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Abstract 

Let {S,} denote the sequence of polynomials orthogonal with respect to the Sobolev inner product 

fo +°° f+°c  : , .  x . ,.x--%-X dx (f .g)s = f(x)o(x)x%-Xdx + 2 J ~ )9( )x . 
J O  

where ~ > - 1, 2 > 0 and the leading coefficient of the S~ is equal to the leading coefficient of the Laguerre polynomial 
L~ ~). Then, if xEC\[0. +o¢). 

lim S.(x) 
.~o~ L~-~) (x )  

is a constant depending on 2. 
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I. Introduction 

Consider the Sobolev inner product 

~0 +~ fO +~ 
( f  , g)s = f(x)g(x)x~e -~ dx + 2 f'(x)g'(x)x~e -~ dx, (1.1) 

with ~ > - 1  and 2>0 .  Let {Sn} denote the sequence of polynomials orthogonal with respect to 
(1.1), normalized by the condition that Sn and the Laguerre polynomial L~n ~) have the same leading 
coefficient (n = 0, 1,2,...). 

The special case ~ = 0  has already been studied by Brenner in [1]. In [5], Sch~ifke and Wolf in- 
troduced einfache verallgemeinerte klassische Orthogonalpolynome and the above defined sequence 
{Sn} is a special case of them. The inner product (1.1) can also be studied as a special case of  
inner products defined by a coherent pair o f  measures as introduced by Iserles et al. [2]. 

The most complete treatment of  the sequence {Sn} orthogonal with respect to (1.1) is a recent pa- 
per of  Marcell~in et al. [3]. The paper gives among others several algebraic and differential relations 
with {LCn~)}, a four-term recurrence relation, a Rodrigues-type formula and some properties concern- 
ing the zeros. The paper states one asymptotic result for S,(x) with xEC\[0,  + ~ )  and n ~ cxD, but it 
is only for the special case ~ = 0 and no proof is given (only a reference to a private communication 
by V.N. Sorokin). 

The aim of  the present paper is to derive an asymptotic result for Sn(X) with xEC\[0,  +cxD) and 
n ---+ cxz. Our main result is stated in the following theorem. 

Theorem 1.1. I f  x & in complex plane cut along the positive real axis, then 

2 
+ 42 - xL -1)(x),tl ~ r + ,-,, ,lutn-1/2)~; Sn(x) I 

the bound for the remainder holds uniformly on compact subsets of  C\[0, + ~ ) .  

The asymptotic behaviour of  L~-l)(x) with xEC\[0,  +cx~) and n ~ ~ has been found by Perron; 
we mention his result in Section 2. We point out that Perron's result holds for arbitrary real ~, so 
- 1  <~  ~<0 is allowed in the theorem; in this case Laguerre polynomials are defined by means of  
their explicit representation as given in [6, pp. 100-102]. 

Finally we remark that a similar result for polynomials orthogonal with respect to a Sobolev 
inner product defined by a coherent pair of  measures of  compact support has been derived by 
Martinez-Finkelshtein et al. [4]. 

2. Classical Laguerre polynomials 

Laguerre polynomials, for arbitrary real 7, are defined by (see [6, pp. 100--102]) 

- k-----~' n = 0 ,  1 ,2 , . . . .  
k=0 
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This definition gives LCn~)(x) for arbitrary real ~ as a polynomial of  degree n with leading coefficient 
( -1)" /n! .  

If c¢ > - 1, then {L~ ~)} is orthogonal with respect to the inner product 

( f  , g) = f (x)g(x)x% -x dx. 

Moreover, if e > - 1, then 

e - x  d x  r ( n  + c~ + 1 ) = n = 0,1,2,. (2.1) 
n !  ~ " "  ° 

For arbitrary real c~ the following relations are satisfied 

L~)(x) - L(~),-l,tx~, = L~-t)(x),  

d(L•)(x) r (~) - = - 

The following asymptotic result is due to Perron (see [6, p. 199]). 

