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The notion of a strongly nilpotent element of a Lie algebra is introduced.
According to the existence or nonexistence of nontrivial strongly nilpotent ele-
ments, the simple modular Lie algebras are divided into two categories, CA type
and CL type, which coincide with Lie algebras of generalized Cartan type and
classical type, respectively, when the characteristic is greater than 7. Examples of
nonclassical simple Lie algebras of CL type are given which all have affinities to
the classical Lie algebras.  2002 Elsevier Science (USA)

1. INTRODUCTION

According to the Block–Strade–Wilson classification theorem [St-Wi],
simple Lie algebras over an algebraically closed field of characteristic
p > 7 are divided into two categories: Lie algebras of (generalized) Car-
tan type and Lie algebras of classical type. A characterizing property
that distinguishes the former from the latter is the existence of sandwich
elements (a nonzero element x is a sandwich element if (adx)2 = 0).
Premet proved in [P] that a simple Lie algebra of characteristic p > 3
is classical if and only if it is not strongly degenerate; i.e., it contains
no sandwich elements. However, this distinction becomes ambiguous in
lower characteristics. For instance, when p = 2 every classical Lie algebra
contains sandwich elements (e.g., the highest root vectors) and the class
of Cartan-type Lie algebras and the class of classical Lie algebras over-
lap; e.g., G2

∼= H�4� 1� ∼= S�3� 1� (cf. e.g., [Sh]). Let L be a Lie algebra,
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nil�L� �= �y ∈ L�ad y is nilpotent	�
��L� �= �x ∈ L�ad x · L ⊂ nil�L�	,
and ��L� = 
��L� ∩ nil�L�. A simple Lie algebra L is said to be of CL
type if ��L� = 0� otherwise, L is of CA type. It will be shown that clas-
sical Lie algebras are of CL type for any characteristic, and (generalized)
Cartan-type Lie algebras are of CA type with a few exceptions in charac-
teristics 2 and 3. In particular, CL type and CA type coincide with classical
type and (generalized) Cartan type, respectively, if the characteristic is
greater than 7. Some classes of simple Lie algebras of characteristics 2 and
3 which have affinities to the classical Lie algebras are listed in Section 3
and are shown to be of CL type.
In the present article, unless otherwise stated, all spaces and algebras

considered are finite dimensional over an algebraically closed field � of
characteristic p.

Notation. If V is a linear space and S� S′ are subsets of V , then �S�
denotes the subspace spanned by S and S + S′ �= �s + s′�s ∈ S� s′ ∈ S′	�
If L is a Lie algebra and S� S′ are subsets of L, then ��S�� denotes the

Lie subalgebra generated by S and �S� S′� �= ��s� s′��s ∈ S� s′ ∈ S′	. If, in
addition, L = L�−r� ⊕ · · · ⊕L�s� (resp. L ⊃ L−r ⊃ · · · ⊃ Ls ⊃ 0) is a graded
(resp. filtered) Lie algebra, then S�i� �= S ∩ L�i� (resp. Si �= S ∩ Li). If L is
a filtered Lie algebra, then grL denotes the graded Lie algebra canonically
associated to L.

2. STRONGLY NILPOTENT ELEMENT

(2.1) Definition. Let L be a Lie algebra, nil�L� �= �y ∈ L�ad y is
nilpotent	�
��L� �= �x ∈ L�ad x · L ⊂ nil�L�	, and ��L� = 
��L� ∩ nil�L�.
If x ∈ ��L�, then x will be called a strongly nilpotent element of L.

(2.2) Proposition. Let p be arbitrary. A Lie algebra L is semisimple if
(a) ��L� = 0 or (b) 
��L� = 0.

Proof. (a) If L is not semisimple, then L contains a nonzero abelian
ideal I. Let 0 �= x ∈ I� Then �adLx�2 = 0. Let y be an arbitrary element of
L and z = ad x · y ∈ I. Then z ∈ nil�L� and x ∈ 
��L� ∩ nil�L� = ��L�, a
contradiction. (b) follows from (a) immediately.

(2.3) Theorem. If p = 0, the following assertions are equivalent:

(a) L is semisimple;

(b) 
��L� = 0;

(c) ��L� = 0.
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Proof. By Proposition 2.2, it suffices to show (a) ⇒ (b). Let �+ and
�− be, respectively, the sets of positive and negative roots with respect
to a Cartan subalgebra H. Let x be a nonzero element of L and let x =∑
α∈�− cαxα + h +

∑
β∈�+ cβxβ be the standard root decomposition of x.

