An asymptotic result for Laguerre-Sobolev orthogonal polynomials

Francisco Marcellán ${ }^{\text {a,1 }}$, Henk G. Meijer ${ }^{\text {b,* }}$, Teresa E. Pérez ${ }^{\text {c,2 }}$, Miguel A. Piñar ${ }^{\text {c,2 }}$
${ }^{a}$ Departamento de Matemáticas, Universidad Carlos III de Madrid, Leganés, Madrid, Spain
${ }^{\mathrm{b}}$ Faculty of Technical Mathematics and Informatics, Delft University of Technology, Delft, Netherlands
${ }^{\text {}}$ Departamento de Matemática Aplicada, Instituto Carlos I de Fisica Teórica y Computacional, Universidad de Granada, Granada, Spain

Received 3 March 1997; received in revised form 2 September 1997

Abstract

Let $\left\{S_{n}\right\}$ denote the sequence of polynomials orthogonal with respect to the Sobolev inner product

$$
(f, g)_{S}=\int_{0}^{+\infty} f(x) g(x) x^{\alpha} \mathrm{e}^{-x} \mathrm{~d} x+\lambda \int_{0}^{+\infty} f^{\prime}(x) g^{\prime}(x) x^{\alpha} \mathrm{e}^{-x} \mathrm{~d} x
$$

where $\alpha>-1, \lambda>0$ and the leading coefficient of the S_{n} is equal to the leading coefficient of the Laguerre polynomial $L_{n}^{(\alpha)}$. Then, if $x \in \mathbb{C} \backslash[0,+\infty)$,

$$
\lim _{n \rightarrow \infty} \frac{S_{n}(x)}{L_{n}^{(\alpha-1)}(x)}
$$

is a constant depending on λ.

Keywords: Laguerre polynomials; Sobolev orthogonal polynomials; Asymptotic properties
AMS classification: 33C45

[^0]
1. Introduction

Consider the Sobolev inner product

$$
\begin{equation*}
(f, g)_{S}=\int_{0}^{+\infty} f(x) g(x) x^{\alpha} \mathrm{e}^{-x} \mathrm{~d} x+\lambda \int_{0}^{+\infty} f^{\prime}(x) g^{\prime}(x) x^{\alpha} \mathrm{e}^{-x} \mathrm{~d} x \tag{1.1}
\end{equation*}
$$

with $\alpha>-1$ and $\lambda>0$. Let $\left\{S_{n}\right\}$ denote the sequence of polynomials orthogonal with respect to (1.1), normalized by the condition that S_{n} and the Laguerre polynomial $L_{n}^{(\alpha)}$ have the same leading coefficient ($n=0,1,2, \ldots$).

The special case $\alpha=0$ has already been studied by Brenner in [1]. In [5], Schäfke and Wolf introduced einfache verallgemeinerte klassische Orthogonalpolynome and the above defined sequence $\left\{S_{n}\right\}$ is a special case of them. The inner product (1.1) can also be studied as a special case of inner products defined by a coherent pair of measures as introduced by Iserles et al. [2].

The most complete treatment of the sequence $\left\{S_{n}\right\}$ orthogonal with respect to (1.1) is a recent paper of Marcellán et al. [3]. The paper gives among others several algebraic and differential relations with $\left\{L_{n}^{(\alpha)}\right\}$, a four-term recurrence relation, a Rodrigues-type formula and some properties concerning the zeros. The paper states one asymptotic result for $S_{n}(x)$ with $x \in \mathbb{C} \backslash[0,+\infty)$ and $n \rightarrow \infty$, but it is only for the special case $\alpha=0$ and no proof is given (only a reference to a private communication by V.N. Sorokin).

The aim of the present paper is to derive an asymptotic result for $S_{n}(x)$ with $x \in \mathbb{C} \backslash[0,+\infty)$ and $n \rightarrow \infty$. Our main result is stated in the following theorem.