(2.2) 

(2.3) 

Lemma 2.1. Let ~ be an arbitrary real number. Then 

L~)(x) = ~ e ~ ( - x ) - ~ - ¼ n ~ - ¼ e  2 ~  {1 + O(n-½ )} ,  

the relation holds if  x is in the complex plane cut along the positive part o f  the real axis; ( -x ) -~-¼ 
and ~ must be taken real and positive i f  x < O. The bound for the remainder holds uniformly 
in every closed domain with no points in common with x >>. O. 

As a direct consequence of Lemma 2.1 we have 

Lemma 2.2. Let ~ be an arbitrary real number. Then 

lim L~')(x) 

n~L~-l)(x) 
lirn L(~)(x) = v/--Z--x, 

uniformly on compact subsets o f  C\[0, +cxz). 

(2.4) 

(2.5) 

3. Laguerre-,Sobolev orthogonal polynomials 

Let {S,} denote the sequence of polynomials orthogonal with respect to the Sobolev inner product 

/0 /0 ( f ,  g)s = f (x )g(x)x% -x dx + 2 f ' (x)g ' (x)x% -x dx (3.1) 
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with e > - 1 and 2 >0 .  The Sn are normalized by the condition that the leading coefficient of  Sn 
equals the leading coefficient of  L~ "). 

Observe that So = L~ ~) and $1 = L] ~). 
Several authors obtained the following result. 

Lemma 3.1. There exist positive constants a n depending on ~ and 2, such that 

L~)(x)  r (~) - ~ n _ l ( X ) = S n ( x ) - a n _ l S n _ l ( X ) ,  n>~l. (3.2) 

Proof. Put 

n--1 

- + } 2  e}n Si(x) • 
i = 0  

Then 

(n) 
ci (Si, S , ) s = ( L ~ ) - L  (~) S '  n--D i]S" 

Applying (3.1) and (2.3) to the right-hand side we obtain 

c(n)=0, 0 < ~ i ~ n -  2, i 

C (n) ( S n _ l , S n _ l ) S _ _ ~ _  - L~ l ( x )S~_ , ( x ) x~e -Xdx=  - tL (~) tx~2x~e-Xdx n--I k n--I ~, 11 • 

Marcellgn et al. [3] found the following recurrence relation. 

[] 

Lemma 3.2. The sequence {an} in (3.2) satisfies 

n + ~  
n >/1 (3.3) an n(2 + 2) + e - na,_l 

with ao = 1. 

Proof. Write 

Ro = So, R .  = S~ - a n -  l S n - 1 ,  n ) l , 

then for n ~> 1, 

(Rn+l,Rn)s + an(Rn,Rn)s + anan-l(Rn,Rn-1 )s = O. 

After computing the Sobolev inner products with (3.1), (3.2), (2.1) and (2.3) we obtain (3.3) for 
n~>l. 

Since So =L(0 ~) and $1 =L~ "), relation (3.2) implies a0 = 1. [] 

In order to derive the asymptotic behaviour of  Sn we need more information on the sequence 
{an). 
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Lemma 3.3. The sequence {an} is converoent, and 

E =  l i m a n =  ½(2 + 2 -  v / - f f + 4 ) 0 < l .  

Moreover, for  all p < 1, we have 

lirn nP(an -- E)  --~ O. (3.4) 

Proof. First we observe that a simple induction argument applied on Lemma 3.2 gives an ~< 1 for 
all n~>O. 

Suppose that E = lim a, exists, then (3.3) implies 
n---* O 0  

f 2 - E(2 + 2) + 1 =0 .  

Since a,-G< 1 for all n ~>0, we have E ~ 1. Hence 

E = ½(2 + 2 - V/2-2 + 4 2 ) <  1. 