If x /∈ H, without loss of generality, we may suppose cβ �= 0 for some
β � 0. Let γ be maximal in the set �β � 0�cβ �= 0	. Then z �= ad x · x−γ =
hγ + x− ∈ B−, the negative Borel subalgebra, with 0 �= hγ ∈ H and x− a
linear combination of negative root vectors. Hence z is not nilpotent and
x /∈ 
��L�. If 0 �= x = h ∈ H, let xα be a root vector belonging to the root
α such that α�h� �= 0 and A denotes the automorphism exp�ad xα�� Let
y = Ax = h+ α�h�eα /∈ H. Then y /∈ 
��L� and x /∈ 
��L�.
(2.4) Theorem. (1) 
��L� = L if and only if �L� L� is nilpotent. In par-

ticular, if p = 0, 
��L� = L if and only if L is solvable. (2) ��L� = L if and
only if L is nilpotent.

Proof. (1) 
��L� = L ⇔ adL�x� y� is nilpotent ∀x� y ∈ L ⇔ ad�L�L�×
�x� y� is nilpotent ∀x� y ∈ L⇔ �L� L� is nilpotent. When p = 0� by Lie’s
theorem, L is solvable if and only if �L� L� is nilpotent. (2) is obvious.
When p > 0, we say a simple Lie algebra is classical (or of classical type)

if it is obtained from a Chevally basis of a simple complex Lie algebra by
a modulo p process (and possibly a modulo center process). For detailed
discussions of the classical Lie algebras, readers may refer to [Hi, Ho]. By
an argument similar to the proof of Theorem 2.3, we have

(2.5) Theorem. If p > 0, L is a simple Lie algebra of classical type, then

��L� = 0 and ��L� = 0.

(2.6) Lemma. Let L = L−r ⊃ · · · ⊃ Ls ⊃ Ls+1 = 0 be a filtered Lie
algebra, r ≥ 0. If s > r, then ��L� �= 0.

Proof. Let 0 �= x ∈ Ls. Then x ∈ nil�L� and adLx · L ⊂ Ls−r ⊂ L1 ⊂
nil�L�, i.e., x ∈ ��L�.
Let L ⊃ L−r ⊃ · · · ⊃ Ls ⊃ Ls+1 ⊃ 0 be a filtered Lie algebra and 
L =

gr L =⊕s
i=−r L̄�i�. If 0 �= x ∈ L, denote deg x �= max�i�x ∈ Li	. If deg x =

t, let x̄ = gr x �= x+ Lt+1 ∈ 
L�t�. When �x̄� ȳ� �= 0, we have �x̄� ȳ� = �x� y�.
(2.7) Lemma. Let L and 
L be as above. (a) If x1� x2 ∈ L0 and gr x1 =

gr x2, then x1 ∈ nil�L� if and only if x2 ∈ nil�L�; (b) If x ∈ L and x̄ �=
gr x /∈ nil�
L�, then x /∈ nil�L�; (c) If x ∈ L and x̄ /∈ ��
L� (resp. 
��
L�), then
x /∈ ��L� (resp. 
��L�).
Proof. (a) We need only consider the case grx1 = gr x2 = 0. If x1 ∈

nil�L�, then �ad x1	 ∪ �adL1	 is a nil weakly closed set. Hence �ad x1� +
adL1, which contains ad x2, consists of nilpotent elements.
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(b) There exists y ∈ L such that �ad x̄�n · ȳ = �adLx�n · y �= 0 for
every n > 0. Hence �adLx�n · y �= 0 and x /∈ nil�L�.

(c) If x̄ /∈ nil�
L�, then x /∈ nil�L� ⊃ ��L�. If x ∈ nil�
L�, then x̄ /∈

��
L� and there exists y such that ad
Lx̄ · ȳ = adLx · y /∈ nil�
L�. By (b),
adLx · y /∈ nil�L� and x /∈ 
��L�.
(2.8) Corollary. Let L and 
L be as above. If ��
L� = 0 (resp.


��
L� = 0), then ��L� = 0 (resp. 
��L� = 0).

Proof. This is a direct consequence of Lemma 2.7(c).

