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To the memory of David Park, one of the 2rst driving forces behind the �-calculus

Abstract

The relational calculus MU was presented in Willem-Paul de Roever’s dissertation as a frame-
work for describing and proving properties of programs. MU is axiomatized by de Roever in
stages. The next-to-last stage is the calculus MU2, namely MU without the recursive �-operator.
Its axioms include typed versions of Tarski’s axioms for the calculus of relations, together with
axioms for the projection functions. For MU there is, in addition, an axiom expressing the
least-2xed-point property of terms containing the �-operator, and Scott’s induction rule. Thus
MU2 is a calculus for nonrecursive program schemes. Around 1976 David Park conjectured that
de Roever’s axiomatization for MU2 is complete. In this paper, we con2rm Park’s conjecture.
c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Relational frameworks can be used to provide semantic characterizations of programs.
While operational semantics describes programs according to the way they operate on
data, relational semantics captures the relationship that programs establish between
input and output data. In his dissertation, Willem-Paul de Roever [11] de2ned two
languages, PL and MU, including syntax and semantics for both, and shows that
there is a meaning-preserving translation from PL to MU.
PL is a language for 2rst-order recursive program schemes with call-by-value as

parameter mechanism. Programs schemes in PL are abstractions of programs that
may contain various kinds of commands, including conditional statements and calls to
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previously declared recursive procedures. The operational semantics for PL is de2ned
in terms of a computation model.
MU is a language for binary relations over Cartesian products. It includes various

constants and variables, to be interpreted as binary relations, with operators for forming
terms that denote the union, intersection, relative product, and converse of relations.
Types are required because a relation is conceived as a subset of a speci2ed Cartesian
product of two sets. There is an operator for forming the complement of a relation
with respect to its speci2ed product. The constants and variables are provided with
source and target types. Types are either generators or products of generators. Types
are to be interpreted as sets or Cartesian products of sets. Terms are restricted to those
that obey certain natural typing laws. Let REL be the category of nonempty sets with
binary relations as morphisms. Interpretations of MU2 are maps that send types to
objects in REL and terms to morphisms in REL. De Roever showed that there is a
translation from PL to MU preserving validity. Properties of program schemes may
then be translated into MU and proved using the axioms and rules of MU.
MU is axiomatized by de Roever in stages. The next-to-last stage is the calculus

MU2, namely MU without the recursive �-operator. Its axioms include typed versions
of Tarski’s axioms for the calculus of relations [13], together with axioms for the
projection functions. For MU there is, in addition, an axiom expressing the least-2xed-
point property of terms containing the �-operator, and Scott’s induction rule [12]. Thus,
MU2 is a calculus for nonrecursive program schemes. David Park conjectured that de
Roever’s axiomatization for MU2 is already complete. (see, in [11], the summary of
Chapter 7 on p. 5, the footnote on p. 49, and problem 3 on p. 87). In this paper we
prove Park’s conjecture.

Here is a sketch of the proof. Soundness is evident; completeness is a challenge.
Start with a formula that cannot be proved. We wish to construct an interpretation
in which the formula fails. First, by standard techniques, using certain equivalence
classes of terms, we build an algebraic structure in which this formula does not hold.
The axioms and rules of inference of MU2 are enough to insure that this algebraic
structure is a SchrEoder category [6, 10] with direct products. Next, we wish to con-
struct a relation algebra from the SchrEoder category. JGonsson’s [6] construction does
not apply directly because the category has in2nitely many objects. There are two
ways to proceed [3], [4]. The 2rst way involves embedding the SchrEoder category
into one whose Boolean algebras are all complete and atomic [3]. This method yields
a complete atomic quasi-projective relation algebra. Quasi-projective relation algebras
are representable by Tarski’s Theorem [14, Theorem VII], [9, Corollary 8], [16, The-
orem 8:4(iii)]. Once we know the relation algebra is representable, we know that the
SchrEoder category is embeddable in REL, and we may use set-theoretical reasoning to
complete the proof. The drawback of this 2rst method is that it requires the addition of
types to various results in the JGonsson–Tarski [7] theory of Boolean algebras with op-
erators. This extra work is avoided here. We alter the construction of a relation algebra
from a SchrEoder category, and get a relation algebra that is not necessarily complete
and not necessarily atomic [4]. Its products exist only locally, so Tarski’s Theorem
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does not apply. Instead, we use a stronger representation theorem [8, Theorem 9(2)]
[9, Theorem 7], and again are able to reason as if we were in REL. The remainder of
the proof is a set-theoretical construction of an interpretation involving true Cartesian
products of sets. The uniqueness condition used at this late stage is not needed for the
proofs of the representation theorems. Both theorems use the same underlying intu-
itive idea: to code up 2nite sequences. Unique codes are not needed, so both theorems
have hypotheses involving only quasi-projection functions. Such functions behave like
projection functions except for the uniqueness condition, which they need not satisfy.