Theorem 1.1. If x is in complex plane cut along the positive real axis, then

$$
S_{n}(x)=\frac{2}{\sqrt{\lambda^{2}+4 \lambda}-\lambda} L_{n}^{(\alpha-1)}(x)\left\{1+\mathrm{O}\left(n^{-1 / 2}\right)\right\}
$$

the bound for the remainder holds uniformly on compact subsets of $\mathbb{C} \backslash[0,+\infty)$.
The asymptotic behaviour of $L_{n}^{(\alpha-1)}(x)$ with $x \in \mathbb{C} \backslash[0,+\infty)$ and $n \rightarrow \infty$ has been found by Perron; we mention his result in Section 2. We point out that Perron's result holds for arbitrary real α, so $-1<\alpha \leqslant 0$ is allowed in the theorem; in this case Laguerre polynomials are defined by means of their explicit representation as given in [6, pp. 100-102].

Finally we remark that a similar result for polynomials orthogonal with respect to a Sobolev inner product defined by a coherent pair of measures of compact support has been derived by Martínez-Finkelshtein et al. [4].

2. Classical Laguerre polynomials

Laguerre polynomials, for arbitrary real α, are defined by (see [6, pp. 100-102])

$$
L_{n}^{(\alpha)}(x)=\sum_{k=0}^{n}\binom{n+\alpha}{n-k} \frac{(-x)^{k}}{k!}, \quad n=0,1,2, \ldots
$$

This definition gives $L_{n}^{(\alpha)}(x)$ for arbitrary real α as a polynomial of degree n with leading coefficient $(-1)^{n} / n!$.

If $\alpha>-1$, then $\left\{L_{n}^{(\alpha)}\right\}$ is orthogonal with respect to the inner product

$$
(f, g)=\int_{0}^{+\infty} f(x) g(x) x^{\alpha} \mathrm{e}^{-x} \mathrm{~d} x
$$

Moreover, if $\alpha>-1$, then

$$
\begin{equation*}
\int_{0}^{+\infty}\left(L_{n}^{(\alpha)}(x)\right)^{2} x^{\alpha} \mathrm{e}^{-x} \mathrm{~d} x=\frac{\Gamma(n+\alpha+1)}{n!}, \quad n=0,1,2, \ldots \tag{2.1}
\end{equation*}
$$

For arbitrary real α the following relations are satisfied

$$
\begin{align*}
& L_{n}^{(\alpha)}(x)-L_{n-1}^{(\alpha)}(x)=L_{n}^{(\alpha-1)}(x), \tag{2.2}\\
& \frac{\mathrm{d}}{\mathrm{~d} x}\left(L_{n}^{(\alpha)}(x)-L_{n-1}^{(\alpha)}(x)\right)=-L_{n-1}^{(\alpha)}(x) . \tag{2.3}
\end{align*}
$$

The following asymptotic result is due to Perron (see [6, p. 199]).

Lemma 2.1. Let α be an arbitrary real number. Then

$$
L_{n}^{(\alpha)}(x)=\frac{1}{2 \sqrt{\pi}} \mathrm{e}^{\frac{x}{2}}(-x)^{-\frac{x}{2}-\frac{1}{4}} n^{\frac{x}{2}-\frac{1}{4}} \mathrm{e}^{2 \sqrt{-n x}}\left\{1+\mathrm{O}\left(n^{-\frac{1}{2}}\right)\right\},
$$

the relation holds if x is in the complex plane cut along the positive part of the real axis; $(-x)^{-\frac{2}{2}-\frac{1}{4}}$ and $\sqrt{-x}$ must be taken real and positive if $x<0$. The bound for the remainder holds uniformly in every closed domain with no points in common with $x \geqslant 0$.

As a direct consequence of Lemma 2.1 we have

Lemma 2.2. Let α be an arbitrary real number. Then

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \frac{L_{n}^{(\alpha)}(x)}{L_{n-1}^{(\alpha)}(x)}=1, \tag{2.4}\\
& \lim _{n \rightarrow \infty} \frac{n^{\frac{1}{2}} L_{n}^{(\alpha-1)}(x)}{L_{n}^{(\alpha)}(x)}=\sqrt{-x}, \tag{2.5}
\end{align*}
$$

uniformly on compact subsets of $\mathbb{C} \backslash[0,+\infty)$.