For the definitions and notation of the simple graded Lie algebras of
Cartan type, we essentially follow [St-Fa] (for the contact algebras K�m�n�
of characteristic 2, which are excluded in [St-Fa], we refer to [Fe-Sh,
Lin 1]). Let 
X�m�n� �= X ′�m�n�, X = W�S�K, and 
H�m�n� = H ′′�m�n�
(cf. [St-Fa]).

(2.9) Note. When p = 2, W �1� n� is not simple. For notational con-
sistency, in this case, we shall write 
W �1� n� instead of W �1� n� and let
W �1� n� �= �
W �1� n�� 
W �1� n��, which is simple of dimension 2n − 1.

If L is a filtered Lie algebra, grL = 
L, we shall call L a filtered defor-
mation of 
L. A simple Lie algebra L is called of (generalized) Cartan type
X�m�n� (or simply a (generalized) Cartan-type Lie algebra), X = W�S�H,
or K, if L is a filtered deformation of a homogeneous subalgebra 
L of

X�m�n� such that 
L ⊃ X�m�n�.
�2�10� Remark. In the author’s personal opinion, the terminology “gen-

eralized Cartan-type Lie algebras” is somewhat cumbersome. And what
exactly are the “Cartan-type Lie algebras” that the “generalized Cartan-type
Lie algebras” generalize? Might it be better to just call them the Cartan-
type Lie algebras and specify with modifiers, e.g., “restricted,” “graded,”
etc., in special cases?

(2.11) Theorem. (1) Let L be a (generalized) Cartan-type Lie algebra.
Then ��L� �= 0 if L is not of type (a) W �1� 1�, p = 3; (b) W �2� 1�, p = 2;
(c) S�3� 1�, p = 2; (d) H�4� 1�, p = 2; (e) K�3� 1�, p = 2; (f) W �1� 2�,
p = 2.

(2) If L is a filtered deformation of (a)–(e) in (1), then 
��L� =
��L� = 0.

(3) If p = 2, L = W �1� 2�, then ��L� = 0 and 
��L� = �x1D1� �= 0.

Proof. (1) L satisfies the condition of Lemma 2.6.
(2) When p = 3, W �1� 1� ∼= A1. When p = 2, W �2� 1� ∼= K�3� 1� ∼=

A2 and S�3� 1� ∼= H�4� 1� ∼= G2. Our assertion follows from Theorem 2.5
and Corollary 2.8.
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(3) Let e = x�2�1 D1, h = x1D1, and f = D1. By an argument similar
to Theorem 2.3, we can show that if y /∈ �h�, y /∈ 
��L�. We have adh ·L =
�e� f � ⊂ nil�L� since �ad�αe+ βf ��4 = 0, ∀α�β ∈ �.

(2.12) Note. When p = 2, W �1� 2� is the three-dimensional simple Lie
algebra which is unique up to isomorphism. Hence W �1� 2� does not possess
any nontrivial filtered deformation.

(2.13) Definition. A (generalized) Cartan-type Lie algebra is called
exceptional if it is of type (a)–(f).

In view of the Block–Strade–Wilson classification theorem, Theorems 2.5
and 2.11 suggest the following:

(2.14) Definition. A simple Lie algebra L of characteristic p > 0 is of
CL type (resp. CA type) if ��L� = 0 (resp. ��L� �= 0).

(2.15) Examples. The following Lie algebras are of CL type:

(i) classical Lie algebras;
(ii) contragredient Lie algebras in [Sk2, We-Ka];
(iii) the class L�ε� δ� ρ� of simple Lie algebras of characteristic 3 in

[Ko];
(iv) variations of G2 �ViG, i = 3� 4� 5� 6� of characteristic 2 in [Sh];
(v) filtered deformations of the exceptional graded Cartan-type Lie

algebras.

Proof. For (ii)–(iv), see Section 3 below.

�2�16� Remark. Let L be an exceptional (generalized) Cartan-type Lie
algebra which is a filtered deformation of a homogeneous subalgebra 
L of

X �= 
X�m�n� and 
L ⊃ X �= X�m�n�. If length�
X� > length�X�, then L is
of CA type by Lemma 2.6. However, if length�
X� = length�X� and 
X �= X,
we cannot decide the CL–CA type of L without more detailed knowledge
of L. (To the author’s knowledge, there is not much information about
the structures of the nongraded (generalized) Cartan-type Lie algebras in
characteristics 2 and 3.)