If the axioms for projection functions are deleted from MU2, the resulting system
is, in a certain sense, equivalent to the 2rst-order logic of binary relations restricted to
what can be said with three variables and proved with no more than four variables.
There are 2rst-order logically valid sentences that contain only three variables, but that
nevertheless require arbitrarily large numbers of variables to prove. Tarski found the
2rst example of this. He showed that the associative law for composition of binary
relations can be expressed with only three variables, but requires four variables to
prove. Lyndon found a law expressible in three variables that requires 2ve variables
to prove. Large numbers of variables can be handled if quasi-projection functions are
available; the restriction to four variables becomes a “restriction” to four sequences of
arbitrary length. An example of this coding procedure occurs at the end of de Roever’s
thesis, where he derive’s Lyndon’s law. In another example, quasi-projection functions
are used to derive one of de Roever’s axioms; see [16, Theorem 4:1(viii)]. Both de
Roever’s axiom and Lyndon’s law need 2ve variables to prove if quasi-projection
functions are not available. For a general proof of completeness in the presence of
quasi-projections, see [16, Chapter 4].
REL is an example of a distributive allegory [2] (also a division allegory), a SchrEoder

category [6, 10], and a heterogeneous relation algebra [1]. These are, by de2nition, cat-
egories with additional structure. The class of morphisms between any two objects is
required to be a distributive lattice in a distributive (or division) allegory, a Boolean
algebra in a SchrEoder category, and a complete atomic Boolean algebra in a hetero-
geneous relation algebra. The algebras of formulas in MU2 are probably best viewed
as SchrEoder categories, considering the close match between choice of operations and
axioms. We want complementation, and need to consider algebras that are not com-
plete and not atomic. Our construction of a relation algebra from an algebra of for-
mulas extends JGonsson’s [6] construction of a relation algebra from a 2nite SchrEoder
category.

2. Types, basic symbols, terms, and formulas

In this and the next few sections we describe de Roever’s system MU2 (but not
the full system MU, which includes the multi-variable least-2xed-point operator). We
stay quite close to de Roever’s notation and terminology.
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Let G be a nonempty set, whose elements we will call “generators”. (In [11, p. 35],
G is assumed to be “the collection of possibly subscripted Greek letters”.) Let Types
be the universe of an absolutely free groupoid 〈Types;⊗〉 generated by G. What this
means is that if 〈F;×〉 is any groupoid (F is a nonempty set, × is a binary operation
on F), then every map from G into F has a unique extension to a homomorphism
from 〈Types;⊗〉 into 〈F;×〉. The elements of Types are called types. Since G contains
at least one element, Types is always an in2nite set (countable if G is countable). The
key elementary properties of types are
1. If �; �∈ Types, then �⊗ �∈ Types and �⊗ � =∈G.
2. If �⊗ �= �⊗ � then �= � and �= �.
From these two properties, plus the assumption that 〈Types;⊗〉 is generated by G, it
can be shown that the groupoid 〈Types;⊗〉 is absolutely freely generated by G. In the
next section, each type will be interpreted as a nonempty set. Each generator can be
interpreted arbitrarily, with each product type interpreted as the direct product of the
interpretations of its factors.

