic virial coefficients, B and Bþ,

for different solutes were calculated by fitting the osmolality

of various solutions to a single solute osmotic viral equation

truncated at the quadratic term as given in Eq. 39 (in terms of

molality) and in Eq. 40 (in terms of mole fraction),

dVwþ s

dt
¼ �vw

~LART

" �
xe

2 þ xe
4

�
þ Bþ2

�
xe

2

�2þB

�
�
xi

2 þ xi
3

�
� Bþ2

�
xi

2

�2�B

þ vs
~PART

"
ln
�
xe

2

�
þ
�

1
2
� Bþ2

��
1� x

�ln
�
xi

2

�
�
�

1
2
� Bþ2

��
1�
p ¼ mi þ Bim
2
i ; (39)

px1 ¼ ~A
�
xi þ Bþi x2

i

�
~A ¼ 1

MWsolvent
¼ 55:49 mole=kg

: (40)

The value ~A is used to convert between units of molality and

mole fraction. The osmolality as a function of concentration

for different solutes was obtained from various freezing point

depression data in the literature (19) in terms of either mole

fraction or molarity. The freezing point depression was con-

verted to osmolality using the equation

FPD ¼ 1:86px1; (41)

where FPD is the freezing point depression, 1.86 is the molal

freezing point depression constant for water (53), and x1 is

the mole fraction of water.

For solutes that dissociate, such as salts like KCl or NaCl,

the concentration unit (molality) in Eq. 39 or (mole fraction)

in Eq. 40 needs to be multiplied by a dissociation constant

that is also fit for (19). The value of the dissociation constant

depends on the units of concentration used. For solutes that

do not dissociate, such as DSMO, glycerol, or propylene

glycol, the dissociation constant is simply equal to 1. A list

of the osmotic virial coefficients for various solutes of

interest are given in Table 1.

The human corneal epithelial cell volume data on expo-

sure to different concentrations of DMSO were fit to our

new transport equations using Mathematica 5.1 (Wolfram

Research, Champaign, IL). The parameters used in the

program are given in Table 2.

þ
4

�
xe

4

�2þ
�
Bþ2 þ Bþ4

�
xe

2xe
4

þ
3

�
xi

3

�2�
�
Bþ2 þ Bþ3

�
xi

2xi
3

#

e
2 � xe

4

��
1� xe

2

�
�
�

1
2
� Bþ4

��
1� xe

2 � xe
4

�
xe

4

xi
2 � xi

3

��
1� xi

2

�
þ
�

1
2
� Bþ3

��
1� xi

2 � xi
3

�
xi

3

#
: (36)

TABLE 1 Virial coefficient values B and Bþ for various solutes

Solute

Bþ (for virial expansion

in mol fraction)

B [molal�1] (for virial

expansion in molal)

Dimethyl sulfoxide

(DMSO)

4.716 0.0843

Glycerol 2.950 0.0259

Propylene glycol (PG) 3.415 0.0399

Potassium chloride (KCl) �0.057 0.0000

(dissociation constant) (1.79) (1.74)

Sodium chloride (NaCl) 2.759 0.0299

(dissociation constant) (1.68) (1.70)
Biophysical Journal 96(7) 2559–2571
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RESULTS

The result for one data-set fit with the new transport equation

for 2-molal DMSO is shown in Fig. 2. The new transport equa-

tions similarly fit all the other data sets as well. Tables 3–5

show a summary of the values obtained for the three-parameter

fit of the data as well as the values for the permeability coeffi-

cients of the new transport equations. For almost all the

comparisons, the relative sum of square errors (SSE) was

very similar for the two methods of fitting the data. The units

for ~L and ~P are in mol2/min�atm�mm5, while the units for

Lp are in mm3/mm2/min/atm and the units for Ps are in mm/min.