3. Laguerre-Sobolev orthogonal polynomials

Let $\left\{S_{n}\right\}$ denote the sequence of polynomials orthogonal with respect to the Sobolev inner product

$$
\begin{equation*}
(f, g)_{S}=\int_{0}^{+\infty} f(x) g(x) x^{\alpha} \mathrm{e}^{-x} \mathrm{~d} x+\lambda \int_{0}^{+\infty} f^{\prime}(x) g^{\prime}(x) x^{\alpha} \mathrm{e}^{-x} \mathrm{~d} x \tag{3.1}
\end{equation*}
$$

with $\alpha>-1$ and $\lambda>0$. The S_{n} are normalized by the condition that the leading coefficient of S_{n} equals the leading coefficient of $L_{n}^{(\alpha)}$.

Observe that $S_{0}=L_{0}^{(\alpha)}$ and $S_{1}=L_{1}^{(\alpha)}$.
Several authors obtained the following result.

Lemma 3.1. There exist positive constants a_{n} depending on α and λ, such that

$$
\begin{equation*}
L_{n}^{(\alpha)}(x)-L_{n-1}^{(\alpha)}(x)=S_{n}(x)-a_{n-1} S_{n-1}(x), \quad n \geqslant 1 . \tag{3.2}
\end{equation*}
$$

Proof. Put

$$
L_{n}^{(\alpha)}(x)-L_{n-1}^{(\alpha)}(x)=S_{n}(x)+\sum_{i=0}^{n-1} c_{i}^{(n)} S_{i}(x) .
$$

Then

$$
c_{i}^{(n)}\left(S_{i}, S_{i}\right)_{S}=\left(L_{n}^{(\alpha)}-L_{n-1}^{(\alpha)}, S_{i}\right)_{S}
$$

Applying (3.1) and (2.3) to the right-hand side we obtain

$$
\begin{aligned}
& c_{i}^{(n)}=0, \quad 0 \leqslant i \leqslant n-2, \\
& c_{n-1}^{(n)}\left(S_{n-1}, S_{n-1}\right)_{S}=-\int_{0}^{+\infty} L_{n-1}^{(\alpha)}(x) S_{n-1}(x) x^{\alpha} \mathrm{e}^{-x} \mathrm{~d} x=-\int_{0}^{+\infty}\left(L_{n-1}^{(\alpha)}(x)\right)^{2} x^{\alpha} \mathrm{e}^{-x} \mathrm{~d} x .
\end{aligned}
$$

Marcellán et al. [3] found the following recurrence relation.

Lemma 3.2. The sequence $\left\{a_{n}\right\}$ in (3.2) satisfies

$$
\begin{equation*}
a_{n}=\frac{n+\alpha}{n(2+\lambda)+\alpha-n a_{n-1}}, \quad n \geqslant 1 \tag{3.3}
\end{equation*}
$$

with $a_{0}=1$.

Proof. Write

$$
R_{0}=S_{0}, \quad R_{n}=S_{n}-a_{n-1} S_{n-1}, \quad n \geqslant 1,
$$

then for $n \geqslant 1$,

$$
\left(R_{n+1}, R_{n}\right)_{s}+a_{n}\left(R_{n}, R_{n}\right)_{s}+a_{n} a_{n-1}\left(R_{n}, R_{n-1}\right)_{s}=0
$$

After computing the Sobolev inner products with (3.1), (3.2), (2.1) and (2.3) we obtain (3.3) for $n \geqslant 1$.

Since $S_{0}=L_{0}^{(\alpha)}$ and $S_{1}=L_{1}^{(\alpha)}$, relation (3.2) implies $a_{0}=1$.
In order to derive the asymptotic behaviour of S_{n} we need more information on the sequence $\left\{a_{n}\right\}$.

Lemma 3.3. The sequence $\left\{a_{n}\right\}$ is convergent, and

$$
\ell=\lim _{n \rightarrow \infty} a_{n}=\frac{1}{2}\left(\lambda+2-\sqrt{\lambda^{2}+4 \lambda}\right)<1 .
$$

Moreover, for all $p<1$, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{p}\left(a_{n}-\ell\right)=0 \tag{3.4}
\end{equation*}
$$

Proof. First we observe that a simple induction argument applied on Lemma 3.2 gives $a_{n} \leqslant 1$ for all $n \geqslant 0$.

