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Let G be a second-countable locally-compact Hausdorff groupoid with a Haar system, and
let {xn} be a sequence in the unit space G(0) of G . We show that the notions of strength of
convergence of {xn} in the orbit space G(0)/G and measure-theoretic accumulation along
the orbits are equivalent ways of realising multiplicity numbers associated to a sequence
of induced representation of the groupoid C∗-algebra.
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1. Introduction

Suppose H is a locally-compact Hausdorff group acting freely and continuously on a locally-compact Hausdorff space X ,
so that (H, X) is a free transformation group. In [13, pp. 95–96] Green gives an example of a free non-proper action of
H = R on a subset X of R

3; the non-properness comes down to the existence of z ∈ X , {xn} ⊂ X , and two sequences {sn}
and {tn} in H such that

(i) s−1
n · xn → z and t−1

n · xn → z; and
(ii) tns−1

n → ∞ as n → ∞, in the sense that {tns−1
n } has no convergent subsequence.

In [2, Definition 2.2], and subsequently in [3, p. 2], the sequence {xn} is said to converge 2-times in the orbit space to z ∈ X .
Each orbit H · x gives an induced representation Indεx of the associated transformation-group C∗-algebra C0(X) � H which
is irreducible, and the k-times convergence of {xn} in the orbit space to z ∈ X translates into statements about various
multiplicity numbers associated to Indεz in the spectrum of C0(X) � H , as in [2, Theorem 2.5], [3, Theorem 1.1] and [4,
Theorem 2.1].

Upper and lower multiplicity numbers associated to irreducible representations π of a C∗-algebra A were introduced
by Archbold [1] and extended to multiplicity numbers relative to a net of irreducible representations by Archbold and
Spielberg [9]. The upper multiplicity MU (π) of π , for example, counts ‘the number of nets of orthogonal equivalent pure
states which can converge to a common pure state associated to π ’ [6, p. 26]. The definition of k-times convergence and [2,
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Theorem 2.5] were very much motivated by a notion of k-times convergence in the dual space of a nilpotent Lie group [16]
and its connection with relative multiplicity numbers (see, for example, [6, Theorem 2.4] and [7, Theorem 5.8]).

Theorem 1.1 of [3] shows that the topological property of a sequence {xn} converging k-times in the orbit space to
z ∈ X is equivalent to (1) a measure theoretic accumulation along the orbits G · xn and (2) that the lower multiplicity of
Indεz relative to the sequence {Indεxn } is at least k. In this paper we prove that the results of [3] generalise to principal
groupoids. In our main arguments we have tried to preserve as much as possible the structure of those in [3], although the
arguments presented here are often more complicated in order to cope with the partially defined product in a groupoid
and the set of measures that is a Haar system compared to the fixed Haar measure used in the transformation-group case.
Our theorems have led us to a new class of examples exhibiting k-times convergence in groupoids that are not based on
transformation groups, thus justifying our level of generality. Given a row-finite directed graph E , Kumjian, Pask, Raeburn
and Renault in [15] used the set of all infinite paths in E to construct an r-discrete groupoid G E , called a path groupoid. We
prove that G E is principal if and only if E contains no cycles (Proposition 8.1). We then exhibit principal G E with Hausdorff
and non-Hausdorff orbits space, respectively, both with a k-times converging sequence in the orbit space. In particular, our
examples can be used to find a groupoid G E whose C∗-algebra has non-Hausdorff spectrum and distinct upper and lower
multiplicity counts among its irreducible representations.

2. Preliminaries

We denote the unit space of a groupoid G by G(0) . For x ∈ G(0) we call the set r(s−1({x})) = s(r−1({x})) the orbit of x
and denote it by [x]. For a subset U of G(0) we define GU := s−1(U ), GU := r−1(U ), and G|U := s−1(U ) ∩ r−1(U ). We denote
the set of all positive integers by P and the set of all non-negative integers by N. We write �r	 for the integer part of a
non-negative real number r.

Definition 2.1. A right Haar system on a groupoid G is a set {λx: x ∈ G(0)} of non-negative Radon measures on G such that

(i) supp λx = Gx (= s−1({x})) for all x ∈ G(0);
(ii) for f ∈ Cc(G), the function x 
→ ∫

f dλx on G(0) is in Cc(G(0)); and
(iii) for f ∈ Cc(G) and γ ∈ G ,∫

f (αγ )dλr(γ )(α) =
∫

f (α)dλs(γ )(α).

We will refer to (ii) as the continuity of the Haar system and to (iii) as Haar-system invariance. The collection {λx: x ∈ G(0)}
of measures where λx(E) := λx(E−1) is a left Haar system, which is a system of measures such that suppλx = Gx and, for
f ∈ Cc(G), x 
→ ∫

f dλx is continuous and
∫

f (γ α)dλs(γ )(α) = ∫
f (α)dλr(γ )(α). Given that we can easily convert a right

Haar system {λx} into a left Haar system {λx} and vice versa, we will simply refer to a Haar system λ and use subscripts to
refer to elements of the right Haar system {λx} and superscripts to refer to elements of the left Haar system {λx}.

The following lemma follows from the invariance of the Haar system and the Dominated Convergence Theorem; we omit
the proof.

Lemma 2.2 (Haar-system invariance). Suppose G is a locally-compact Hausdorff groupoid with Haar system λ. If K ⊂ G is compact
and γ ∈ G with s(γ ) = x and r(γ ) = y, then λx(Kγ ) = λy(K ) and λx(γ −1 K ) = λy(K ).

Definition 2.3 below is Definition 2.45 in the unpublished book [17]. Alternative descriptions of the induced representa-
tion may be found in [19, p. 234] and [23, pp. 81–82].

Definition 2.3. Suppose G is a second-countable locally-compact Hausdorff groupoid with Haar system λ and let μ be a
Radon measure on G(0) .

(i) We write ν = μ ◦ λ = ∫
λx dμ for the measure on G defined for every Borel-measurable function f : G → C by∫

G f (γ )dν(γ ) = ∫
G(0)

∫
G f (γ )dλx(γ )dμ(x). We call ν the measure induced by μ, and we write ν−1 for the image

of ν under the homeomorphism γ 
→ γ −1.
(ii) For f ∈ Cc(G), Ind μ( f ) is the operator on L2(G, ν−1) defined by the formula

(
Indμ( f )ξ

)
(γ ) =

∫
G

f (α)ξ
(
α−1γ

)
dλr(γ )(α) =

∫
G

f (γ α)ξ
(
α−1)dλs(γ )(α).

In this paper we are interested in representations that are induced by point-mass measures δx on G(0) . We denote Ind δx
by Lx for all x ∈ G(0) as in [19] and [11].



R. Hazlewood, A. an Huef / J. Math. Anal. Appl. 383 (2011) 1–24 3
Remark 2.4. It follows from the definition of the induced measure that for x ∈ G(0) , the measure ν induced by δx is equal
to λx . In particular we have ν−1 = λx , so Lx acts on L2(G, λx). The operator Lx is then given by(

Lx( f )ξ
)
(γ ) =

∫
G

f
(
γ α−1)ξ(α)dλx(α)

for all ξ ∈ L2(G, λx) and all γ ∈ G . There is a close relationship between the convolution on Cc(G) and these induced
representations: recall that for f , g ∈ Cc(G), the convolution f ∗ g ∈ Cc(G) is given by

f ∗ g(γ ) =
∫
G

f
(
γ α−1)g(α)dλs(γ )(α) for all γ ∈ G,

so that(
Lx( f )g

)
(γ ) = f ∗ g(γ ) for any x ∈ G(0) and γ ∈ Gx.

We denote the norm in L2(G, λx) by ‖·‖x . Finally note that when G is a second-countable locally-compact principal groupoid
that admits a Haar system, each Lx is irreducible by [19, Lemma 2.4].

Remark 2.5. If G = (H, X) is a second-countable free transformation group, then the representations Lx defined above are
unitarily equivalent to the representations Indεx used in [3]. Specifically, let ν be a choice of right Haar measure on H and

 the associated modular function. The map ι : Cc(H × X) → Cc(H × X) defined by ι( f )(t, x) = f (t, x)
(t)1/2 extends to an
isomorphism ι of the groupoid C∗-algebra C∗(H × X) onto the transformation-group C∗-algebra C0(X) � H [23, p. 58]. Fix
x ∈ X . Then there is a unitary Ux : L2(H, ν) → L2(H × X, λx), characterised by U (ξ)(h, y) = ξ(h)δx(h−1 · y) for ξ ∈ Cc(H),
and U (Indεx(ι( f ))U∗ = Lx( f ) for f ∈ C∗(H × X).

Let A be a C∗-algebra. We write θ for the canonical surjection from the space P (A) of pure states of A to the spectrum
Â of A. We frequently identify an irreducible representation π with its equivalence class in Â and we write Hπ for the
Hilbert space on which π(A) acts.

Let π ∈ Â and let {πα} be a net in Â. We now recall the definitions of upper and lower multiplicity MU(π) and ML(π)

from [1], and relative upper and relative lower multiplicity MU(π, {πα}) and ML(π, {πα}) from [9]. Let N be the weak∗-
neighborhood base at zero in the dual A∗ of A consisting of all open sets of the form

N = {
ψ ∈ A∗:

∣∣ψ(ai)
∣∣ < ε, 1 � i � n

}
,

where ε > 0 and a1,a2, . . . ,an ∈ A. Suppose φ is a pure state of A associated with π and let N ∈ N . Define

V (φ, N) = θ
(
(φ + N) ∩ P (A)

)
,

an open neighborhood of π in Â. For σ ∈ Â let

Vec(σ ,φ, N) = {
η ∈ Hσ : ‖η‖ = 1,

(
σ(·)η ∣∣ η) ∈ φ + N

}
.

Note that Vec(σ ,φ, N) is non-empty if and only if σ ∈ V (φ, N). For any σ ∈ V (φ, N) define d(σ ,φ, N) to be the supremum
in P ∪ {∞} of the cardinalities of finite orthonormal subsets of Vec(σ ,φ, N). Write d(σ ,φ, N) = 0 when Vec(σ ,φ, N) is
empty.

Define

MU(φ, N) = sup
σ∈V (φ,N)

d(σ ,φ, N) ∈ P ∪ {∞}.

Note that if N ′ ∈ N and N ⊂ N , then MU(φ, N ′) � MU(φ, N). Now define

MU(φ) = inf
N∈N

MU(φ, N) ∈ P ∪ {∞}.
By [1, Lemma 2.1], the value of MU(φ) is independent of the pure state φ associated to π and so MU(π) := MU(φ) is well
defined. For lower multiplicity, assume that {π} is not open in Â, and using [1, Lemma 2.1] again, define

ML(π) := inf
N∈N

(
lim inf

σ→π,σ �=π
d(σ ,φ, N)

)
∈ P ∪ {∞}.

Now suppose that {πα}α∈Λ is a net in Â. For N ∈ N let

MU
(
φ, N, {πα}) = lim sup

α∈Λ

d(πα,φ, N) ∈ N ∪ {∞}.

Note that if N ′ ∈ N and N ′ ⊂ N then MU(φ, N ′, {πα}) � MU(φ, N, {πα}). Then

MU
(
π, {πα}) := inf MU

(
φ, N, {πα}) ∈ N ∪ {∞},
N∈N
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is well defined because the right-hand side is independent of the choice of φ by an argument similar to the proof of [1,
Lemma 2.1]. Similarly define

ML
(
φ, N, {πα}) := lim inf

α∈Λ
d(πα,φ, N) ∈ N ∪ {∞},

and let

ML
(
π, {πα}) = inf

N∈N
ML

(
φ, N, {πα}) ∈ N ∪ {∞}.