The class of basic symbols is the union of four classes, A, B, C, and X:
• A is the class of individual relation constant symbols:

A= {A�;�
i : �; �∈ Types; i∈!};

• B is the class of Boolean relation constant symbols:

B=
⋃

�∈Types; i∈!
{p�;�

i ; p′�; �
i };

• C is the class of logical relation constant symbols:

C=
⋃

�; �∈Types
{�;�; U�; �; E�; �; ��⊗ �; �

1 ; ��⊗ �; �
2 };

• X is the class of relation variable symbols:

X= {X �;�
i : �; �∈ Types; i∈!}:

The class of basic symbols, namely A∪B∪C∪X, generates a set of relation-algebraic
terms according to the rule that if � and � are terms, then so are �; O�; �;�; �∩ �,
and �∪ �. The terms have properties similar to types. For example, if �0 ∪ �0 = �1 ∪ �1

then �0 = �1 and �0 = �1. In fact, the set of terms is the universe of an algebra with
two unary operations and three binary operations that is absolutely freely generated by
A∪B∪C∪X.

Each basic symbol has an ordered pair of types attached to it, as is indicated by
de Roever’s superscript notation. If 〈�; �〉 is the pair of types of a symbol, then that
symbol is to be interpreted as a binary relation from the interpretation of type � to
the interpretation of type �. This interpretation can be extended to terms that respect
the types of the basic symbols they contain. We therefore single out a special class of
terms, namely Terms, whose elements we call typed terms, by letting Terms be the
domain of the type function t(-). t(-) maps each term to an ordered pair of types in
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Types× Types. t(-) is the smallest function (the intersection of all functions) satisfying
the following conditions for all i∈!, all �; �0; �1 ∈ Terms, and all �; �; �∈ Types:
1. t(A�;�

i ) = t(X �;�
i ) = 〈�; �〉,

2. t(�;�) = t(U�;�) = 〈�; �〉,
3. t(E�;�) = 〈�; �〉,
4. t(p�;�

i ) = t(p′�; �
i ) = 〈�; �〉,

5. t(��⊗�; �
1 ) = 〈�⊗ �; �〉,

6. t(��⊗�; �
2 ) = 〈�⊗ �; �〉,

7. if t(�) = 〈�; �〉 then t( O�) = 〈�; �〉,
8. if t(�) = 〈�; �〉 then t(�) = 〈�; �〉,
9. if t(�0) = 〈�; �〉 = t(�1) then t(�0 ∪ �1) = 〈�; �〉 = t(�0 ∩ �1),

10. if t(�0) = 〈�; �〉 and t(�1) = 〈�; �〉 then t(�0;�1) = 〈�; �〉.

Many terms are not typed. For example, A�;�
0 ∩A�;�

0 =∈ Terms whenever � �= �. A func-
tion satisfying the conditions above may be unde2ned on an untyped term. De2ne
functions d(-) and r(-) mapping Terms to Types by the condition that

t(�) = 〈d(�); r(�)〉

for all �∈ Terms. We call d(-) the source (or domain) type of � and r(-) the target
(or range) type of �. The three type functions t(-); d(-) and r(-) are implicit in [11].

An atomic formula is an ordered pair 〈�; �〉 of terms �; �∈ Terms such that t(�)
= t(�). A formula is a set of atomic formulas. An assertion is an ordered pair of for-
mulas, denoted “���”. (While preferring to use “� ” for the provability relation, we
follow de Roever, who uses no special symbol to denote provability.) The interpreta-
tion of an assertion ��� is that the conjunction of the atomic formulas in � implies
the conjunction of the atomic formulas in �.