(2.17) Examples. The following Lie algebras are of CA type:

(i) the nonexceptional (generalized) Cartan-type algebras, p > 0;
(ii) the Melikyan algebras of characteristic 5 [M];
(iii) T �n� of characteristic 3 discussed in [B1, B2, Ch, Ku, Sk1];
(iv) R�2 � �n1� n2���1� of characteristic 3 discussed in [B2, Ch, E, Ku,

Sk1];
(v) Z′�F�, Y �F�, and X ′′′�F�ω� of characteristic 3 in [Sk1];
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(vi) the nonalternating Hamiltonian Lie algebra P�n�m� �m �= 1 if
n < 4� of characteristic 2 in [Lin1];

(vii) D4�3 � m1�m2�m3�, �m1�m2�m3� �= �1� 1� 1�, G2�2 � m1�m2�,
�m1�m2� �= �1� 1�, and C3� α�2 � n� 1�, n �= 1, of characteristic 2 in [B3].

Proof. They have filtered Lie algebra stuctures satisfying the condition
of Lemma 2.6.

(2.18) Remark. The ��L� criterion and the strong degeneracy criterion
are not compatible in the cases p = 3, L = W �1� 1� and p = 2, L =
W �2� 1�, S�3� 1�, H�4� 1�, or K�3� 1�. By the former, they should be viewed
as classical, while, by the latter, they should be counted as of Cartan type.

�2�19� Remark. The above consideration applies to infinite-dimensional
Lie algebras as well. Following [J], we call an element x of an infinite-
dimensional Lie algebra L quasi-nilpotent if ∩∞i=1�ad x�i · L = 0. Let q-
nil�L� be the set of quasi-nilpotent elements of L and q��L� = �x ∈
L�ad x · L ⊂ q-nil�L�	 ∩ q-nil�L�. A simple Lie algebra L is of qCL type
(resp. qCA type) if q��L� = 0 (resp. q��L� �= 0). For instance, let L =
L�A� be a simple Kac–Moody Lie algebra over C associated to a sym-
metrizable generalized Cartan matrix A (which is nonsingular; cf. Proposi-
tion 1.10B of [Wa]). Then L possesses a nontrivial invariant bilinear form
and, by an argument similar to Theorem 2.5, L is of qCL type. On the other
hand, if L = X�m�� X = W�S�H, or K, is an infinite-dimensional Cartan-
type Lie algebra over C, it is easily shown that L is of qCA type. (However,
for ordinary ad-nilpotency, we have ��L�A�� = 0 and ��X�m�� = 0). It is
also easy to see that the Witt or centerless Virasoro algebra is of qCL type.

(2.20) Problem. Is it possible for every Lie algebra of CA type to be
endowed with a “nice” filtered Lie algebra structure that satisfies the con-
dition of Lemma 2.6?

(2.21) Problem. If p > 0, what can we say about the Lie algebras of CL
type? Every Lie algebra in (2.15) is, more or less, affiliated with classical
Lie algebras, by structure and/or by origin. Does this phenomenon reflect
something essential to the Lie algebras of CL type?

(2.22) Problem. Classify over the complex field the simple Z-graded Lie
algebras with finite-dimensional grading spaces which are of qCL type.

3. SOME CLASSES OF LIE ALGEBRAS OF CL TYPE

In this section we shall give a detailed description of ViG, i = 3� 4� 5� 6, in
terms of the root system of G2 and show in light of the proof of Theorem
2.3 that the Lie algebras (ii)–(iv) in (2.15) are of CL type.
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(3.1) Definition. Let L be a Lie algebra. A direct sum decomposition
L = L− ⊕ H ⊕ L+ is called a quasi-triangular decomposition if (1) L+

is a nilpotent Lie subalgebra of L; (2) L− is a subspace of L; (3) H is
a Lie subalgebra of L; (4) �H�L+� ⊂ L+ and �H�L−� ⊂ L−; and (5) if
0 �= h ∈ H, then �adLh��L+ is not nilpotent. If, in addition, L− is also a
nilpotent Lie subalgebra of L and �adLh��L− is not nilpotent for 0 �= h ∈ H,
then L = L− ⊕H ⊕ L+ will be called a triangular decomposition of L�

(3.2) Proposition. Suppose p > 0. (a) If L = L− ⊕H ⊕ L+ is a quasi-
triangular decomposition of the Lie algebra L and for every nonzero y ∈ L−
(resp. L+) there exists x ∈ L+ (resp. L−) such that �x� y� = h + x+ where
0 �= h ∈ H and x+ ∈ L+, then ��L� = 0. (b) If L = L− ⊕ H ⊕ L+ is a
triangular decomposition of L and for every nonzero y ∈ L− (resp. L+) there
exists x ∈ L+ (resp. L−) such that �x� y� = h + x+ (resp. h + x−) where
0 �= h ∈ H and x+ ∈ L+ (resp. x− ∈ L−), then ��L� = 0.

Proof. (a) Let w be a nonzero element of L. (1) Suppose w ∈ H ⊕L+
and w /∈ L+, i.e., w = h + x+, 0 �= h ∈ H, x+ ∈ L+. Denote ξ�a� �=
�adLa��L+ for a ∈ H ⊕ L+. Then ξ�w�pr = ξ�h�pr + z, z ∈ ξ�L+�p, where
ξ�L+�p is the p-envelop of ξ�L+� in gl�L+� which consists of nilpotent
transformations. Hence ξ�w�pr �= 0 for every r. This implies w /∈ nil�L�
and, in particular, w /∈ ��L�. (2) w ∈ L+. There exists y ∈ L− such that
�w� y� = h + x+ /∈ nil�L� and hence w /∈ ��L�. (3) w /∈ H ⊕ L+. Then
w = x− + h + x+, 0 �= x− ∈ L−, h ∈ H, x+ ∈ L+. By assumption, there
exists y ∈ L+ such that �x−� y� = h′ + y+, 0 �= h′ ∈ H, y+ ∈ L+. Then
�w� y� = h′ + w+ where w+ ∈ L+. Hence w /∈ ��L�. (b) can be proved
similarly.

(3.3) Proposition. The contragredient algebras in [Sk2, We-Ka] are of
CL type.

Proof. Let L be a contragredient algebra. Then L has a quasi-triangular
(in fact, triangular) decomposition L = L− ⊕H ⊕ L+ where H is a torus,
L+ is the subalgebra of “positive root vectors,” i.e., L+ is spanned by a
basis �eα�α ∈ �+	 where �+ is the set of positive (formal) roots, and L− is
the subalgebra of “negative root vectors” spanned by a basis �e−α�α ∈ �+	.
The set � �= �+ ∪ �−�+� will be called the (formal) root system of L. As
in the classical cases, � is partially ordered. We have the multiplications

�3�3�1� �eα� eβ� = cα�βeα+β� α�β unproportional�

where

�3�3�2� cα�β = 0 if α+ β /∈ ��

�3�3�3� �h� eα� = ᾱ�h�� h ∈ H�α ∈ ��
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where ᾱ (a “true” root) is a linear function on H corresponding to α; and

�3�3�4� 0 �= �eα� e−α� = hα ∈ H� α ∈ �+�
(Note: Here we let hα denote the �eα� e−α�hα in [We-Ka]. For details,

cf. [Ka1, We-Ka].) Let y = ∑
a±αe±α ∈ L± and let ±β be minimal in

�±α�a±α �= 0	. Then �e∓β� y� = ∓a±βhβ+ x+, x+ ∈ L+. We have ��L� = 0
by Proposition 3.2(a).

(3.4) Proposition. The Lie algebras L�ε� δ� ρ� of characteristic 3 in [Ko]
are of CL type.

Proof. Let � be the root system of C2. In [Ko] a class L�ε� of simple Lie
algebra was constructed which is spanned by a basis �Eα� α ∈ ��Hβ�Z	,
L�ε� was shown to be contragredient in [We-Ka]. Here, in particular, L�ε�
possesses a multiplication table of the form (3.3.1)–(3.3.4) (where H =
�Hβ�Z�). The algebras L�ε� δ� ρ� are deformations of L�ε� (L�0� 0� ε� =
L�ε�) spanned by the same basis elements with the same multiplication
table except in the cases

�E−�2α+β�� E−�α+β�� = δEβ� �E−�2α+β�� E−β� = δEα+β�
�E−�2α+β�� Eβ� = ρEα� �E−�2α+β�� E−α� = ρE−β�

�E−�α+β�� E−β� = −ε−1δE2α+β� �E−α� Eβ� = −ε−1ρE2α+β�

(3.4.1)

Let L+ �= �Eω�ω > 0�, L− �= �Eω�ω < 0�, and H = �Hβ�Z�. Then
L�ε� δ� ρ� = L− ⊕H ⊕ L+ is a quasi-triangular decomposition. Note that
products of the form �Eγ�E−γ′ � in (3.4.1) are in L+. Hence the proof of
Proposition 3.3 applies here as well and we have ��L�ε� δ� ρ�� = 0.