Suppose that $\ell=\lim _{n \rightarrow \infty} a_{n}$ exists, then (3.3) implies

$$
\ell^{2}-\ell(2+\lambda)+1=0
$$

Since $a_{n} \leqslant 1$ for all $n \geqslant 0$, we have $\ell \leqslant 1$. Hence

$$
\ell=\frac{1}{2}\left(\lambda+2-\sqrt{\left.\lambda^{2}+4 \lambda\right)}<1 .\right.
$$

Now, we prove that (3.4) is satisfied; in particular this implies that $\left\{a_{n}\right\}$ is indeed convergent. With (3.3) and $\ell(2+\lambda)=\ell^{2}+1$ we have

$$
a_{n}-\ell=\frac{\alpha-\alpha \ell+n \ell\left(a_{n-1}-\ell\right)}{n(2+\lambda)+\alpha-n a_{n-1}} .
$$

Then, using $a_{n-1} \leqslant 1$,

$$
\left|a_{n}-\ell\right| \leqslant \frac{|\alpha-\alpha \ell|}{n(1+\lambda)+\alpha}+\frac{n \ell\left|a_{n-1}-\ell\right|}{n(1+\lambda)+\alpha} .
$$

Put $t_{n}=n^{p}\left|a_{n}-\ell\right|$, with $p<1$, then

$$
t_{n} \leqslant \frac{n^{p}|\alpha-\alpha \ell|}{n(1+\lambda)+\alpha}+\frac{n^{p+1}}{(n-1)^{p}[n(1+\lambda)+\alpha]} \ell t_{n-1} .
$$

Let $\varepsilon>0$ and $\ell<r<1$. Then there exists an integer N such that

$$
t_{n}<\varepsilon+r t_{n-1}, \quad n \geqslant N+1 .
$$

By repeated application, for $k \geqslant 1$, we deduce

$$
t_{N+k}<\varepsilon\left(1+r+r^{2}+\cdots+r^{k-1}\right)+r^{k} t_{N}<\frac{\varepsilon}{1-r}+r^{k} t_{N} .
$$

This implies

$$
\lim _{n \rightarrow \infty} t_{n}=0 .
$$

Now, we are able to prove our main result.

Theorem 3.4. Put

$$
\begin{equation*}
S_{n}=\frac{1}{1-\ell} L_{n}^{(\alpha-1)}-\frac{\ell}{1-\ell} F_{n} . \tag{3.5}
\end{equation*}
$$

If $x \in \mathbb{C} \backslash[0,+\infty)$, then
$\lim _{n \rightarrow \infty} \frac{F_{n}(x)}{L_{n}^{(x-2)}(x)}=\frac{1}{1-\ell}$,
uniformly on compact subsets of $\mathbb{C} \backslash[0,+\infty)$.

Proof. With (2.2) we rewrite (3.2) to

$$
L_{n}^{(\alpha-1)}=S_{n}-a_{n-1} S_{n-1} .
$$

Substituting (3.5) for S_{n} and S_{n-1} we obtain

$$
L_{n}^{(\alpha-1)}-L_{n-1}^{(\alpha-1)}=F_{n}-a_{n-1} F_{n-1}+\frac{1}{\ell}\left(a_{n-1}-\ell\right) L_{n-1}^{(\alpha-1)} .
$$

Again we use (2.2)

$$
L_{n}^{(\alpha-2)}=F_{n}-a_{n-1} F_{n-1}+\frac{1}{\ell}\left(a_{n-1}-\ell\right) L_{n-1}^{(\alpha-1)}
$$

We abbreviate the last relation to

$$
\begin{equation*}
A_{n}=1+b_{n-1} A_{n-1}+\rho_{n-1} \tag{3.6}
\end{equation*}
$$

with

$$
\begin{aligned}
& A_{n}=A_{n}(x)=\frac{F_{n}}{L_{n}^{(\alpha-2)}}, \quad b_{n-1}=b_{n-1}(x)=a_{n-1} \frac{L_{n-1}^{(\alpha-2)}}{L_{n}^{(\alpha-2)}}, \\
& \rho_{n-1}=\rho_{n-1}(x)=-\sqrt{n}\left(a_{n-1}-\ell\right) \frac{L_{n-1}^{(\alpha-1)}}{\ell \sqrt{n} L_{n}^{(\alpha-2)}} .
\end{aligned}
$$