The atomic formula 〈�; �〉 is written “�⊆ �”, in order to rePect its semantic interpre-
tation, that the relation assigned to � is a subrelation of the relation assigned to �. Here
de Roever could have interpreted each atomic formula as an equality of relations rather
than an inclusion, which would bring the system closer to equational logic. De Roever
uses some standard notation shortcuts. “∅ ��” is shortened to “��”, and singleton
formulas are written without braces, e.g., “�⊆ �� �⊆ �” replaces “{�⊆ �} � {�⊆ �}”.
“� = �” denotes the formula {�⊆ �; �⊆ �}.

3. Interpretations of MU2

In the de2nition of interpretation we use some standard operations on sets and rela-
tions, namely,

the direct product of two sets:

X ×Y = {〈x; y〉: x∈X and y∈Y};
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the converse of a binary relation:

R−1 = {〈y; x〉: 〈x; y〉 ∈R};
the di�erence of two relations:

R∼ S = {〈x; y〉: 〈x; y〉 ∈R and 〈x; y〉 =∈ S};
the relative product of two relations:

R|S = {〈x; z〉:∃y(〈x; y〉 ∈R and 〈y; z〉 ∈ S)};
the union of two relations:

R∪ S = {〈x; y〉: 〈x; y〉 ∈R or 〈x; y〉 ∈ S};
and the intersection of two relations:

R∩ S = {〈x; y〉: 〈x; y〉 ∈R and 〈x; y〉 ∈ S}:
We will assume here that Types and Terms are disjoint, so that we may let an inter-
pretation be a single function de2ned on their union Types∪ Terms. An interpretation
is a function m(-) that assigns each type �∈ Types to a nonempty set m(�), assigns
each term �∈ Terms to a binary relation m(�), and satis2es the following conditions
for all types �; �∈ Types and all terms �; �∈ Terms:

m(�⊗ �) =m(�)×m(�);

m(U�;�) =m(�)×m(�);

m(�;�) = ∅;
m(E�;�) = {〈x; x〉 : x∈m(�)};
m(p�;�

i )∪m(p′�; �
i )⊆{〈x; x〉 : x∈m(�)};

m(p�;�
i )∩m(p′�; �

i ) = ∅;
m(��⊗�; �

1 ) = {〈〈x; y〉; x〉: x∈m(�) and y∈m(�)};
m(��⊗�; �

2 ) = {〈〈x; y〉; y〉: x∈m(�) and y∈m(�)};
m( O�) =m(�)−1;

m(�) = (m(d(�))×m(r(�)))∼m(�);

m(�;�) =m(�)|m(�);

m(�∪ �) =m(�)∪m(�);

m(�∩ �) = m(�)∩m(�):

It is perhaps worth remarking that de Roever only requires p�;�
i and p′�; �

i to be in-
terpreted as mutually exclusive identity relations that are not necessarily exhaustive.
The presence of the Boolean relation constant symbols and their interpretation is con-
venient for de Roever’s later purposes, but is irrelevant here. The same is true for the
individual relation constant symbols.
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For each type �∈ Types the nonempty set m(�) is called the domain of type �. A
simple proof by induction shows that a term’s interpretation is a relation that relates
the domain of its source type to the domain of its target type, that is,

m(�)⊆m(d(�))×m(r(�));

for all �∈ Terms.
An interpretation m(-) satis�es an atomic formula �⊆ � if m(�)⊆m(�), and satis�es

a formula � if m(-) satis2es every atomic formula in �. Therefore m(-) satis2es �= �
if and only if m(�) =m(�). An assertion ��� is valid if every interpretation that
satis2es � also satis2es �.