DISCUSSION

Despite the fact that for almost all the runs, the relative sum

of square errors was very similar for the two methods of

TABLE 2 Epithelial cell parameters

Parameter Value Symbol

Isotonic cell volume 3626 mm3 iVto

Osmotically inactive fraction 0.41 vb

Temperature 13�C (286 K) T

Universal gas constant 8.206 � 1013 mm3

� atm/mol � K

R

Partial molar volume of water 18.02 � 1013 mm3/mol vw

Partial molar volume of DMSO 71.33 � 1012 mm3/mol vs

Second osmotic virial coefficient

for DMSO (in terms of mole fraction)

4.716 Bþ2

Second osmotic virial coefficient

for KCl (in terms of mole fraction)

�0.057 Bþ3

(dissociation constant) (1.79)

Second osmotic virial coefficient

for NaCl (in terms of mole fraction)

2.759 Bþ4

(dissociation constant) (1.68)

Initial intracellular salt (KCl) mole

fraction (0.172 molal¼ 0.300 osmoles)

0.003 xi
3 initial

Initial intracellular solute

(DMSO) mole fraction

0.000 xi
2 initial

For 0.5 M DMSO

Extracellular salt (NaCl) mole

fraction (0.175 molal¼ 0.300 osmoles)

0.003 xe
4

Extracellular solute (DMSO) mole

fraction (0.5 molal ¼ 0.631 osmoles)

0.011 xe
2

For 1 M DMSO

Extracellular salt (NaCl) mole

fraction 0.175 molal ¼ 0.300 osmoles

0.003 xe
4

Extracellular solute (DMSO)

mole fraction 1 molal ¼ 1.227 osmoles

0.022 xe
2

For 2 M DMSO

Extracellular salt (NaCl) mole

fraction0.175 molal ¼ 0.300 osmoles

0.003 xe
4

Extracellular solute (DMSO) mole

fraction 2 molal ¼ 2.589 osmoles

0.044 xe
2
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fitting the data, it is important to note that the new transport

equations fit for only two parameters instead of three and can

be extended to data at high concentrations.

It is possible then that the fitting of s in the three parameter

formalism is simply adjusting for nondilute behavior. In the

literature it has been reported that no pattern emerges to

describe how the solute concentration affects membrane

permeability characteristics, and some researchers have

reported solute inhibition of Lp (46). Some studies have

reported a decrease in the hydraulic conductivity in the pres-

ence of increased solute concentrations (48), while other

studies report an increase (49). It is possible that these re-

ported variations of the hydraulic conductivity are a result

of dilute solution expressions being used in the transport

equations and may not appear if nondilute transport equa-

tions were utilized.

When comparing the solute transport flux equation in Eq. 7

with the new dilute solute transport equation in Eq. 33, we see

that there is a difference in the concentration dependence of

the permeability coefficients. Equation 34 gives a relationship

between the solute permeability Ps and the solute permeability

coefficient ~P. When the ~P values are divided by concentration,

there should not be any further concentration dependence. On

analyzing the data for fit with the new transport equations,

there appeared to be an obvious concentration dependence

of ~P —as the concentration of DMSO increased, the value

for ~P also increased. ~L did not appear to have the same strong

concentration dependence. To compare the concentration

relationships for Ps and for ~P, we can compare the standard

deviation of the average values as shown in Table 6.

From Table 6, we see that there is a larger unexpected

deviation with concentration of the Ps values as compared

to the ~P values. The prior analysis of the data for the human

FIGURE 2 Volume change of human corneal epithelial cells on addition

of 2 molal DMSO. The data was fit using Eq. 36.
TABLE 3 Permeability parameters obtained from 0.5 molal DMSO data fit with the new transport equations and the three-parameter

equations (n ¼ 9)

~L � 10�28

mol2/ (min�atm�mm5)

~P � 10�31

mol2/ (min�atm�mm5) SSE Lp (mm3/mm2/ min/atm) Ps (mm/min) s SSE

Avg � SD 3.85 � 0.26 0.571 � 0.07 0.025 � 0.01 0.220 � 0.05 2.162 � 0.61 0.456 � 0.13 0.024 � 0.01
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TABLE 4 Permeability parameters obtained from 1.0 molal DMSO data fit with the new transport equations and the three-parameter

equations (n ¼ 9)