Now, we prove that (3.4) is satisfied; in particular this implies that {an} is indeed convergent. 
With (3.3) and E(2 + 2) = E 2 + 1 we have 

-- aE + nE(an-1 -- E) 
an - E =  

n(2 + 2) + c¢ - nan_l 

Then, using a,_l .G< 1, 

Io~ - ~EI nElan-1 - El 
lan -- E I ~ + 

n(1 + 2) + ~ n(1 + 2) + ct" 

Put tn = n P l a n -  El, with p <  1, then 

nPlce - ~E I 
tn <. + 

n(l + 2) + 

np+ 1 

(n - 1)P[n(1 + 2) + ~]Etn-1. 

Let e > 0 and ( < r  < 1. Then there exists an integer N such that 

t , < e + r t , _ ~ ,  n > ~ N +  1. 

By repeated application, for k/> 1, we deduce 

tu+k <eEl + r + r 2 q- . . .  -ff r k-1 ) q- rktN < 

This implies 

lim t .  = 0 .  [ ]  
n ~ o o  

e + rktN" 
1 - - r  

Now, we are able to prove our main result. 
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Theorem 3.4. Put 

1 (a-l) ~e ~F~. 
S n - 1  - ~  ;Ln 1 -  

I f  xEC\[O, + ~ ) ,  then 

Fn(x) 1 
) im L~_2~(x ) 1 - ~' 

uniformly on compact subsets of  C\[O, + ~ ) .  

Proof. With (2.2) we rewrite (3.2) to 

L~ ~-'~ = S .  - a n - , S n - , .  

Substituting (3.5) for Sn and Sn-, we obtain 

-- r ( ~ - l )  : F  n - -  an_iFn_l 4- l (an_ 1 -- L(~-1) ( ) L ~ ]  1). 
n X'Jn-- ] 

Again we use (2.2) 

l 
L~ ~-2) =F~ - an_,F~_, 4- ~(a._,  - t~)L~_~ '). 

We abbreviate the last relation to 

An = 1 + b.-1An-1 + Pn-l, 

with 

L(~-2)  
n--1 

An=An(x)= F~ bn_l=b,_,(x)=an_lL~_2 ) L(~-2), 

1(~- 1) 

Pn-I = P n - ' ( x )  = -- v ~ ( a n  - '  , f v ~ L ( U - 2 ) "  

Let K denote a compact subset of C\[0, +e~).  From (2.4) and Lernrna 3.3 we obtain 

l i r a  bn- l (X)  = ~ < 1, 

and with (3.4). (2.4) and (2.5) 

lira pn(X) = 0;  

in both limits the convergence is uniform on K. 
Put 

1 
A* = An 1 - ( 

F. Marcelldm et al./Journal of  Computational and Applied Mathematics 87 (1997) 87-94 

(3.5) 

(3.6) 
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Then (3.6) implies 

A* -- b~_l - { 
1 - ~ + Pn--1 + bn-lAn*_l. 

Let ~>0  and d < r <  1. Then there exists an N, such that, if n>~N + 1 and x E K ,  we have 

IA*~ I < ~; ÷ rlAn*-~ I. 

By repeated application, for k/> 1 and x E K, we deduce 

g :,g 
IAN+~I <~(1 + r + . . .  + ? - ~ )  + rk]A?~l < 

1 - r  

This implies 

lim A* : 0, 
n - - +  , P C  

uniformly on K. This proves the theorem. [] 

Remark. In the special case ~ - - 0  we have with (3.3) 

n~lan_ 1 - #[ 
lan - #l-- n(2 + 2) - nan_l'  

thus 

Jan - ~ [ < E n l a 0 - f l ,  n~>l. 

Then (3.4) can be improved to 

li_m riP(an -- ~)  : O, for every p. 

+ rklA*l. 

93 

Proceeding as in the proof of Theorem 3.4, we obtain a complete asymptotic expansion 

o~ (_l)k#k L(-k-l)(x) 
S o ( x ) :  Z 6 - 7 T + 1  n , ,, 

k=0 

uniformly on compact subsets of  C\[0, +c~).  
Finally, observe that Theorem 1.1 is a direct consequence of Theorem 3.4 and (2.5). 
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