4. Axioms of MU2

The axiomatization proposed by de Roever consists of the following 2ve groups
of rules and axioms: (1) “typed versions of axioms and rules for Boolean algebras
(including axioms for  and U )”, (2) axioms T1–T5, called “typed versions of Tarski’s
axioms for binary relations”:

T1 �X �;�
0 ; (X �;�

1 ; X �; �
2 ) = (X �;�

0 ;X �;�
1 ); X �; �

2 ;

T2 � ((X �;�
0 )O)O=X �;�

0 ,

T3 � (X �;�
0 ; (X �;�

1 )O= (X �;�
1 )O; (X �;�

0 )O;

T4 � X �;�
0 ;E�;� =X �;�

0 ,

T5 (X �;�
0 ;X �;�

1 )∩X �;�
2 =�;� � (X �;�

1 ; (X �;�
2 )O)∩ (X �;�

0 )O=�;�;

(3) axiom U , for linking together the Boolean units:

U �U�;� ⊆U�;�;U�;�;

(4) axioms P1 and P2, for the Boolean relation constants:

P1 �p�;�
i ⊆E�;�; �p′�; �

i ⊆E�;�;

P2 �p�;�
Q ∩p′�; �

i = �;�;

and (5) axioms C1 and C2, for the projection relation constants (restricted according
to the suggestion on p. 52 of [11]):

C1 � [��⊗ �; �
1 ;(��⊗ �; �

1 )O]∩ [��⊗ �; �
2 ;(��⊗ �; �

2 )O] =E�⊗�; �⊗�;

C2 � [X �; �
1 ;X �;�

2 ]∩ [X �; �
3 ;X �;�

4 ]

= ([X �; �
1 ;(��⊗ �; �

1 )O]∩ [X �; �
3 ;(��⊗ �; �

2 )O]);([��⊗ �; �
1 ;X �;�

2 ]∩ [��⊗ �; �
2 ;X �;�

4 ]):
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Axiom C2 can be replaced by axiom C′
2.

C′
2 � [(��⊗ �; �

1 )O;��⊗ �; �
1 ]⊆E�;�; � [(��⊗ �; �

2 )O;��⊗ �; �
2 ]⊆E�;�;

� (��⊗ �; �
1 )O;��⊗ �; �

2 =U�;�:

De Roever [11, Lemma 4.6] derives C′
2 from C2 (using the remaining axioms and

rules). To get C2 from C′
2, see [16, Theorem 4:1(viii)].

5. Rules of inference for MU2

Given a 2nite index set J , a relation variable X �j; �j
ij ∈X for every j∈ J , and a func-

tion �: J → Terms such that t(�j) = 〈�j; �j〉 for every j∈ J , “�[�j=X
�j; �j
ij ]j∈J ” denotes

the result of simultaneously replacing each occurrence of variable X �j; �j
ij in � with the

term �j. This notation extends to formulas, so that

�[�j=X
�j; �j
ij ]j∈J = {�[�j=X

�j; �j
ij ]j∈J ⊆ �[�j=X

�j; �j
ij ]j∈J : (�⊆ �)∈�}:

The only rule of inference explicitly mentioned by de Roever [11] is “the substitution
rule”:

if ��� then �[�j=X
�j; �j
ij ]j∈J ��[�j=X

�j; �j
ij ]j∈J :

Item (1) in the axiomatization of MU2 is “typed versions of axioms and rules for
Boolean algebras (including axioms for  and U )”. De Roever does not make any
more speci2c choice here, leaving it to the reader to supply a suRcient set. There are
the speci2cally Boolean axioms, such as commutativity

�X �;�
0 ∩X �;�

1 =X �;�
1 ∩X �;�

0

and double negation

�X �;�
0 =X �;�

0

and structural rules for logical deduction, such as “tautology”

���;

“cut”

��� � �#
��#

and “weakening”

���
�∪#��

;
���

���∩#
:
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The symmetry and transitivity axioms,

X �;�
0 =X �;�

1 �X �;�
1 =X �;�

0 ;
{X �;�

0 =X �;�
1 ; X �; �

1 =X �;�
2 } �X �;�

0 =X �;�
2 ;

ensure that the relation ≡, which relates � to � just in case � �= � is provable, is an
equivalence relation. Axioms that show ≡ also a congruence relation in the algebra of
typed terms are