It follows that for any irreducible representation π and any net {πα}α∈Λ of irreducible representations,

ML
(
π, {πα}) � MU

(
π, {πα}) � MU(π)

and, if {πα} converges to π with πα �= π eventually, ML(π) � ML(π, {πα}). Finally, if {πβ} is a subnet of {πα}, then

ML
(
π, {πα}) � ML

(
π, {πβ}) � MU

(
π, {πβ}) � MU

(
π, {πα}).

3. Lower multiplicity and k-times convergence I

A key goal for this paper is to describe the relationship between multiplicities of induced representations and strength
of convergence in the orbit space. We start this section by recalling the definition of k-times convergence in a groupoid
from [11]. We then show that if a sequence converges k-times in the orbit space of a principal groupoid, then the lower
multiplicity of the associated sequence of representations is at least k; the converse will be shown in Section 6.

Recall that a sequence {γn} ⊂ G tends to infinity if it admits no convergent subsequence.

Definition 3.1. Let k ∈ P. A sequence {xn} in G(0) is k-times convergent in G(0)/G to z ∈ G(0) if there exist k sequences
{γ (1)

n }, {γ (2)
n }, . . . , {γ (k)

n } ⊂ G such that

(i) s(γ (i)
n ) = xn for all n and 1 � i � k;

(ii) r(γ (i)
n ) → z as n → ∞ for 1 � i � k; and

(iii) if 1 � i < j � k then γ
( j)

n (γ
(i)

n )−1 → ∞ as n → ∞.

The proof of the following proposition is based on [2, Theorem 2.3] and a part of [3, Theorem 1.1].

Proposition 3.2. Suppose G is a second-countable locally-compact Hausdorff principal groupoid with Haar system λ. Let z ∈ G(0) and
suppose that {xn} is a sequence in G(0) that converges k-times to z in G(0)/G. Then ML(Lz, {Lxn }) � k.

Proof. We will use a contradiction argument. Suppose that ML(Lz, {Lxn }) = r < k. Fix a real-valued g ∈ Cc(G) so that
‖g‖z > 0. Define η ∈ L2(G, λz) by η(α) = ‖g‖−1

z g(α) for all α ∈ G . Then

‖η‖2
z = ‖g‖−2

z

∫
g(α)2 dλz(α) = ‖g‖−2

z ‖g‖2
z = 1,

so η is a unit vector in L2(G, λz) and the GNS construction of φ := (Lz(·)η | η) is unitarily equivalent to Lz . By the definition
of lower multiplicity we now have

ML
(
Lz,

{
Lxn

}) = inf
N∈N

ML
(
φ, N,

{
Lxn

}) = r,

so there exists N ∈ N such that

ML
(
φ, N,

{
Lxn

}) = lim inf
n

d
(
Lxn , φ, N

) = r,

and consequently there exists a subsequence {ym} of {xn} such that

d
(
Lym , φ, N

) = r for all m. (3.1)

Since any subsequence of a sequence that is k-times convergent is also k-times convergent, we know that {ym} converges
k-times to z in G(0)/G .

We will now use the k-times convergence of {ym} to construct k sequences of unit vectors with sufficient properties to
establish our contradiction. By the k-times convergence of {ym} there exist k sequences{

γ
(1)

m
}
,
{
γ

(2)
m

}
, . . . ,

{
γ

(k)
m

} ⊂ G

satisfying
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(i) s(γ (i)
m ) = ym for all m and 1 � i � k;

(ii) r(γ (i)
m ) → z as m → ∞ for 1 � i � k; and

(iii) if 1 � i < j � k then γ
( j)

m (γ
(i)

m )−1 → ∞ as m → ∞.

For each 1 � i � k and m � 1, define η
(i)
m by

η
(i)
m (α) = ‖g‖−1

r(γ (i)
m )

g
(
α

(
γ

(i)
m

)−1)
for all α ∈ G.

It follows from Haar-system invariance that

∥∥η(i)
m

∥∥2
ym

= ‖g‖−2
r(γ (i)

m )

∫
g
(
α

(
γ

(i)
m

)−1)2
dλym(α)

= ‖g‖−2
r(γ (i)

m )

∫
g(α)2 dλ

r(γ (i)
m )

(α)

= ‖g‖−2
r(γ (i)

m )
‖g‖2

r(γ (i)
m )

= 1,

so the η
(i)
m are unit vectors in L2(G, λym ).

Now suppose that 1 � i < j � k. Then

(
η

(i)
m

∣∣ η( j)
m

)
ym

= ‖g‖−1
r(γ (i)

m )
‖g‖−1

r(γ ( j)
m )

∫
g
(
α

(
γ

(i)
m

)−1)
g
(
α

(
γ

( j)
m

)−1)
dλym(α). (3.2)

Since γ
(i)

m (γ
( j)

m )−1 → ∞, γ
(i)

m (γ
( j)

m )−1 is eventually not in the compact set (supp g)−1(supp g), and so there exists m0 such
that if m � m0, then

(supp g)γ
(i)

m ∩ (supp g)γ
( j)

m = ∅.

(To see this claim, note that if (supp g)γ
(i)

m ∩ (supp g)γ
( j)

m �= ∅ then there exist α,β ∈ supp g such that αγ
(i)

m = βγ
( j)

m , and
so γ

(i)
m (γ

( j)
m )−1 = α−1β ∈ (supp g)−1(supp g).) For the integrand of (3.2) to be non-zero, both α(γ

(i)
m )−1 and α(γ

( j)
m )−1 must

be in supp g , so α must be in (supp g)γ
(i)

m ∩ (supp g)γ
( j)

m . But this is not possible if m � m0. Thus, for any distinct i, j, we
will eventually have η

(i)
m ⊥ η

( j)
m .

For the last main component of this proof we will establish that(
Lym (·)η(i)

m

∣∣ η(i)
m

) → (
Lz(·)η ∣∣ η) = φ as m → ∞

in the dual of C∗(G) with the weak∗ topology for each i. Fix f ∈ Cc(G). We have

(
Lz( f )η

∣∣ η) =
∫
G

(
Lz( f )η

)
(α)η(α)dλz(α)

=
∫
G

∫
G

f
(
αβ−1)η(β)η(α)dλz(β)dλz(α)

= ‖g‖−2
z

∫
G

∫
G

f
(
αβ−1)g(β)g(α)dλz(β)dλz(α). (3.3)

Now fix 1 � i � k. By the invariance of the Haar system we have

(
Lym ( f )η(i)

m

∣∣ η(i)
m

) =
∫
G

∫
G

f
(
αβ−1)η(i)

m (β)η
(i)
m (α)dλym (β)dλym (α)

= ‖g‖−2
r(γ (i)

m )

∫
G

∫
G

f
(
αβ−1)g

(
α

(
γ

(i)
m

)−1)
g
(
β
(
γ

(i)
m

)−1)
dλym(β)dλym (α)

= ‖g‖−2
r(γ (i)

m )

∫
G

∫
G

f
(
αβ−1)g(α)g(β)dλ

r(γ (i)
m )

(β)dλ
r(γ (i)

m )
(α)

= ‖g‖−2
r(γ (i)

m )

∫
f ∗ g(α)g(α)dλ

r(γ (i)
m )

(α). (3.4)
G
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We know that r(γ (i)
m ) → z as m → ∞ so, by the continuity of the Haar system, ‖g‖

r(γ (i)
m )

→ ‖g‖z as m → ∞. Since f ∗ g ∈
Cc(G) we can apply the continuity of the Haar system with (3.3) and (3.4) to see that

(
Lym ( f )η(i)

m

∣∣ η(i)
m

) = ‖g‖−2
r(γ (i)

m )

∫
G

f ∗ g(α)g(α)dλ
r(γ (i)

m )
(α) → ‖g‖−2

z

∫
G

f ∗ g(α)g(α)dλz(α) = (
Lz( f )η

∣∣ η)

as m → ∞.
We have thus shown that, for each i,(

Lym (·)η(i)
m

∣∣ η(i)
m

) → (
Lz(·)η ∣∣ η) = φ

in the dual of C∗(G) equipped with the weak∗ topology. Thus there exists m1 such that for any m � m1 and any 1 �
i � k, the pure state (Lym (·)η(i)

m | η
(i)
m ) is in φ + N . We have now established that every η

(i)
m with m � max{m0,m1} is in

Vec(Lym , φ, N) with η
(i)
m ⊥ η

( j)
m for i �= j, so d(Lym , φ, N) � k for all m � max{m0,m1}, contradicting our choice of {ym} that

in (3.1) had d(Lym , φ, N) = r < k for all m. �
4. Measure ratios and k-times convergence

In this section we show that lower bounds on measure ratios along orbits give strength of convergence in the orbit
space. We begin by generalising [3, Proposition 4.1]. A subset S of a topological space X is locally closed if there exist an
open set U of X and a closed set V of X such that S = U ∩ V ; this is equivalent to S being open in the closure of S with
the subspace topology by, for example, [24, Lemma 1.25].

Proposition 4.1. Let G be a second-countable locally-compact Hausdorff principal groupoid with Haar system λ. Let k ∈ P and z ∈ G(0)

with [z] locally closed in G(0) . Assume that {xn} is a sequence in G(0) such that [xn] → [z] uniquely in G(0)/G. Suppose {Wm} is a basic
decreasing sequence of compact neighborhoods of z such that each m satisfies

lim inf
n

λxn

(
G Wm

)
> (k − 1)λz

(
G Wm

)
.

Then {xn} converges k-times in G(0)/G to z.

Proof. Let {Km} be an increasing sequence of compact subsets of G such that G = ⋃
m�1 Int Km . By the regularity of λz , for

each m � 1 there exist δm > 0 and an open neighborhood Um of GWm
z such that

lim inf
n

λxn

(
G Wm

)
> (k − 1)λz(Um) + δm. (4.1)

We will construct, by induction, a strictly increasing sequence of positive integers {nm} such that, for all n � nm ,

λxn

(
Kmα ∩ G Wm

)
< λz(Um) + δm/k for all α ∈ G Wm

xn , and (4.2)

λxn

(
G Wm

)
> (k − 1)λz(Um) + δm. (4.3)

By applying Lemma 5.5 with δ = λz(U1) − λz(GW1 ) + δ1/k there exists n1 such that n � n1 implies

λxn

(
K1α ∩ G W1

)
< λz(U1) + δ1/k for all α ∈ G W1

xn ,

establishing (4.2) for m = 1. If necessary we can increase n1 to ensure (4.3) holds for m = 1 by considering (4.1). Assuming
that we have constructed n1 < n2 < · · · < nm−1, we apply Lemma 5.5 with δ = λz(Um)−λz(GWm )+δm/k to obtain nm > nm−1
such that (4.2) holds, and again, if necessary, increase nm to obtain (4.3).

If n1 > 1 then, for each 1 � n < n1 and 1 � i � k, let γ
(i)

n = xn . For each n � n1 there is a unique m such that nm � n <

nm+1. For every such n and m choose γ
(1)

n ∈ GWm
xn (which is always non-empty by (4.3)). Using (4.2) and (4.3) we have

λxn

(
G Wm

∖
Kmγ

(1)
n

) = λxn

(
G Wm

) − λxn

(
G Wm ∩ Kmγ

(1)
n

)
>

(
(k − 1)λz(Um) + δm

) − (
λz(Um) + δm/k

)
= (k − 2)λz(Um) + (k − 1)

k
δm.