Let K denote a compact subset of $\mathbb{C} \backslash[0,+\infty$). From (2.4) and Lemma 3.3 we obtain

$$
\lim _{n \rightarrow \infty} b_{n-1}(x)=\ell<1
$$

and with (3.4), (2.4) and (2.5)

$$
\lim _{n \rightarrow \infty} \rho_{n}(x)=0
$$

in both limits the convergence is uniform on K.
Put

$$
A_{n}^{*}=A_{n}-\frac{1}{1-\ell} .
$$

Then (3.6) implies

$$
A_{n}^{*}=\frac{b_{n-1}-\ell}{1-\ell}+\rho_{n-1}+b_{n-1} A_{n-1}^{*} .
$$

Let $\varepsilon>0$ and $\ell<r<1$. Then there exists an N, such that, if $n \geqslant N+1$ and $x \in K$, we have

$$
\left|A_{n}^{*}\right|<\varepsilon+r\left|A_{n-1}^{*}\right| .
$$

By repeated application, for $k \geqslant 1$ and $x \in K$, we deduce

$$
\left|A_{N+k}^{*}\right|<\varepsilon\left(1+r+\cdots+r^{k-1}\right)+r^{k}\left|A_{N}^{*}\right|<\frac{\varepsilon}{1-r}+r^{k}\left|A_{N}^{*}\right|
$$

This implies

$$
\lim _{n \rightarrow \infty} A_{n}^{*}=0
$$

uniformly on K. This proves the theorem.
Remark. In the special case $\alpha=0$ we have with (3.3)

$$
\left|a_{n}-\ell\right|=\frac{n \ell\left|a_{n-1}-\ell\right|}{n(2+\lambda)-n a_{n-1}},
$$

thus

$$
\left|a_{n}-\ell\right|<\ell^{n}\left|a_{0}-\ell\right|, \quad n \geqslant 1 .
$$

Then (3.4) can be improved to

$$
\lim _{n \rightarrow \infty} n^{p}\left(a_{n}-\ell\right)=0, \text { for every } p
$$

Proceeding as in the proof of Theorem 3.4, we obtain a complete asymptotic expansion

$$
S_{n}(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k} \ell^{k}}{(1-\ell)^{k+1}} L_{n}^{(-k-1)}(x),
$$

uniformly on compact subsets of $\mathbb{C} \backslash[0,+\infty)$.
Finally, observe that Theorem 1.1 is a direct consequence of Theorem 3.4 and (2.5).

Acknowledgements

The authors are very grateful to the referee for his valuable suggestions.

References

[1] J. Brenner, Über eine Erweiterung des Orthogonalitätsbegriffes bei Polynomen, in: G. Alexits, S.B. Stechkin (Eds.), Constructive Theory of Functions, Akadémiai Kiadó, Budapest, 1972, pp. 77-83.
[2] A. Iserles, P.E. Koch, S.P. Nørsett, J.M. Sanz-Serna, On polynomials orthogonal with respect to certain Sobolev inner products, J. Approx. Theory 65 (1991) 151-175.
[3] F. Marcellán, T.E. Pérez, M.A. Piñar, Laguerre-Sobolev orthogonal polynomials, J. Comput. Appl. Math. 71 (1996) 245-265.
[4] A. Martínez-Finkelshtein, J.J. Moreno-Balcázar, T.E. Pérez, M.A. Piñar, Asymptotics of Sobolev orthogonal polynomials for coherent pairs of measures, J. Approx. Theory, to appear.
[5] F.W. Schäfke, G. Wolf, Einfache verallgemeinerte klassische Orthogonalpolynome, J. Reine Angew. Math. 262/263 (1973) 339-355.
[6] G. Szegő, Orthogonal Polynomials, (4th ed.), Amer. Math. Soc. Colloq. Publ. 23, Amer. Math. Soc., Providence, RI, 1975.

[^0]: * Corresponding author. E-mail: groupaw@twi.tudelft.nl.
 ${ }^{1}$ Research partially supported by DGICYT under grant PB 93-0228-C02-01.
 ${ }^{2}$ Research partially supported by Junta de Andalucía, Grupo de Investigación FQM 0229 and DGES under grant PB 95-1205.