X �;�
0 =X �;�

1 �X �;�
0 =X �;�

1 ;

X �; �
0 =X �;�

1 � (X �;�
0 )O= (X �;�

1 )O;

X �; �
0 =X �;�

1 �X �;�
0 ∪X �;�

2 =X �;�
1 ∪X �;�

2 ;

X �; �
0 =X �;�

1 �X �;�
0 ∩X �;�

2 =X �;�
1 ∩X �;�

2 ;

X �; �
0 =X �;�

1 �X �;�
0 ; X �;�

2 =X �;�
1 ; X �;�

2 :

We will henceforth assume that these and other axioms and rules are part of MU2, the
exact choice being governed only by the need to remain sound and prove Lemma 1
below.

6. Soundness and completeness of MU2

Theorem 1 (Soundness). Every MU2-provable assertion ��� is valid.

Proof. It suRces to check that the MU2 axioms are valid and that the rules of inference
preserve validity.

Theorem 2 (Completeness). Every valid assertion is provable.

Proof. It suRces to show that if an assertion in MU2 is not provable, then it fails in
an interpretation m(-) of MU2 and is therefore not valid. Let � and � be formulas
and suppose the assertion ��� is not provable in MU2. De2ne a binary relation ≡�

on Terms:

� ≡� � ⇔ �� �= � is MU2-provable:

For every �∈ Terms and all �; � ∈ Types, let

|�|= {�: � ≡� �};
B�� = {|�|: t(�) = 〈�; �〉}:

The following lemma says that we have constructed a SchrEoder category from � with
Types as objects and B�� as the set of morphisms from object � to object �. We omit
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the easy but tedious details of the proof. The earlier parts of the lemma are useful in
establishing the later parts.

Lemma 1.
1: ≡� is an equivalence relation on Terms.
2: Equivalent terms have the same type: if �≡ �� then t(�) = t(�); d(�) = d(�), and
r(�) = r(�).

3: ≡� is a congruence relation with respect to the operations on terms: if � ≡� �;
then; for every � ∈ Types; we have
(a) � ≡� �;
(b) O� ≡� O�;
(c) if t(�) = t(�) then �∪ � ≡� �∪ �; �∪ � ≡� �∪ �; �∩ � ≡� �∩ �; and

�∩ � ≡� �∩ �;
(d) if d(�) = r(�) then �;� ≡� �;�;
(e) if r(�) = d(�) then �;� ≡� �;�.

4: If |�|= |�| then |�|= |�| and | O�|= | O�|.
5: If t(�0) = t(�1); |�0|= |�0|; and |�1|= |�1|; then |�0 ∪ �1|= |�0 ∪ �1| and |�0 ∩ �1|

= |�0 ∩ �1|.
6: If r(�0) = d(�1); |�0|= |�0|; and |�1|= |�1|; then |�0;�1|= |�0;�1|.
7: For all �; � ∈ Types; B�� is the universe of a Boolean algebra

B�� = 〈B��;+��; ·��; ��; 0��; 1��〉;

where

0�� = |�;�|;
1�� = |U�;�|;

and; for all �; � ∈ Terms; if t(�) = t(�) = 〈�; �〉 then

|�| +�� |�|= |�∪ �|;
|�|·��|�|= |�∩ �|;

|�|�� = |�|:

8: There is a (Types× Types× Types)-indexed system of functions ;��� : B�� ×B��

→B�� for �; �; � ∈ Types; such that |�|;���|�|= |�;�| whenever �; � ∈ Terms;
t(�) = 〈�; �〉; and t(�) = 〈�; �〉.