So for each n � n1 and its associated m we can choose γ
(2)

n ∈ GWm
x \Kmγ

(1)
n . We now have
n



R. Hazlewood, A. an Huef / J. Math. Anal. Appl. 383 (2011) 1–24 7
λxn

(
G Wm

∖(
Kmγ

(1)
n ∪ Kmγ

(2)
n

)) = λxn

(
G Wm

∖
Kmγ

(1)
n

) − λxn

((
G Wm

∖
Kmγ

(1)
n

) ∩ Kmγ
(2)

n
)

� λxn

(
G Wm

∖
Kmγ

(1)
n

) − λxn

(
G Wm ∩ Kmγ

(2)
n

)
>

(
(k − 2)λz(Um) + (k − 1)

k
δm

)
− (

λz(Um) + δm/k
)

= (k − 3)λz(Um) + (k − 2)

k
δm,

enabling us to choose γ
(3)

n ∈ GWm
xn \ (Kmγ

(1)
n ∪ Kmγ

(2)
n ). By continuing this process, for each j = 3, . . . ,k and each n � n1 we

have

λxn

(
G Wm

∖( j−1⋃
i=1

Kmγ
(i)

n

))
> (k − j)λz(Um) + (k − j − 1)δm

k
,

enabling us to choose

γ
( j)

n ∈ G Wm
xn

∖( j−1⋃
i=1

Kmγ
(i)

n

)
. (4.4)

Note that for nm � n < nm+1 we have γ
( j)

n /∈ Kmγ
(i)

n for 1 � i < j � k.
We will now establish that xn converges k-times to z in G(0)/G by considering the γ

(i)
n . Note that s(γ (i)

n ) = xn for all n

and i by our choice of the γ
(i)

n . To see that r(γ (i)
n ) → z as n → ∞ for 1 � i � k, first fix i and let V be an open neighborhood

of z. Since Wm → {z} there exists m0 such that m � m0 implies Wm ⊂ V . For each n � nm0 there exists a m � m0 such that

nm � n < nm+1, and so r(γ (i)
n ) ∈ Wm ⊂ V .

Finally we claim that γ
( j)

n (γ
(i)

n )−1 → ∞ as n → ∞ for 1 � i < j � k. Fix i < j and let K be a compact subset of G . There
exists m0 such that K ⊂ Km for all m � m0. Then for n � nm0 there exists m � m0 such that nm � n < nm+1. By (4.4) we
know

γ
( j)

n ∈ G Wm
xn

∖(
Kmγ

(i)
n

) = (
G Wm

xn

(
γ

(i)
n

)−1
γ

(i)
n

)∖(
Kmγ

(i)
n

) = ((
G Wm

xn

(
γ

(i)
n

)−1)∖
Km

)
γ

(i)
n ,

and so γ
( j)

n (γ
(i)

n )−1 ∈ (GWm
xn (γ

(i)
n )−1) \ Km ⊂ G \ Km ⊂ G \ K , enabling us to conclude that {xn} converges k-times in G(0)/G

to z. �
In Proposition 4.4 below we prove a generalisation of a part of [3, Proposition 4.2]; to do this we need the following two

lemmas.

Lemma 4.2. Suppose G is a second-countable groupoid with Haar system λ and let K be a compact subset of G. If {xn} ⊂ G(0) is
a sequence that converges to z ∈ G(0) , then

lim sup
n

λxn (K ) � λz(K ).

Proof. Fix ε > 0. By the outer regularity of λz , there exists an open neighborhood U of K such that

λz(K ) � λz(U ) < λz(K ) + ε/2.

By Urysohn’s Lemma there exists f ∈ Cc(G) with 0 � f � 1 such that f is identically one on K and zero off U . In particular
we have

λz(K ) �
∫

f dλz < λz(K ) + ε/2. (4.5)

The continuity of the Haar system implies
∫

f dλxn → ∫
f dλz , so there exists n0 such that n � n0 implies∫

f dλz − ε/2 <

∫
f dλxn <

∫
f dλz + ε/2.

By our choice of f we have λxn (K ) �
∫

f dλxn , so

λxn(K ) �
∫

f dλxn <

∫
f dλz + ε/2.

Combining this with (4.5) enables us to observe that for n � n0, λxn (K ) < λz(K ) + ε , completing the proof. �
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Lemma 4.3. Suppose G is a second-countable groupoid with Haar system λ and let K be a compact subset of G. For every ε > 0 and
z ∈ G(0) there exists a neighborhood U of z in G(0) such that x ∈ U implies λx(K ) < λz(K ) + ε .

Proof. Fix ε > 0 and z ∈ G(0) . Let {Un} be a decreasing neighborhood basis for z in G(0) . If our claim is false, then each Un

contains an element xn such that λxn (K ) � λz(K ) + ε . But since each xn ∈ Un , xn → z, and so by Lemma 4.2 there exists n0
such that n � n0 implies λxn (K ) < λz(K ) + ε , a contradiction. �
Proposition 4.4. Suppose G is a second-countable locally-compact Hausdorff groupoid with Haar system λ. Suppose that z ∈ G(0)

with [z] locally closed in G(0) and suppose {xn} is a sequence in G(0) . Assume that for every open neighborhood V of z in G(0) such
that G V

z is relatively compact, λxn (G V ) → ∞ as n → ∞. Then, for every k � 1, the sequence {xn} converges k-times in G(0)/G to z.

Proof. Let {Km} be an increasing sequence of compact subsets of G such that G = ⋃
m�1 Int Km . By Lemma 4.3, for each Km

there exists an open neighborhood Vm of z such that x ∈ Vm implies λx(Km) < λz(Km) + 1. Since [z] is locally closed, by
Lemma 4.1(1) in [12] we can crop V 1 if necessary to ensure that G V 1

z is relatively compact. By further cropping each Vm

we may assume that {Vm} is a decreasing neighborhood basis of z. By our hypothesis, for each m there exists nm such that

n � nm implies λxn

(
G Vm

)
> k

(
λz(Km) + 1

)
. (4.6)

Note that for any γ ∈ G Vm
xn with n � nm , we have r(γ ) ∈ Vm , and so λr(γ )(Km) < λz(Km) + 1. By Haar-system invariance we

know that λr(γ )(Km) = λxn (Kmγ ), which shows us that

λxn(Kmγ ) < λz(Km) + 1. (4.7)

If necessary we can increase the elements of {nm} so that it is a strictly increasing sequence.
We now proceed as in the proof of Proposition 4.1. For all n < n1 and 1 � i � k let γ

(i)
n = xn . For each n � n1 there

exists a unique number m(n) such that nm(n) � n < nm(n)+1. For the remainder of this proof we will write m instead of m(n)

because the specific n will be clear from the context. For each n � n1 choose γ
(1)

n ∈ G Vm
xn . Then by (4.6) and (4.7) we have

λxn

(
G Vm

∖
Kmγ

(1)
n

) = λxn

(
G Vm

) − λxn

(
G Vm ∩ Kmγ

(1)
n

)
� λxn

(
G Vm

) − λxn

(
Kmγ

(1)
n

)
> k

(
λz(Km) + 1

) − (
λz(Km) + 1

)
= (k − 1)

(
λz(Km) + 1

)
.

We can thus choose γ
(2)

n ∈ G Vm
xx \ Kmγ

(1)
n for each n � n1. This now gives us

λxn

(
G Vm

∖(
Kmγ

(1)
n ∪ Kmγ

(2)
n

)) = λxn

(
G Vm

∖
Kmγ

(1)
n

) − λxn

((
G Vm

∖
Kmγ

(1)
n

) ∩ Kmγ
(1)

n
)

� λxn

(
G Vm

∖
Kmγ

(1)
n

) − λxn

(
Kmγ

(2)
n

)
> (k − 1)

(
λz(Km) + 1

) − (
λz(Km) + 1

)
= (k − 2)

(
λz(Km) + 1

)
.

Continuing in this manner we can choose

γ
( j)

n ∈ G Vm
xn

∖( j−1⋃
i=1

Kmγ
(i)

n

)

for every n � n1 and j = 3, . . . ,k. The tail of the proof of Proposition 4.1 establishes our desired result. �
5. Measure ratios and bounds on lower multiplicity

In this section we show that upper bounds on measure ratios along orbits give upper bounds on multiplicities.

Lemma 5.1. Suppose G is a second-countable locally-compact Hausdorff groupoid. Suppose z ∈ G(0) and [z] is locally closed. Then the
restriction of r to Gz/(G|{z}) is a homeomorphism onto [z]. If in addition G is principal, then the restriction of r to Gz is a homeomor-
phism onto [z].

Proof. We consider the transitive groupoid G|[z] . Since [z] is locally closed, G|[z] is a second-countable locally-compact
Hausdorff groupoid. Thus G|[z] is Polish by, for example, [24, Lemma 6.5]. Now [22, Theorem 2.1] applies to give the re-
sult. �
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Theorem 5.2 is based on [3, Theorem 3.1]; it is only an intermediary result which will be used to prove a sharper bound
in Theorem 5.8.

Theorem 5.2. Suppose G is a second-countable locally-compact Hausdorff principal groupoid with Haar system λ. Let M ∈ R with
M � 1, suppose z ∈ G(0) such that [z] is locally closed and let {xn} be a sequence in G(0) . Suppose there exists an open neighborhood
V of z in G(0) such that G V

z is relatively compact and

λxn

(
G V )

� Mλz
(
G V )

frequently (in the sense that there is a subsequence {xni } of {xn} such that λxni
(G V ) � Mλz(G V ) for all i). Then ML(Lz, {Lxn }) � �M2	.

Proof. Fix ε > 0 such that M2(1 + ε)2 < �M2	 + 1. We will build a function D ∈ Cc(G) such that Lz(D∗ ∗ D) is a rank-one
projection and

Tr
(
Lxn

(
D∗ ∗ D

))
< M2(1 + ε)2 <

⌊
M2⌋ + 1

frequently. By the generalised lower semi-continuity result of [9, Theorem 4.3] we will have

lim inf Tr
(
Lxn

(
D∗ ∗ D

))
� ML

(
Lz,

{
Lxn

})
Tr

(
Lz(D∗ ∗ D

)) = ML
(
Lz,

{
Lxn

})
,

and the result will follow.
For the next few paragraphs we will be working with Gz equipped with the subspace topology. Note that λz can be

thought of as a Radon measure on Gz with λz(S ∩ Gz) = λz(S) for any λz-measurable subset S of G . Fix δ > 0 such that

δ <
ελz(G V )

1 + ε
< λz

(
G V )

.

Since λz is inner regular on open sets and G V
z is Gz-open, there exists a Gz-compact subset W of G V

z such that

0 < λz
(
G V

z

) − δ < λz(W ).

Since W is Gz-compact there exists a Gz-compact neighborhood W1 of W that is contained in G V
z and there exists a con-

tinuous function g : Gz → [0,1] that is identically one on W and zero off the interior of W1. We have

λz
(
G V ) − δ = λz

(
G V

z

) − δ < λz(W ) �
∫
Gz

g(t)2 dλz(t) = ‖g‖2
z ,

and hence

λz(G V )

‖g‖2
z

< 1 + δ

‖g‖2
z

< 1 + δ

λz(G V ) − δ
< 1 + ε. (5.1)

By Lemma 5.1 the restriction r̃ of r to Gz is a homeomorphism onto [z]. So there exists a continuous function
g1 : r̃(W1) → [0,1] such that g1(r̃(γ )) = g(γ ) for all γ ∈ W1. Thus r̃(W1) is [z]-compact, which implies that r̃(W1) is
G(0)-compact. Since we know that G(0) is second countable and Hausdorff, Tietze’s Extension Theorem can be applied to
extend g1 to a continuous map g2 : G(0) → [0,1]. Because r̃(W1) is a compact subset of the open set V , there exist a com-
pact neighborhood P of r̃(W1) contained in V and a continuous function h : G(0) → [0,1] that is identically one on r̃(W1)

and zero off the interior of P . Note that h has compact support that is contained in P .
We set f (x) = h(x)g2(x). Then f ∈ Cc(G(0)) with 0 � f � 1 and

supp f ⊂ supp h ⊂ P ⊂ V . (5.2)

Note that

‖ f ◦ r‖2
z =

∫
Gz

f
(
r̃(γ )

)2
dλz(γ )

=
∫
Gz

h
(
r̃(γ )

)2
g2

(
r̃(γ )

)2
dλz(γ )

�
∫

W1

h
(
r̃(γ )

)2
g(γ )2 dλz(γ )

=
∫

W1

g(γ )2 dλz(γ )

= ‖g‖2
z (5.3)
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since supp g ⊂ W1 and h is identically one on r̃(W1). We now define F ∈ Cc(G(0)) by

F (x) = f (x)

‖ f ◦ r‖z
. (5.4)

Then ‖F ◦ r‖z = 1 and

F ◦ r(γ ) �= 0 �⇒ h
(
r(γ )

) �= 0 �⇒ r(γ ) ∈ V �⇒ γ ∈ G V . (5.5)

Let N = supp F so that N = supp f ⊂ V by (5.2) and (5.4). Since G V
z is relatively compact by our hypothesis, the set G N

z

is compact. Let b ∈ Cc(G) be a function that is identically one on (G N
z )(G N

z )−1 and has range contained in [0,1]. We can
assume that b is self-adjoint by considering 1

2 (b + b∗) if necessary. Define D ∈ Cc(G) by

D(γ ) := F
(
r(γ )

)
F
(
s(γ )

)
b(γ ).