~L � 10�28 mol2/

(min�atm�mm5)

~P � 10�31 mol2/

(min�atm�mm5) SSE Lp (mm3/mm2/ min/atm) Ps (mm/min) s SSE

Avg � SD 5.64 � 0.83 1.69 � 0.14 0.040 � 0.03 0.325 � 0.12 2.941 � 1.24 0.376 � 0.15 0.046 � 0.02

TABLE 5 Permeability parameters obtained from 2.0 molal DMSO data fit with the new transport equations and the three-parameter

equations (n ¼ 9)

~L � 10�28 mol2/

(min�atm�mm5)

~P � 10�31 mol2/

(min�atm�mm5) SSE Lp (mm3/mm2/ min/atm) Ps (mm/min) s SSE

Avg � SD 5.05 � 0.82 4.13 � 0.29 0.071 � 0.02 0.206 � 0.03 5.306 � 0.96 0.495 � 0.12 0.081 � 0.03
corneal epithelial cells (51) assumed that there was no

concentration dependence of the permeability parameters.

However, the data for the epithelial cells exposed to various

concentrations of DMSO (0.5 M, 1 M, and 2 M) at 13�C
showed that there was a statistical difference in the solute

permeability coefficients at the higher 2-molal concentration.

The reason cited for this was the possible linearity in the

three-parameter transport equations utilized.

CONCLUSIONS

The main objective of this article was to provide a better

understanding of osmotic transport. A detailed look into

the current status of osmotic transport in the literature was

provided. The assumptions made when using the two-param-

eter formalism and the Kedem-Katchalsky formalism were

examined. In the literature, osmolarity and osmolality are

used interchangeably; however, they are only equal for dilute

solutions at 4�C. It was demonstrated that despite what is

often stated in the literature, using either the 2-P or the

K-K equations results in dilute solution assumptions being

made, specifically in the solute transport equations wherein

molarity cannot simply be replaced with osmolarity. For situ-

ations where there was no interaction between water and

solute, it was shown that the 2-P and the K-K total volume

flux equations are formally equivalent. Kleinhans noted

that the 2-P formalism and the K-K formalism deviated

from each other at high concentrations, but there were no

practical differences between the two models up to solute

concentrations of several molar. The 2-P model uses only

two parameters while the K-K model uses three parameters.

It is possible that adjusting s accommodates for nondilute

behavior, since in both the 2-P and K-K equations a dilute

TABLE 6 Concentration relationship comparisons for Ps and ~P

Molal concentration Ps ð ~P
molar concentrationÞ � 10�31

0.5 2.16 � 0.61 1.14 � 0.07

1.0 2.94 � 1.24 1.69 � 0.14

2.0 5.31 � 0.96 2.07 � 0.29

Average value 3.47 1.63

Standard deviation

in values

1.65 (48% of the

average value)

0.46 (28% of the

average value)
solution assumption is made. This again highlighted the

importance of developing nondilute transport equations.

In this article, we have derived a complete set of transport

equations, which includes a new nondilute solute transport

equation that does not make the previous dilute solution or

near-equilibrium assumptions, and can now be applied to

regular, semidilute solutions. The particular form of the solute

chemical potential used in the transport equation is thermody-

namically consistent with the osmotic virial equation (to

second-order) and thus should be valid when the osmotic vi-

rial equation is valid. This is applicable to many fields

including cryobiology where dilute solution conditions are

not often met, since concentrated solutions are used over large

temperature ranges. The nondilute transport equations will be

of particular importance when trying to predict cell behavior

when modeling the freezing process and predicting cryopres-

ervation protocols. The modeling of cell response during

cryopreservation protocols involves concentrations up to

10þmolar in the regime where nondilute transport equations

are essential. Utilizing our new transport equations that fit for

two permeability coefficients, the fits were as good as with the

previous three-parameter model and did not use s. There is

less unexpected concentration dependence with the new

transport equations, suggesting that some of the unexpected

concentration dependence of permeability (>40%) is due to

the use of inappropriate transport equations.
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