9: The unit law

1��;���1�� = 1��;

the zero laws

0�� = 0��;
�
��0�� = 0��;

�
��1�� = 1��;

�
��0��;
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and the associative law

(x;���y);���z = x;���(y;���z);

hold whenever �; �; �; � ∈ Types; x ∈ B��, y ∈ B��; and z ∈ B��.
10: There is a (Types×Types)-indexed system of functions O�� : B�� → B�� for �; � ∈

Types; such that | O�|�� = | O�| whenever � ∈ Terms and t(�) = 〈�; �〉.
11: The cycle law holds: if �; �; � ∈ Types; x ∈ B��; y ∈ B��; and z ∈ B��; then the

following statements are equivalent:

(x;���y)·��z = 0��; ( Oy;��� Ox)·�� Oz = 0��;

( Ox;���z)·��y= 0��; ( Oz;���x)·�� Oy= 0��;

(z;��� Oy)·��x= 0��; (y;��� Oz)·�� Ox= 0��:

12: The identity law holds: for all �; � ∈ Types and all x ∈ B��;

|E�;�|;���x= x= x;���|E�;�|:

We have a Boolean algebra B�� for every 〈�; �〉 ∈ Types × Types. Let B be the
direct product of these algebras:

B =
∏

�;�∈Types
B��:

Then B is a Boolean algebra. Given s; s′ ∈B, we wish to de2ne relative multiplication
by

(s;s′)�� =
∑

�∈Types

(B��)
s��;

�
��s

′
�� (1)

for all �; � ∈ Types, but one of the joins in (1) may not exist; the relevant Boolean
algebra may not be complete. To get around this, we restrict our attention to S, the
set of functions that are “eventually-0-or-1 oT the diagonal”:

S=

{
s: s ∈ ∏

�;�∈Types
B��; {〈�; �〉: � �= � and 0�� �= s�� �= 1��} is 2nite

}
:

Clearly, S is closed under the operations of B. Let S be the subalgebra of B whose
universe is S. For every � ∈ Terms, let �̃ be the sequence in S which is 0 everywhere
except at 〈d(�); r(�)〉, where its value is |�|, that is, for all �; � ∈ Types

(̃�)�� =
{ |�| if 〈�; �〉= 〈d(�); r(�)〉;

0�� if 〈�; �〉 �= 〈d(�); r(�)〉:
Suppose s; s′ ∈ S and �; � ∈ Types. For almost all � ∈ Types (i.e., with only 2nitely
many exceptions), we have s�� ∈ {0��; 1��} and s′�� ∈ {0��; 1��}, hence s��;

�
��s

′
�� ∈

{0��; 1��} by the unit and zero laws in Lemma 1. It follows that {s��;���s′�� : � ∈
Types} is 2nite for all �; � ∈ Types. We can therefore de2ne s;s′ by (1). This de2nes
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a binary operation ; on S. De2ne a unary operation O on S by ( Os)�� = (s��) O�� for all
�; � ∈ Types. De2ne an identity element 1′ by

(1′)�� =
{ |E�;�| if �= �;
|0��| if � �= �

for all �; � ∈ Types. Obviously 1′ ∈ S, and it is easy to show that S is closed under the
operations ; and O. This yields an algebra A = 〈S ; ; ; O; 1′〉. It follows from Lemma 1
that A is a relation algebra.

Next we show that A is a representable relation algebra. A relation algebra is tabular
if every nonzero element has nonempty intersection with an element of the form Op;q,
where p and q are functional elements. We show that A is tabular and use the fact that
every tabular relation algebra is representable [9, Theorem 7]. (The term “tabular” is
borrowed from a similar theorem in [2].) Suppose 0 �= s ∈ S. Since s is not everywhere
zero, there are types �; � ∈ Types such that

0�� �= s�� ∈ B��:

Let

p= ]��⊗�; �
1 ; q= ]��⊗�; �

2 ;

i.e., p and q are the sequences in S that are zero everywhere except for

p�⊗�;� = |��⊗�; �
1 |; q�⊗�;� = |��⊗�; �

2 |:
With the essential help of axiom C2, it can be shown that Op;p61′, Oq;q61′, and
1�� = Op;q [11, Lemma 4:6]. Hence p and q are functional elements such that 0 �=
s· Op;q. This completes the proof that A is tabular. Consequently, A is representable.
Since the assertion ��� is not provable, there must be some atomic formula  ∈�
such that ��  is not provable. Suppose  = 〈�; �〉. Then � �≡� �, so |�| �= |�|, hence
�̃ �= �̃. This inequality in A will be inherited by one of the simple homomorphic
images of A. Every relation algebra is a subdirect product of its simple homomorphic
images [5, 7], so, if every homomorphism R from A onto a simple relation algebra
A′ agrees on two elements of A, then the elements must coincide. In particular, there
must be a simple relation algebra A′ and a homomorphism R : A → A′ from A onto
A′ such that R(�̃) �= R(̃�): The class of representable relation algebras is closed under
the formation of homomorphic images [5, 15]. It follows from the representability of
A that A′ is also representable. This means that A′ is isomorphic to a proper relation
algebra. We will simply assume that A′ actually is a proper relation algebra, so that
its elements are actually binary relations, and its operations are the ordinary Boolean
and relative operations on binary relations. Furthermore, since A′ is simple, we may
also assume that its Boolean unit element 1 is a Cartesian square [7]. This means that
there is some U �= ∅ such that 1 =U ×U and A′ is a subalgebra of Re (U ). Re (U )
is the relation algebra of all binary relations on U . It may happen that U contains no
ordered pairs. If we were to set m(�) =R(�̃) for every term, then every term would be
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interpreted as a binary relation, but, while R( ]��⊗ �; �
1 ) and R( ]��⊗ �; �

2 ) are functions,
they may not be projection functions de2ned on a Cartesian product. To 2x this we
will replace the base set U with another base set V that is closed under pairing, i.e.,
(〈x; y〉 ∈ V ) for all x; y∈V . V and U share certain elements, namely those correlated
with relations whose types are in the generating set of types G. Let

W =
⋃
*∈G

Field (R(Ẽ*;*))

= {x: 〈x; x〉 ∈ R(Ẽ*;*) and * ∈ G)}:
We will assume U has been chosen in such a way that W contains no ordered pairs.
Let V be the closure of W under the formation of ordered pairs. Note that W ⊆V ∩U ,
and it is not excluded that V =U . We can now de2ne an interpretation m(-) on the
types by the recursive conditions:

m(*) = Field (R(Ẽ*;*)) for every * ∈ G;
m(�⊗ �) =m(�) ×m(�) for all �; � ∈ Types:

Note that m(�)⊆W ⊆V whenever � ∈ G, and, by induction using the second condition,
m(�)⊆V for every � ∈ Types. Next we extend the interpretation from types to terms.
Let P and Q be the true projection functions restricted to V , namely

P = {〈〈x; y〉; x〉: x; y ∈ V};
Q = {〈〈x; y〉; y〉: x; y ∈ V}:

De2ne F� recursively: for all * ∈ G and �; � ∈ Types let

F* = R(Ẽ*;*);

F�⊗� = (R( ]��⊗�; �
1 )|F�|P−1)∩ (R( ]��⊗�; �

2 )|F�|Q−1):

Using axiom C2 and properties of ordered pairs, one can show by induction that these
relations are all functions. The assumption that U contains no ordered pairs means that
the ranges of these functions are disjoint. It follows from axiom C1 that these functions
are also all one-to-one. It is built into the structure of A that the domains of these
functions are disjoint. It follows that their union is a function. Let

F =
⋃

�∈Types
F�:

Then F is a bijection mapping U onto V . We transfer relations from U onto V via
F , and thus de2ne m(-). If � ∈ Terms, �; � ∈ Types, and t(�) = 〈�; �〉, then let

m(�) = (F�)
−1|R(�̃)|F�:

What remains is the routine veri2cation that m(-) is an interpretation of MU2 that
satis2es � but not  . This shows that ��� is not valid.
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