For ξ ∈ L2(G, λu) and γ ∈ G we have

(
Lu(D)ξ

)
(γ ) =

∫
G

D
(
γ α−1)ξ(α)dλu(α)

=
∫
G

F
(
r(γ )

)
F
(
s
(
α−1))b

(
γ α−1)ξ(α)dλu(α)

= F
(
r(γ )

)∫
G

F
(
r(α)

)
b
(
γ α−1)ξ(α)dλu(α).

In the case where u = z, if α,γ ∈ supp F ◦ r ∩ s−1(z), then r(α), r(γ ) ∈ supp F = N and γ ,α ∈ G N
z . This implies

b(γ α−1) = 1, so

(
Lz(D)ξ

)
(γ ) =

∫
G

F
(
r(α)

)
ξ(α)dλz(α) = (ξ | F ◦ r)z F ◦ r(γ ),

and Lz(D) is a rank-one projection.
By the hypothesis on V there exists a subsequence {xni } of {xn} such that

λxni

(
G V )

� Mλz
(
G V )

for all i � 1. If we define E := {γ ∈ G: F (r(γ )) �= 0} then E is open with

λxni
(E) � λxni

(
G V )

� Mλz
(
G V )

(5.6)

by (5.5) and∫
G

(
F ◦ r(γ )

)2
dλxni

(γ ) �
λxni

(E)

‖ f ◦ r‖2
z

� Mλz(G V )

‖g‖2
z

(5.7)

by (5.3). Consider the continuous function T (α,β) := F (r(α))F (r(β))b(αβ−1). Note that∫
G

T (α,β)2 d(λxni
× λxni

)(α,β) =
∫
G

F
(
r(α)

)2
F
(
r(β)

)2
b
(
αβ−1)2

d(λxni
× λxni

)(α,β)

� ‖F‖4∞
∫
G

χE×E(α,β)d(λxni
× λxni

)(α,β)

= ‖F‖4∞λxni
(E)2,

which is finite by (5.6). Thus

T ∈ L2(G × G, λxni
× λxni

),

and since T is conjugate symmetric, [20, Proposition 3.4.16] implies that Lxni (D) is the self-adjoint Hilbert–Schmidt operator
on L2(G, λxni

) with kernel T . It follows that Lxni (D∗ ∗ D) is a trace-class operator, and since we equip the Hilbert–Schmidt
operators with the trace norm, we have

Tr Lxni
(

D∗ ∗ D
) = ‖T ‖2

L2(λx ×λx )
.

ni ni
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Applying Fubini’s Theorem to T now gives

Tr Lxni
(

D∗ ∗ D
) =

∫
G

∫
G

F
(
r(α)

)2
F
(
r(β)

)2
b
(
αβ−1)2

dλxni
(α)dλxni

(β)

�
( ∫

G

F
(
r(α)

)2
dλxni

(α)

)2

� M2λz(G V )2

‖g‖4
z

(
using (5.7)

)
< M2(1 + ε)2 (

using (5.1)
)
. (5.8)

Now

ML
(
Lz,

{
Lxn

})
� lim inf

n
Tr

(
Lxn

(
D∗ ∗ D

))
� M2(1 + ε)2 <

⌊
M2⌋ + 1,

and hence ML(Lz, {Lxn }) � �M2	, completing the proof. �
The following proposition is an immediate consequence of Theorem 5.2 and Proposition 4.4. This result will be strength-

ened later in Corollary 6.5, where we will show that these three items are in fact equivalent.

Proposition 5.3. Suppose G is a second-countable locally-compact Hausdorff principal groupoid with Haar system λ. Let z ∈ G(0) and
let {xn} be a sequence in G(0) . Assume that [z] is locally closed in G(0) . Consider the following properties.

(1) ML(Lz, {Lxn }) = ∞.
(2) For every open neighborhood V of z such that G V

z is relatively compact, λxn (G V ) → ∞ as n → ∞.
(3) For each k � 1, the sequence {xn} converges k-times in G(0)/G to z.

Then (1) implies (2) and (2) implies (3).

Our next goal is to sharpen the �M2	 bound in Theorem 5.2. This strengthened theorem appears later on as Theorem 5.8.
We will first establish several results to assist in strengthening this bound.

Lemma 5.4. Suppose G is a second-countable groupoid and x, y ∈ G(0) . If [x] = [y] and [x] is locally closed, then [x] = [y].
Proof. We have x ∈ [y], so there exists {γn} ⊂ G such that s(γn) = y and r(γn) → x. Since [x] is locally closed, there exists
an open subset U of G such that [x] = U ∩ [x]. Then r(γn) is eventually in U , so eventually r(γn) ∈ U ∩ [y] = U ∩ [x] = [x].
Thus there exists γ ∈ G with s(γ ) = y and r(γ ) ∈ [x], as required. �
Lemma 5.5. Suppose G is a second-countable groupoid with Haar system λ. Let W be a compact neighborhood of z ∈ G(0) and let K
be a compact subset of G. Let {xn} be a sequence in G(0) such that [xn] → [z] uniquely in G(0)/G. Then for every δ > 0 there exists n0
such that, for every n � n0 and every γ ∈ G W

xn
,

λxn

(
Kγ ∩ G W )

< λz
(
G W ) + δ.

Proof. Suppose not. Then, by passing to a subsequence if necessary, for each n there exists γn ∈ GW
xn

such that

λxn

(
Kγn ∩ G W )

� λz
(
G W ) + δ. (5.9)

Since each r(γn) is in the compact set W , we can pass to a subsequence so that r(γn) → y for some y ∈ G(0) . This implies
[r(γn)] → [y], but [r(γn)] = [s(γn)] = [xn] and [xn] → [z] uniquely, so [y] = [z]. Choose ψ ∈ G with s(ψ) = z and r(ψ) = y.
By Haar-system invariance

λxn

(
Kγn ∩ G W ) = λr(γn)

(
K ∩ G W )

,

so by applying Lemma 4.2 with the compact space K ∩ G W and {r(γn)} converging to y,

lim sup
n

λxn

(
Kγn ∩ G W ) = lim sup

n
λr(γn)

(
K ∩ G W )

� λy
(

K ∩ G W )
(by Lemma 4.2)

= λz
(

Kψ ∩ G W )
(Haar-system invariance)

� λz
(
G W )

.

This contradicts our assertion (5.9). �
The following is a generalisation of [3, Lemma 3.3].
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Lemma 5.6. Suppose G is a groupoid with Haar system λ. Fix ε > 0, z ∈ G(0) and let V be an open neighborhood of z ∈ G(0) such that
λz(G V ) < ∞. Then there exists an open relatively-compact neighborhood V 1 of z such that V 1 ⊂ V and

λz
(
G V ) − ε < λz

(
G V 1

)
� λz

(
G V 1

)
� λz

(
G V )

< λz
(
G V 1

) + ε.

Proof. We use Gz equipped with the subspace topology to find a compact subset λz-estimate of V . This estimate is then
used to obtain the required open set V 1. Since G V

z is Gz-open, by the regularity of λz there exists a compact subset W
of G V

z such that λz(W ) > λz(G V
z )− ε . Then r(W ) is compact and contained in V , so there exists an open relatively-compact

neighborhood V 1 of r(W ) such that V 1 ⊂ V . Then

λz
(
G V ) − ε < λz(W ) � λz

(
G V 1

)
� λz

(
G V 1

)
� λz

(
G V )

< λz(W ) + ε � λz
(
G V 1

) + ε,

as required. �
The following lemma is equivalent to the claim in [10, Proposition 3.6] that [x] 
→ [Lx] from G(0)/G to the spectrum

of C∗(G) is open.

Lemma 5.7. Suppose G is a second-countable locally-compact Hausdorff groupoid with Haar system λ. If {xn} is a sequence in G(0)

with Lxn → Lz , then [xn] → [z].

Proof. We prove the contrapositive. Suppose [xn] � [z]. Then there exists an open neighborhood U0 of [z] in G(0)/G such
that [xn] is frequently not in U0. Let q : G(0) → G(0)/G be the quotient map x 
→ [x]. Then U1 := q−1(U0) is an open invariant
neighborhood of z and xn /∈ U1 frequently. Note that C∗(G|U1 ) is isomorphic to a closed two-sided ideal I of C∗(G) (see [18,
Lemma 2.10]).

We now claim that I ⊂ ker Lxn whenever xn /∈ U1. Suppose xn /∈ U1 and recall from Remark 2.4 that Lxn acts on L2(G, λxn ).
Fix f ∈ Cc(G) such that f (γ ) = 0 whenever γ /∈ G|U1 and fix ξ ∈ L2(G, λxn ). Then by Remark 2.4 we have

∥∥Lxn( f )ξ
∥∥2

xn
=

∫
G

( ∫
G

f
(
γ α−1)ξ(α)dλxn(α)

)2

dλxn(γ ).

When evaluating the inner integrand, we have s(α) = s(γ ) = xn , so γα−1 ∈ G|[xn] . Since U1 is invariant with xn /∈ U1, it
follows that γα−1 /∈ G|U1 , and so f (γ α−1) = 0. Thus ‖Lxn ( f )ξ‖xn = 0, and since ξ was fixed arbitrarily, Lxn ( f ) = 0. This
implies that I ⊂ ker Lxn .

We now conclude by observing that since I ⊂ ker Lxn frequently, Lxn /∈ Î frequently. But Î is an open neighborhood of Lz ,
so Lxn � Lz . �

We may now proceed to strengthening the �M2	 bound in Theorem 5.2. This theorem is a generalisation of [3, Theo-
rem 3.5].

Theorem 5.8. Suppose G is a second-countable locally-compact Hausdorff principal groupoid with Haar system λ. Let M ∈ R with
M � 1, suppose z ∈ G(0) such that [z] is locally closed and let {xn} be a sequence in G(0) . Suppose there exists an open neighborhood
V of z in G(0) such that G V

z is relatively compact and

λxn

(
G V )

� Mλz
(
G V )

frequently. Then ML(Lz, {Lxn }) � �M	.

Proof. If Lxn does not converge to Lz , then ML(Lz, {Lxn }) = 0 < �M	. So we assume from now on that Lxn → Lz . Lemma 5.7
now shows that [xn] → [z]. Next we claim that we may assume, without loss of generality, that [z] is the unique limit
of {[xn]} in G(0)/G . To see this, note that ML(Lz, {Lxn }) � �M2	 < ∞ by Theorem 5.2. Hence, by [3, Proposition 3.4], {Lz} is
open in the set of limits of {Lxn }. So there exists an open neighborhood U2 of Lz in C∗(G)∧ such that Lz is the unique limit
of {Lxn } in U2. By [19, Proposition 2.5] there is a continuous function L : G(0)/G → C∗(G)∧ such that [x] 
→ Lx for all x ∈ G(0) .
Define p : G(0) → G(0)/G by p(x) = [x] for all x ∈ G(0) . Then p is continuous, and

Y := (L ◦ p)−1(U2)

is an open G-saturated neighborhood of z in G(0) . Note that xn ∈ Y eventually.
Now suppose that, for some y ∈ Y , [xn] → [y] in Y /G and hence in G(0)/G . Then Lxn → Ly by [19, Proposition 2.5], and

Ly ∈ U2 since y ∈ (L ◦ p)−1(U2). But {Lxn } has the unique limit Lz in U2, so Lz = Ly and hence [z] = [y]. Since [z] is locally
closed, Lemma 5.4 shows that [z] = [y] in G(0) and hence in Y .

We know Y is an open saturated subset of G(0) , so C∗(G|Y ) is isomorphic to a closed two-sided ideal J of C∗(G). We
can apply [8, Proposition 5.3] with the C∗-subalgebra J to see that ML(Lz, {Lxn }) is the same whether we compute it in the
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ideal J or in C∗(G). Since Y is G-invariant, G V
z = G V ∩Y

z and eventually G V
xn

= G V ∩Y
xn

. We may thus consider G|Y instead of
G and therefore assume that [z] is the unique limit of [xn] in G(0)/G as claimed.

As in [3], the idea for the rest of the proof is the same as in Theorem 5.2, although more precise estimates are used. Fix
ε > 0 such that M(1 + ε)2 < �M	 + 1 and choose κ > 0 such that

κ <
ελz(G V )

1 + ε
< λz

(
G V )

. (5.10)

By Lemma 5.6 there exists an open relatively compact neighborhood V 1 of z such that V 1 ⊂ V and

0 < λz
(
G V ) − κ < λz

(
G V 1

)
� λz

(
G V 1

)
� λz

(
G V )

< λz
(
G V 1

) + κ.

Choose a subsequence {xni } of {xn} such that

λxni

(
G V )

� Mλz
(
G V )

for all i � 1. Then

λxni

(
G V 1

)
� λxni

(
G V )

� Mλz
(
G V )

< M
(
λz

(
G V 1

) + κ
)

< Mλz
(
G V 1

) + Mε
(
λz

(
G V ) − κ

) (
by (5.10)

)
< Mλz

(
G V 1

) + Mελz
(
G V 1

)
= M(1 + ε)λz

(
G V 1

)
(5.11)

for all i. Since

λz(G V 1)(λz(G V 1) + κ + 1/ j)

(λz(G V 1) − 1/ j)2
→ 1 + κ

λz(G V 1)
< 1 + ε

as j → ∞, there exists δ > 0 such that δ < λz(G V 1 ) and

λz(G V 1)(λz(G V 1) + δ)

(λz(G V 1) − δ)2
<

λz(G V 1)(λz(G V 1) + κ + δ)

(λz(G V 1) − δ)2
< 1 + ε. (5.12)

We will now construct a function F ∈ Cc(G(0)) with support inside V 1. Since λz is inner regular on open sets and G V 1
z is

Gz-open, there exists a Gz-compact subset W of G V 1
z such that

0 < λz
(
G V 1

z
) − δ < λz(W ).

Since W is Gz-compact there exists a Gz-compact neighborhood W1 of W that is contained in G V 1
z and there exists

a continuous function g : Gz → [0,1] that is identically one on W and zero off the interior of W1. We have

λz
(
G V 1

) − δ < λz(W ) �
∫
Gz

g(t)2 dλz(t) = ‖g‖2
z . (5.13)

By Lemma 5.1 the restriction r̃ of r to Gz is a homeomorphism onto [z]. So there exists a continuous function g1 : r̃(W1) →
[0,1] such that g1(r̃(γ )) = g(γ ) for all γ ∈ W1. Thus r̃(W1) is [z]-compact, which implies that r̃(W1) is G(0)-compact.
Since we know that G(0) is second countable and Hausdorff, Tietze’s Extension Theorem can be applied to show that g1
can be extended to a continuous map g2 : G(0) → [0,1]. Because r̃(W1) is a compact subset of the open set V 1, there exist
a compact neighborhood P of r̃(W1) contained in V 1 and a continuous function h : G(0) → [0,1] that is identically one on
r̃(W1) and zero off the interior of P . Note that h has compact support that is contained in P .

We set f (x) = h(x)g2(x). Then f ∈ Cc(G(0)) with 0 � f � 1 and

supp f ⊂ supp h ⊂ P ⊂ V 1. (5.14)

Note that

‖ f ◦ r‖2
z =

∫
Gz

f
(
r̃(γ )

)2
dλz(γ )

=
∫

h
(
r̃(γ )

)2
g2

(
r̃(γ )

)2
dλz(γ )
Gz
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�
∫

W1

h
(
r̃(γ )

)2
g(γ )2 dλz(γ )

=
∫

W1

g(γ )2 dλz(γ )

= ‖g‖2
z (5.15)

since supp g ⊂ W1 and h is identically one on r̃(W1). We now define F ∈ Cc(G(0)) by

F (x) = f (x)

‖ f ◦ r‖z
. (5.16)

Then ‖F ◦ r‖z = 1 and

F ◦ r(γ ) �= 0 �⇒ h
(
r(γ )

) �= 0 �⇒ r(γ ) ∈ V 1 �⇒ γ ∈ G V 1 . (5.17)

Let N = supp F . Suppose K is an open relatively compact symmetric neighborhood of (G N
z )(G N

z )−1 in G and choose

b ∈ Cc(G) such that b is identically one on (G N
z )(G N

z )−1 and identically zero off K . As in Theorem 5.2 we may assume that
b is self-adjoint by considering 1

2 (b + b∗). Define D ∈ Cc(G) by D(γ ) := F (r(γ ))F (s(γ ))b(γ ). By the same argument as in
Theorem 5.2, Lz(D), and hence Lz(D∗ ∗ D), is the rank one projection determined by the unit vector F ◦ r ∈ L2(G, λz). From
(5.8) we have

Tr
(
Lxni

(
D∗ ∗ D

)) =
∫
G

F
(
r(β)

)2
( ∫

G

F
(
r(α)

)2
b
(
αβ−1)2

dλxni
(α)

)
dλxni

(β).

Since b is identically zero off K , the inner integrand is zero unless αβ−1 ∈ K . Combining this with (5.14) and the fact that
suppλxni

⊂ Gxni
enables us to see that this inner integrand is zero unless α ∈ G V 1

xni
∩ Kβ . Thus

Tr
(
Lxni

(
D∗ ∗ D

))
�

∫
β∈G

V1
xni

F
(
r(β)

)2
( ∫

α∈G
V1
xni

∩Kβ

F
(
r(α)

)2
dλxni

(α)

)
dλxni

(β).

� 1

‖ f ◦ r‖4
z

∫
β∈G

V1
xni

1

( ∫
α∈G

V1
xni

∩Kβ

1 dλxni
(α)

)
dλxni

(β).

Since V 1 and K are compact, by Lemma 5.5 there exists i0 such that for every i � i0 and any β ∈ G V 1
xni

,

λxni

(
Kβ ∩ G V 1

)
< λz

(
G V 1

) + δ.

So, provided i � i0,

Tr
(
Lxni

(
D∗ ∗ D

))
� 1

‖ f ◦ r‖4
z

∫
β∈G

V1
xni

λxni

(
Kβ ∩ G V 1

xni

)
dλxni

(β)

� 1

‖ f ◦ r‖4
z

∫
β∈G

V1
xni

(
λz

(
G V 1

z
) + δ

)
dλxni

(β)

<
(λz(G V 1) + δ)λxni

(G V 1)

‖ f ◦ r‖4
z

<
M(1 + ε)(λz(G V 1) + δ)λz(G V 1)

‖g‖4
z

(
by (5.11) and (5.15)

)

<
M(1 + ε)(λz(G V 1) + δ)λz(G V 1)

(λz(G V 1) − δ)2

(
by (5.13)

)
< M(1 + ε)2 (

by (5.12)
)
.
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We can now make our conclusion as in [3, Theorem 3.5]: by generalised lower semi-continuity [9, Theorem 4.3],

lim inf
n

Tr
(
Lxn

(
D∗ ∗ D

))
� ML

(
Lz,

{
Lxn

})
Tr

(
Lz(D∗ ∗ D

)) = ML
(
Lz,

{
Lxn

})
.

We now have

ML
(
Lz,

{
Lxn

})
� lim inf

n
Tr

(
Lxn

(
D∗ ∗ D

))
� M(1 + ε)2 < �M	 + 1,

and so ML(Lz, {Lxn }) � �M	, as required. �
6. Lower multiplicity and k-times convergence II

We proved in Proposition 3.2 that if a sequence converges k-times in the orbit space of a principal groupoid, then the
lower multiplicity of the associated sequence of representations is at least k. In this section we will prove the converse. The
first result in this section generalises [3, Lemma 5.1]; with the exception of notation changes, the proof is the same as the
proof in [3].

Lemma 6.1. Suppose G is a second-countable locally-compact Hausdorff principal groupoid. Let k ∈ P, z ∈ G(0) , and {xn} be a sequence
in G(0) . Assume that [z] is locally closed in G(0) and that there exists R > k − 1 such that for every open neighborhood U of z with GU

z
relatively compact we have

lim inf
n

λxn

(
GU )

� Rλz
(
GU )

.

Given an open neighborhood V of z such that G V
z is relatively compact, there exists a compact neighborhood N of z with N ⊂ V such

that

lim inf
n

λxn

(
G N)

> (k − 1)λz
(
G N)

.

Proof. Apply Lemma 5.6 to V with 0 < ε < R−k+1
R λz(G V ) to get an open relatively-compact neighborhood V 1 of z with

V 1 ⊂ V and

λz
(
G V ) − ε < λz

(
G V 1

)
� λz

(
G V 1

)
� λz

(
G V )

< λz
(
G V 1

) + ε.

Since G V 1
z is relatively compact we have

lim inf
n

λxn

(
G V 1

)
� lim inf

n
λxn

(
G V 1

)
� Rλz

(
G V 1

)
(by hypothesis)

> R
(
λz

(
G V ) − ε

)
> (k − 1)λz

(
G V )

(by our choice of ε)

� (k − 1)λz
(
G V 1

)
.

So we may take N = V 1. �
Remark 6.2. The preceding lemma also holds when lim inf is replaced by lim sup. No modification of the proof is needed
beyond replacing the two occurrences of lim inf with lim sup.

We may now proceed to our main theorem.

Theorem 6.3. Suppose G is a second-countable locally-compact Hausdorff principal groupoid that admits a Haar system λ. Let k be
a positive integer, let z ∈ G(0) and let {xn} be a sequence in G(0) . Assume that [z] is locally closed in G(0) . Then the following are
equivalent:

(1) the sequence {xn} converges k-times in G(0)/G to z;
(2) ML(Lz, {Lxn }) � k;
(3) for every open neighborhood V of z in G(0) such that G V

z is relatively compact we have

lim inf
n

λxn

(
G V )

� kλz
(
G V );
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(4) there exists a real number R > k − 1 such that for every open neighborhood V of z in G(0) with G V
z relatively compact we have

lim inf
n

λxn

(
G V )

� Rλz
(
G V ); and

(5) there exists a basic decreasing sequence of compact neighborhoods {Wm} of z in G(0) such that, for each m � 1,

lim inf
n

λxn

(
G Wm

)
> (k − 1)λz

(
G Wm

)
.

Proof. We know that (1) implies (2) by Proposition 3.2.
Suppose (2). If ML(Lz, {Lxn }) � k, then ML(Lz, {Lxn }) > �k − ε	 for all ε > 0. By Theorem 5.8, for every G(0)-open neighbor-

hood V of z such that G V
z is relatively compact, λxn (G V ) > (k − ε)λz(G V ) eventually, and hence (3) holds.

It is immediately true that (3) implies (4).
Suppose (4). We will construct the sequence {Wm} of compact neighborhoods inductively. Let {V j} be a basic decreasing

sequence of open neighborhoods of z such that G V 1
z is relatively compact (such neighborhoods exist by [12, Lemma 4.1(1)]).

By Lemma 6.1 there exists a compact neighborhood W1 of z such that W1 ⊂ V 1 and λxn (GW1 ) > (k − 1)λz(GW1 ). Now
assume there are compact neighborhoods W1, W2, . . . , Wm of z with W1 ⊃ W2 ⊃ · · · ⊃ Wm such that

W i ⊂ V i and λxn

(
G W i

)
> (k − 1)λz

(
G W i

)
(6.1)

for all 1 � i � m. Apply Lemma 6.1 to (Int m) ∩ Vm+1 to obtain a compact neighborhood Wm+1 of z such that Wm+1 ⊂
(Int Wm) ∩ Vm+1 and (6.1) holds for i = m + 1, establishing (5).

Suppose (5). We begin by showing that [xn] → [z] in G(0)/G . Let q : G(0) → G(0)/G be the quotient map. Let U be a
neighborhood of [z] in G(0)/G and V = q−1(U ). There exists m such that Wm ⊂ V . Since lim infn λxn (GWm ) > 0 there exists
n0 such that G Wm

xn �= ∅ for all n � n0. Thus, for n � n0, [xn] = q(xn) ∈ q(Wm) ⊂ q(V ) = U , so [xn] is eventually in every
neighborhood of [z] in G(0)/G .

Now suppose that ML(Lz, {Lxn }) < ∞. Then, as in the proof of Theorem 5.8, we may localise to an open invariant neigh-
borhood Y of z such that [z] is the unique limit in Y /G of [xn]. Eventually Wm ⊂ Y , and so the sequence {xn} converges
k-times in Y /(G|Y ) = Y /G to z by Proposition 4.1 applied to the groupoid G|Y . This implies that the sequence {xn} converges
k-times in G(0)/G .

Finally, if ML(Lz, {Lxn }) = ∞, then {xn} converges k-times in G(0)/G to z by Proposition 5.3, establishing (1) and complet-
ing the proof. �
Corollary 6.4. Suppose that G is a second-countable locally-compact Hausdorff principal groupoid such that all the orbits are locally
closed. Let k ∈ P and let z ∈ G(0) such that [z] is not open in G(0) . Then the following are equivalent:

(1) whenever {xn} is a sequence in G(0) which converges to z with [xn] �= [z] eventually, then {xn} is k-times convergent in G(0)/G
to z;

(2) ML(Lz) � k.

Proof. Assume (1). We must first establish that {Lz} is not open in C∗(G)∧ . If this is not the case, then {Lz} is open and we
can apply [10, Proposition 3.6] to see that {[z]} is open in G(0)/G , and so [z] is open in G(0) , contradicting our assumption.
Since {Lz} is not open in C∗(G)∧ , we can apply [3, Lemma A.2] to see that there exists a sequence {πi} of irreducible
representations of C∗(G) such that each πi is not unitarily equivalent to Lz , πi → Lz in C∗(G)∧ , and

ML
(
Lz) = ML

(
Lz, {πi}

) = MU
(
Lz, {πi}

)
. (6.2)

Since the orbits are locally closed, the map G(0)/G → C∗(G)∧ such that [x] 
→ Lx is a homeomorphism by [10, Proposi-
tion 5.1].1 It follows that the mapping G(0) → C∗(G)∧ such that x 
→ Lx is an open surjection, so by [24, Proposition 1.15]
there is a sequence {xn} in G(0) such that xn → z and {Lxn } is unitarily equivalent to a subsequence of {πi}. By (6.2),

ML
(
Lz) = MU

(
Lz, {πi}

)
� MU

(
Lz,

{
Lxn

})
� ML

(
Lz,

{
Lxn

})
.

We know by (1) that {xn} converges k-times to z in G(0)/G , so it follows from Theorem 6.3 that ML(Lz) � ML(Lz, {Lxn }) � k.
Assume (2). If {xn} is a sequence in G(0) which converges to z such that [xn] �= [z] eventually, then

ML
(
Lz,

{
Lxn

})
� ML

(
Lz) � k.

By Theorem 6.3, {xn} is k-times convergent to z in G(0)/G . �
The next corollary improves Proposition 5.3 and is an immediate consequence of Proposition 5.3 and Theorem 6.3.

1 Proposition 5.1 in [10] states that if a principal groupoid has locally closed orbits, then the map from G(0)/G to C∗(G)∧ where [x] 
→ Lx is a ‘homeo-
morphism from G(0)/G into C∗(G)∧ ’. The proof explicitely shows that this map is a surjection.
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Corollary 6.5. Suppose that G is a second-countable locally-compact Hausdorff principal groupoid with Haar system λ. Let z ∈ G(0)

and let {xn} be a sequence in G(0) . Assume that [z] is locally closed. Then the following are equivalent:

(1) ML(Lz, {Lxn }) = ∞.
(2) For every open neighborhood V of z such that G V

z is relatively compact, λxn (G V ) → ∞ as n → ∞.
(3) For each k � 1, the sequence {xn} converges k-times in G(0)/G to z.

7. Upper multiplicity and k-times convergence

The results in this section are corollaries of Theorems 5.8 and 6.3: they relate k-times convergence, measure ratios
and upper multiplicity numbers, generalising all the upper-multiplicity results of [3]. We begin with the upper-multiplicity
analogue of Theorem 5.8.

Theorem 7.1. Suppose that G is a second-countable locally-compact Hausdorff principal groupoid with Haar system λ. Let M ∈ R with
M � 1, let z ∈ G(0) and let {xn} be a sequence in G(0) . Assume that [z] is locally closed. Suppose that there exists an open neighborhood
V of z in G(0) such that G V

z is relatively compact and

λxn

(
G V )

� Mλz
(
G V )

< ∞
eventually. Then MU(Lz, {Lxn }) � �M	.

Proof. Since G is second countable, C∗(G) is separable. By [3, Lemma A.1] there exists a sequence {Lxni } such that

MU
(
Lz,

{
Lxn

}) = MU
(
Lz,

{
Lxni

}) = ML
(
Lz,

{
Lxni

})
.

By Theorem 5.8, ML(Lz, {Lxni }) � �M	, so MU(Lz, {Lxn }) � �M	. �
Corollary 7.2. Suppose that G is a second-countable locally-compact Hausdorff principal groupoid with Haar system λ such that all
the orbits are locally closed. Let M ∈ R with M � 1 and let z ∈ G(0) . If for every sequence {xn} in G(0) which converges to z there exists
an open neighborhood V of z in G(0) such that G V

z is relatively compact and

λxn

(
G V )

� Mλz
(
G V )

< ∞
frequently, then MU(Lz) � �M	.

Proof. Since G is second countable, C∗(G) is separable, and so we can apply [5, Lemma 1.2] to see that there exists a
sequence {πn} in C∗(G)∧ that converges to Lz such that

ML
(
Lz, {πn}

) = MU
(
Lz, {πn}

) = MU
(
Lz).

Since the orbits are locally closed, the map G(0)/G → C∗(G)∧ such that [x] 
→ Lx is a homeomorphism by [10, Proposi-
tion 5.1]. In particular, the mapping G(0) → C∗(G)∧ such that x 
→ Lx is an open surjection, so by [24, Proposition 1.15]
there exists a sequence {xi} in G(0) converging to z such that {[Lxi ]} is a subsequence of {[πn]}. By Theorem 5.8,
ML(Lz, {Lxn }) � �M	. Since

MU
(
Lz) = ML

(
Lz, {πn}

)
� ML

(
Lz,

{
Lxi

})
� MU

(
Lz,

{
Lxi

})
� MU

(
Lz, {πn}

) = MU
(
Lz),

we obtain MU(Lz) � �M	, as required. �
In Proposition 4.1 we generalised the first part of [3, Proposition 4.1]. We will now generalise the second part. The

argument we use is similar to that used in Proposition 4.1.

Proposition 7.3. Let G be a second-countable locally-compact Hausdorff principal groupoid with Haar system λ. Let k ∈ P and z ∈ G(0)

with [z] locally closed in G(0) . Assume that {xn} is a sequence in G(0) such that [xn] → [z] uniquely in G(0)/G. Suppose {Wm} is a basic
decreasing sequence of compact neighborhoods of z such that each m satisfies

lim sup
n

λxn

(
G Wm

)
> (k − 1)λz

(
G Wm

)
.

Then there exists a subsequence of {xn} which converges k-times in G(0)/G to z.

Proof. Let {Km} be an increasing sequence of compact subsets of G such that G = ⋃
m�1 Int Km . By the regularity of λz , for

each m � 1 there exist δm > 0 and an open neighborhood Um of GWm
z such that

lim sup λxn

(
G Wm

)
> (k − 1)λz(Um) + δm. (7.1)
n
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We will construct, by induction, a strictly increasing sequence of positive integers {im} such that, for all m,

λxim

(
Kmα ∩ G Wm

)
< λz(Um) + δm/k for all α ∈ G Wm

xim
, and (7.2)

λxim

(
G Wm

)
> (k − 1)λz(Um) + δm. (7.3)

By Lemma 5.5 with δ = λz(U1) − λz(GW1 ) + δ1/k, there exists n1 such that n � n1 implies

λxn

(
K1α ∩ G W1

)
< λz(U1) + δ1/k for all α ∈ G Wm

xn .

By considering (7.1) with m = 1 we can choose i1 � n1 such that

λxi1

(
G W1

)
> (k − 1)λz(U1) + δ1.

Assuming that i1 < i2 < · · · < im−1 have been chosen, we can apply Lemma 5.5 with δ = λz(Um)−λz(GWm )+ δm/k to obtain
nm > im−1 such that

n � nm implies λxn

(
Kmα ∩ G Wm

)
< λz(Um) + δm/k for all α ∈ G Wm

xn ,

and then by (7.1) we can choose im � nm such that

λxim

(
G Wm

)
> (k − 1)λz(Um) + δm.

For each m ∈ P choose γ
(1)
im

∈ GWm
xim

(which is non-empty by (7.3)). By (7.2) and (7.3) we have

λxim

(
G Wm

∖
Kmγ

(1)
im

) = λxim

(
G Wm

) − λxim

(
G Wm ∩ Kmγ

(1)
im

)
> (k − 1)λz(Um) + δm − (

λz(Um) + δm/k
)

= (k − 2)λz(Um) + k − 1

k
δm.

So we can choose γ
(2)
im

∈ GWm
xim

\ Kmγ
(1)
im

. This implies, as in the proof of Proposition 4.1, that

λxim

(
G Wm

∖(
Kmγ

(1)
im

∪ Kmγ
(2)
im

))
> (k − 3)λz(Um) + (k − 2)

k
δm,

enabling us to choose γ
(3)
im

∈ GWm
xim

\ (Kmγ
(1)
im

∩ Kmγ
(2)
im

). Continuing in this way for j = 3, . . . ,k, for each im we choose

γ
( j)
im

∈ G Wm
xim

∖( j−1⋃
l=1

Kmγ
(l)
im

)
. (7.4)

Note that γ
( j)
im

/∈ Kmγ
(l)
im

for 1 � l < j � k.

We claim that r(γ (l)
im

) → z as m → ∞ for 1 � l � k. To see this, fix l and let V be an open neighborhood of z. Since {Wm}
is a decreasing neighborhood basis for z there exists m0 such that m � m0 implies Wm ⊂ V , and so r(γ (l)

im
) ∈ Wm ⊂ V .

Finally we claim that γ
( j)
im

(γ
(l)
im

)−1 → ∞ as m → ∞ for 1 � l < j � k. Fix l < j and let K be a compact subset of G . There
exists m0 such that K ⊂ Km for all m � m0. By (7.4) we know

γ
( j)
im

∈ G Wm
xim

∖(
Kmγ

(l)
im

) = (
G Wm

xim

(
γ

(l)
im

)−1
γ

(l)
im

)∖(
Kmγ

(l)
im

) = ((
G Wm

xim

(
γ

(l)
im

)−1)∖
Km

)
γ

(l)
im

.

So provided m � m0, γ
( j)
im

(γ
(l)
im

)−1 ∈ (GWm
xim

(γ
(l)
im

)−1) \ Km ⊂ G \ Km ⊂ G \ K , enabling us to conclude that {xim } converges

k-times in G(0)/G to z. �
Theorem 7.4. Suppose that G is a second-countable locally-compact Hausdorff principal groupoid with Haar system λ. Let k ∈ P,
let z ∈ G(0) , and let {xn} be a sequence in G(0) such that [xn] converges to [z] in G(0)/G. Assume that [z] is locally closed. Then the
following are equivalent:

(1) there exists a subsequence {xni } of {xn} which converges k-times in G(0)/G to z;
(2) MU(Lz, {Lxn }) � k;
(3) for every open neighborhood V of z such that G V

z is relatively compact we have

lim sup
n

λxn

(
G V )

� kλz
(
G V );
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(4) there exists a real number R > k − 1 such that for every open neighborhood V of z in G(0) with G V
z relatively compact we have

lim sup
n

λxn

(
G V )

� Rλz
(
G V ); and

(5) there exists a basic decreasing sequence of compact neighborhoods {Wm} of z in G(0) such that, for each m � 1,

lim sup
n

λxn

(
G Wm

)
> (k − 1)λz

(
G Wm

)
.

Proof. If (1) holds then ML(Lz, {Lxni }) � k by Theorem 6.3, and so

MU
(
Lz,

{
Lxn

})
� MU

(
Lz,

{
Lxni

})
� ML

(
Lz,

{
Lxni

})
� k.

If (2) holds then by [3, Lemma A.1] there is a subsequence {xnr } such that ML(Lz, {Lxnr }) = MU(Lz, {Lxn }) so that
ML(Lz, {Lxnr }) � k. Let V be any open neighborhood of z in G(0) such that G V

z is relatively compact. Then

lim sup
n

λxn

(
G V )

� lim sup
r

λxnr

(
G V )

� lim inf
r

λxnr

(
G V )

� kλz
(
G V )

,

using Theorem 6.3 for the last step.
That (3) implies (4) is immediate.
That (4) implies (5) follows by making references to Remark 6.2 rather than Lemma 6.1 in the (4) implies (5) component

of the proof of Theorem 6.3.
Assume (5). First suppose that ML(Lz, {Lxn }) < ∞. Since [xn] → [z], we can use an argument found at the beginning of

the proof of Theorem 5.8 to obtain an open G-invariant neighborhood Y of z in G(0) so that if we define H := G|Y , there
exists a subsequence {xni } of {xn} such that [xni ] → [z] uniquely in H(0)/H . Proposition 7.3 now shows us that there exists
a subsequence {xni j

} of {xni } that converges k-times in H(0)/H to z. It follows that {xni j
} converges k-times in G(0)/G to z.

When ML(Lz, {Lxn }) = ∞, {xn} converges k-times in G(0)/G to z by Corollary 6.5, establishing (1). �
Corollary 7.5. Suppose that G is a second-countable locally-compact Hausdorff principal groupoid such that all the orbits are locally
closed. Let k ∈ P and let z ∈ G(0) . Then the following are equivalent:

(1) there exists a sequence {xn} in G(0) which is k-times convergent in G(0)/G to z;
(2) MU(Lz) � k.

Proof. Assume (1). By the definitions of upper and lower multiplicity,

MU
(
Lz) � MU

(
Lz,

{
Lxn

})
� ML

(
Lz,

{
Lxn

})
.

By Theorem 6.3 we know that ML(Lz, {Lxn }) � k, establishing (2).
Assume (2). By [5, Lemma 1.2] there exists a sequence {πn} converging to Lz such that ML(Lz, {πn}) = MU(Lz, {πn}) =

MU(Lz). Since the orbits are locally closed, by [10, Proposition 5.1] the mapping G(0) → C∗(G)∧ : x 
→ Lx is a surjection. So
there is a sequence {Lxn } in C∗(G)∧ such that Lxn is unitarily equivalent to πn for each n. Then

ML
(
Lz,

{
Lxn

})
� ML

(
Lz, {πn}

) = MU
(
Lz) � k,

and it follows from Theorem 6.3 that {xn} is k-times convergent in G(0)/G to z. �
Corollary 7.6. Suppose that G is a second-countable locally-compact Hausdorff principal groupoid with Haar system λ. Let z ∈ G(0)

and let {xn} ⊂ G(0) be a sequence converging to z. Assume that [z] is locally closed. Then the following are equivalent:

(1) there exists an open neighborhood V of z such that G V
z is relatively compact and

lim sup
n

λxn

(
G V )

< ∞;

(2) MU(Lz, {Lxn }) < ∞.

Proof. Suppose that (1) holds. Since C∗(G) is separable, it follows from [3, Lemma A.1] that there exists a subsequence {xn j }
of {xn} such that

ML
(
Lz,

{
Lxn j

}) = MU
(
Lz,

{
Lxn j

}) = MU
(
Lz,

{
Lxn

})
.

By (1) and Corollary 6.5, ML(Lz, {Lxn }) < ∞. Hence MU(Lz, {Lxn }) < ∞, as required.
Suppose that (1) fails. Let {V i} be a basic decreasing sequence of open neighborhoods of z such that G V 1

z is relatively
compact (such neighborhoods exist by [12, Lemma 4.1(1)]). Then

lim sup
n

λxn

(
G V i

) = ∞ for each i

and we may choose a subsequence {xni } of {xn} such that λxn (G V i ) → ∞ as i → ∞.

i
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Let V be any open neighborhood of z such that G V
z is relatively compact. There exists i0 such that V i ⊂ V for all i � i0.

Then, for i � i0,

λxni

(
G V i

)
� λxni

(
G V )

.

Thus λxni
(G V ) → ∞ as i → ∞. By Corollary 6.5, ML(Lz, {Lxn }) = ∞. Hence MU(Lz, {Lxn }) = ∞, that is (2) fails. �

Corollary 7.7. Suppose G is a second-countable locally-compact Hausdorff principal groupoid with Haar system λ such that all the
orbits are locally closed. Let z ∈ G(0) . Then the following are equivalent:

(1) MU(Lz) < ∞;
(2) there exists an open neighborhood V of z such that G V

z is relatively compact and

sup
x∈V

λx
(
G V )

< ∞.

Proof. If (2) holds then (1) holds by Corollary 7.2.
Let {V i} be a basic decreasing sequence of open neighborhoods of z such that G V 1

z is relatively compact. If (2) fails then
supx∈V i

{λx(G V i )} = ∞ for each i and we may choose a sequence {xi} such that xi ∈ V i for all i and λxi (G V i ) → ∞. Since
{V i} is a basic decreasing sequence, xi → z.

Let V be an open neighborhood of z such that G V
z is relatively compact. There exists i0 such that V i ⊂ V for all i � i0.

Then, for i � i0,

λxi

(
G V i

)
� λxi

(
G V )

.

Thus λxi (G V ) → ∞. By Corollary 7.6, MU(Lz, {Lxi }) = ∞. Hence MU(Lz) = ∞, and so (1) fails. �
8. Graph algebra examples

We begin this section by introducing the notion of a directed graph as well as some related concepts as in the expository
book [21], although some notation is also taken from [15]. A directed graph E = (E0, E1, r, s) consists of two countable sets
E0, E1 and functions r, s : E1 → E0. The elements of E0 and E1 are called vertices and edges respectively. For each edge e,
call s(e) the source of e and r(e) the range of e. A directed graph E is row finite if r−1(v) is finite for every v ∈ E0.

A finite path in a directed graph E is a finite sequence α = α1α2 · · ·αk of edges αi with s(α j) = r(α j+1) for 1 � j � k − 1;
write s(α) = s(αk) and r(α) = r(α1), and call |α| := k the length of α. An infinite path x = x1x2 · · · is defined similarly,
although s(x) remains undefined. Let E∗ and E∞ denote the set of all finite paths and infinite paths in E respectively.
If α = α1 · · ·αk and β = β1 · · ·β j are finite paths then, provided s(α) = r(β), let αβ be the path α1 · · ·αkβ1 · · ·β j . When
x ∈ E∞ with s(α) = r(x) define αx similarly. A cycle is a finite path α of non-zero length such that s(α) = r(α).

When v is a vertex, f is an edge, and there is exactly one infinite path with range v that includes the edge f , then we
denote this infinite path by [v, f ]∞ . When there is exactly one finite path α with r(α) = v and α|α| = f , we denote α by
[v, f ]∗ . In [15] two paths x, y ∈ E∞ are defined to be shift equivalent with lag k ∈ Z (written x ∼k y) if there exists N ∈ N

such that xi = yi+k for all i � N .
Suppose E is a row-finite directed graph. We refer to the groupoid constructed from E by Kumjian, Pask, Raeburn and

Renault in [15] as the path groupoid. Before describing this construction we caution that we are using the now standard
notation for directed graphs which has the range and source swapped from the notation used in [15]. This new convention
is due to the development of the higher-rank graphs, where edges become morphisms in a category and the new conven-
tion ensures that “composition of morphisms is compatible with multiplication of operators in B(H)” [21, p. 2]. The path
groupoid G = G E constructed from E is defined as follows:

G := {
(x,k, y) ∈ E∞ × Z × E∞: x ∼k y

}
.

For elements of

G(2) := {(
(x,k, y), (y, l, z)

)
: (x,k, y), (y, l, z) ∈ G

}
,

Kumjian, Pask, Raeburn, and Renault defined

(x,k, y) · (y, l, z) := (x,k + l, z),

and for arbitrary (x,k, y) ∈ G , defined

(x,k, y)−1 := (y,−k, x).

For each α,β ∈ E∗ with s(α) = s(β), let Z(α,β) be the set{
(x,k, y): x ∈ Z(α), y ∈ Z(β), k = |β| − |α|, xi = yi+k for i > |α|}.
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By [15, Proposition 2.6], the collection of sets{
Z(α,β): α,β ∈ E∗, s(α) = s(β)

}
is a basis of compact open sets for a second-countable locally-compact Hausdorff topology on G that makes G r-discrete.
Kumjian, Pask, Raeburn and Renault equipped G with the Haar system consisting of counting measures, which they observe
is possible by first showing that a Haar system exists for the groupoid with [23, Proposition I.2.8], and then using [23,
Lemma I.2.7] to show that they can choose the system of counting measures.

By [15, Corollary 2.2], the cylinder sets

Z(α) := {
x ∈ E∞: x1 = α1, . . . , x|α| = α|α|

}
parameterised by α ∈ E∗ form a basis of compact open sets for a locally-compact σ -compact totally-disconnected Hausdorff
topology on E∞ . After identifying each (x,0, x) ∈ G(0) with x ∈ E∞ , [15, Proposition 2.6] tells us that the topology on G(0)

is identical to the topology on E∞ .
For a row-finite directed graph E , Kumjian, Pask, Raeburn and Renault use the path groupoid G to construct the usual

groupoid C∗-algebra C∗(G), and show how a collection of partial isometries subject to some relations derived from E
generate C∗(G). More recently, a C∗-algebra C∗(E) is constructed from a collection of partial isometries subject to slightly
weakened relations derived from E . The slightly weakened relations permit non-zero partial isometries to be related to
sources in the graph, and as a result C∗(E) is isomorphic to C∗(G) only when E contains no sources. It turns out that C∗(E)

and C∗(G) can be substantially different: an example in [14] describes a graph with sources where C∗(G) has continuous
trace while C∗(E) does not. In this paper we are only interested in groupoid C∗-algebras, so we will make no further
mention of the graph algebra C∗(E).

Since we wish to apply Theorem 6.3 to path groupoids, we must be able to show that the path groupoids we consider
are principal.

Proposition 8.1. Suppose E is a row-finite directed graph. The path groupoid G constructed from E is principal if and only if E contains
no cycles.

Proof. We first show that if E contains no cycles then G is principal. Suppose G is not principal. Then there exist x, y ∈ E∞
and distinct γ , δ ∈ G such that r(γ ) = r(δ) = x and s(γ ) = s(δ) = y. It follows that there exist a,b ∈ Z such that γ = (x,a, y)

and δ = (x,b, y). Notice that since γ �= δ, a �= b. We may assume without loss of generality that a > b.
Now γ = (x,a, y) implies x ∼a y and δ = (x,b, y) implies x ∼b y, so there exists N such that

n � N �⇒ xn = yn+a = yn+b,

and so xn = yn+a = yn+a−b+b = xn+a−b . Thus E contains a cycle of length at most a − b.
We now show that if G is principal then E contains no cycles. Suppose E contains the cycle α = α1α2 · · ·αk . Then

x := αα · · · is in E∞ with x ∼k x, so both (x,0, x) and (x,k, x) are in G . It follows that G is not principal. �
Example 8.2 (2-times convergence in a path groupoid). Let E be the graph

and let G be the path groupoid. For each n � 1 define x(n) := [v1, f (1)
n ]∞ and let z be the infinite path with range v1 that

passes through each vn . Then {x(n)} converges 2-times in G(0)/G to z.

Proof. We will describe two sequences in G as in Definition 3.1. For each n � 1 define γ
(1)

n := (x(n),0, x(n)) and γ
(2)

n :=
([v1, f (2)

n ]∞,0, x(n)). It follows immediately that s(γ (1)
n ) = x(n) = s(γ (2)

n ) for all n and that both r(γ (1)
n ) and r(γ (2)

n ) converge
to z as n → ∞. It remains to show that γ

(2)
n (γ

(1)
n )−1 → ∞ as n → ∞.

Let K be a compact subset of G . Our goal is to show that γ
(2)

n (γ
(1)

n )−1 = γ
(2)

n is eventually not in K . Since sets of the form
Z(α,β) for some α,β ∈ E∗ form a basis for the topology on the path groupoid, for each γ ∈ K there exist α(γ ), β(γ ) ∈ E∗
with s(α(γ )) = s(β(γ )) so that Z(α(γ ), β(γ )) is an open neighborhood of γ in G . Thus

⋃
γ ∈K Z(α(γ ), β(γ )) is an open cover

of the compact set K , and so admits a finite subcover
⋃I

i=1 Z(α(i), β(i)).

We now claim that for any fixed n ∈ P, if there exists i with 1 � i � I such that γ
(2)

n ∈ Z(α(i), β(i)), then |[v1, f (2)
n ]∗| �

|α(i)|. Temporarily fix n ∈ P and suppose there exists i with 1 � i � I such that γ
(2)

n ∈ Z(α(i), β(i)). Suppose the converse:
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that |α(i)| < |[v1, f (2)
n ]∗|. Since γ

(2)
n ∈ Z(α(i), β(i)), it follows that r(γ (2)

n ) = [v1, f (2)
n ]∞ ∈ Z(α(i)), and so α

(i)
p = [v1, f (2)

n ]∞p
for every 1 � p � |α(i)|. By examining the graph we can see that s([v1, f (2)

n ]∞p ) = v p+1 for all 1 � p < |[v1, f (2)
n ]∗|. Since

we also know that |α(i)| < |[v1, f (2)
n ]∗|, we can deduce that s(α(i)) = v j for some j. Furthermore since s(α(i)) = s(β(i)),

s(β(i)) = v j . There is only one path with source v j and range v1, so α(i) = β(i) . Note that when k = |β(i)| − |α(i)|, the set
Z(α(i), β(i)) is by definition equal to{

(x,k, y): x ∈ Z
(
α(i)), y ∈ Z

(
β(i)), xp = yp+k for p >

∣∣α(i)
∣∣},

so since γ
(2)

n ∈ Z(α(i), β(i)) and α(i) = β(i) , we can see that s(γ (2)
n )p = r(γ (2)

n )p for all p > |α(i)|. We know s(γ (2)
n ) =

[v1, f (1)
n ]∞ and r(γ (2)

n ) = [v1, f (2)
n ]∞ , so [v1, f (2)

n ]∞p = [v1, f (1)
n ]∞p for all p > |α(i)|. In particular, since we assumed that

|[v1, f (2)
n ]∗| > |α(i)|, we have[

v1, f (2)
n

]∞
|[v1, f (2)

n ]∗| = [
v1, f (1)

n
]∞
|[v1, f (2)

n ]∗|,

so that f (2)
n = f (1)

n . But f (1)
n and f (2)

n are distinct, so we have found a contradiction, and we must have |[v1, f (2)
n ]∗| � |α(i)|.

Our next goal is to show that each Z(α(i), β(i)) contains at most one γ
(2)

n . Fix n,m ∈ P and suppose that both γ
(2)

n and
γ

(2)
m are in Z(α(i), β(i)) for some i. We will show that n = m. Since γ

(2)
n ∈ Z(α(i) β(i)), r(γ (2)

n ) = [v1, f (2)
n ]∞ ∈ Z(α(i)). Thus

there exists x ∈ E∞ such that [v1, f (2)
n ]∗x ∈ Z(α(i)) and, since |[v1, f (2)

n ]∗| � |α(i)|, we can crop x to form a finite ε ∈ E∗
such that [v1, f (2)

n ]∗ε = α(i) . Similarly there exists δ ∈ E∗ such that [v1, f (2)
m ]∗δ = α(i) . Then[

v1, f (2)
n

]∗
ε = α(i) = [

v1, f (2)
m

]∗
δ,

which we can see by looking at the graph is only possible if n = m. We have thus shown that if γ
(2)

n and γ
(2)

m are in
Z(α(i), β(i)), then γ

(2)
n = γ

(2)
m .

Let S = {n ∈ P: γ
(2)

n ∈ K }. Since K ⊂ ⋃I
i=1 Z(α(i), β(i)) and since γ

(2)
n , γ

(2)
m ∈ Z(α(i), β(i)) implies n = m, S can contain at

most I elements. Then S has a maximal element n0 and γ
(2)

n /∈ K provided n > n0. Thus γn → ∞ as n → ∞, and we have
shown that x(n) converges 2-times to z in G(0)/G . �
Example 8.3 (k-times convergence in a path groupoid). For any fixed positive integer k, let E be the graph

and let G be the path groupoid. For each n � 1 define x(n) := [v1, f (1)
n ]∞ and let z be the infinite path that passes through

each vn . Then the sequence {x(n)} converges k-times in G(0)/G to z.

Proof. After defining γ
(i)

n := ([v1, f (i)
n ]∞,0, x(n)) for each 1 � i � k, an argument similar to that in Example 8.2 establishes

the k-times convergence. �
Example 8.4 (Lower multiplicity 2 and upper multiplicity 3). Consider the graph E described by

where for each odd n � 1 there are exactly two paths f (1)
n , f (2)

n with source wn and range vn , and for each even n � 2 there
are exactly three paths f (1)

n , f (2)
n , f (3)

n with source wn and range vn . Let G be the path groupoid, define x(n) := [v1, f (1)
n ]∞

for every n � 1, and let z be the infinite path that meets every vertex vn (so z has range v1). Then

ML
(
Lz,

{
Lx(n)}) = 2 and MU

(
Lz,

{
Lx(n)}) = 3.
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Proof. We know that {x(n)} converges 2-times to z in G(0)/G by the argument in Example 8.2, so we can apply Theo-
rem 6.3 to see that ML(Lz, {Lx(n) }) � 2. We can see that the subsequence {x(2n)} of {x(n)} converges 3-times to z in G(0)/G

by Example 8.3. Theorem 7.4 now tells us that MU(Lz, {Lx(n) }) � 3.
Now suppose ML(Lz, {Lx(n) }) � 3. Then by Theorem 6.3, {x(n)} converges 3-times to z in G(0)/G , so there must ex-

ist three sequences {γ (1)
n }, {γ (2)

n }, and {γ (3)
n } as in the definition of k-times convergence (Definition 3.1). For each odd

n, there are only two elements in G with source x(n) , so there must exist 1 � i < j � 3 such that γ
(i)

n = γ
( j)

n fre-
quently. Then γ

( j)
n (γ

(i)
n )−1 = r(γ (i)

n ) frequently and, since r(γ (i)
n ) → z, {γ ( j)

n (γ
(i)

n )−1} admits a convergent subsequence. Thus
γ

( j)
n (γ

(i)
n )−1

� ∞, contradicting the definition of k-times convergence.
If MU(Lz, {Lx(n) }) � 4, then by Theorem 7.4 there is a subsequence of {x(n)} that converges 4-times to z in G(0)/G . A similar

argument to that in the preceding paragraph shows that this is not possible since there are at most 3 edges between any
vn and vm . It follows that ML(Lz, {Lx(n) }) = 2 and MU(Lz, {Lx(n)}) = 3. �
Lemma 8.5. In Example 8.2,

ML
(
Lz,

{
Lx(n)}) = MU

(
Lz,

{
Lx(n)}) = 2;

and in Example 8.3,

ML
(
Lz,

{
Lx(n)}) = MU

(
Lz,

{
Lx(n)}) = k.

Proof. The same argument as that found in Example 8.4 can be used to demonstrate this lemma. The explicit proof was
given for Example 8.4 since it covers the case where the upper and lower multiplicities are distinct. �

In the next example we will add some structure to the graph from Example 8.2 to create a path groupoid G with
non-Hausdorff orbit space that continues to exhibit 2-times convergence.

Example 8.6. Let E be the directed graph

and let G be the path groupoid. For every n � 1 let x(n) be the infinite path [v1, f (1)
n ]∞ . Let x be the infinite path with

range v1 that passes through each vn and let y be the infinite path with range w1 that passes through each wn . Then the
orbit space G(0)/G is not Hausdorff and {x(n)} converges 2-times in G(0)/G to both x and y.

Proof. To see that {x(n)} converges 2-times to x in G(0)/G , consider the sequences {([v1, f (2)
n ]∞,0, x(n))} and {(x(n),0, x(n))}

and follow the argument as in Example 8.2. To see that {x(n)} converges 2-times to y in G(0)/G , consider the sequences
{([w1, f (1)

n ]∞,0, x(n))} and {([w1, f (2)
n ]∞,0, x(n))}. While it is tempting to think that this example exhibits 4-times conver-

gence (or even 3-times convergence), this is not the case (see Example 8.4 for an argument demonstrating this). We know
x(n) converges k-times to x in G(0)/G , so [x(n)] → [x] in G(0)/G , and similarly [x(n)] → [y] in G(0)/G . It follows that G(0)/G
is not Hausdorff since [x] �= [y]. �

In all of the examples above, the orbits in G(0) are closed and hence C∗(G)∧ and G(0)/G are homeomorphic by [10,
Proposition 5.1]. By combining the features of the graphs in Examples 8.4 and 8.6 we obtain a principal groupoid whose
C∗-algebra has non-Hausdorff spectrum and distinct upper and lower multiplicities among its irreducible representations.
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