(3.5) Proposition. The simple Lie algebras V4G�a2� a3�, a2� a3 ∈ �,
a2a3 �= 0� of characteristic 2 in [Sh] are of CL type.

Proof. Let L �= V4G�a2� a3� which is spanned by the basis �1� xi, i =
1� 2� 3� 4; fi, i = 1� 2� 3� 4� 5; hi� i = 1� 2; ei, i = 1� 2	 (for details, cf. [Sh]).
Let � be the root system of G2 and let α1 and α2 be the short and long
simple roots, respectively. To see more clearly its affinity to (and deviation
from) G2, denote

E−�3α1+2α2� �= 1� E−α2 �= x1� E−�α1+α2� �= x2�(3.5.1)

E−�3α1+α2� �= x3� E−�2α1+α2� �= x4�

E�3α1+α2� �= f1� E2α1+α2 �= f2� Eα2 �= f3�(3.5.2)

Eα1+α2 �= f4� E3α1+2α2 �= f5�
Eα1 �= e1� E−α1 �= e2�(3.5.3)
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Let L− �= �Eγ�γ > 0�, L+ �= �E−γ�γ < 0�, and H = �h1� h2�. Define linear
functions ᾱ1 and ᾱ2 on H by letting

ᾱi�hj� = δij� i = 1� 2�(3.5.4)

Extending linearly, we let

c1α1 + c2α2 = c1ᾱ1 + c2ᾱ2� c1� c2 ∈ ��(3.5.5)

In particular, for every α ∈ � there corresponds a linear function ᾱ� Dually,
we let

hγ �= kh1 + lh2� γ = kα1 + lα2 ∈ ��(3.5.6)

We have

�Eβ�Eγ� = c�β� γ�Eβ+γ �= 0�(3.5.7)

β� γ unproportional and β+ γ ∈ ��
except

�3�5�7′� �E−α1� E−�α1+α2�� = �E−α1� E2α1+α2 � = 0�

where

�3�5�7�1�
c�−�2α1 + α2�� α1 + α2� = c�α1�−�2α1 + α2�� = a2�

and all other c�β� γ� = 1�

�Eβ�Eγ� = 0� β� γ unproportional and β+ γ /∈ ��(3.5.8)

except

�3�5�8′�
�E−α2� E3α1+α2 � = a3E−α1� �E−α2� Eα1� = a3E−�3α1+α2��

�Eα1� E3α1+α2 � = a3Eα2 �

�h�Eγ� = γ̄�h�Eγ� h ∈ H�γ ∈ ��(3.5.9)

�E−γ� Eγ� = hγ� γ ∈ ��(3.5.10)

It follows that L = L− ⊕H ⊕L+ is a quasi-triangular decomposition. Sim-
ilar to Proposition 3.4 we can show that ��L� = 0.

(3.6) Proposition. The simple Lie algebras V3G�a�, a ∈ �, a �= 0, of
characteristic 2 in [Sh] are of CL type.
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Proof. Let L = V3G�a� which has a basis �1� xi� i = 1� 2� 3� 4� fi� i =
1� 2� 3� 4� 5�hi� i = 1� 2� � ei� i = 1� 2	. Adopting the notation (3.5.1)–(3.5.3),
we can obtain the multiplication table of V3G�a� from that of V4G�a2� a3�
by setting a2 = a, a3 = 0. Then the exceptional cases in (3.5.8′) do not
occur. Our conclusion can be obtained by an argument similar to (in fact,
simpler than) that of Proposition 3.5.

(3.7) Proposition. The Lie algebras V5G�a� a1� b1�, aa1b1 �= 0, d �= a+
a1b1 �= 0� of characteristic 2 in [Sh] are of CL type.

Proof. Let L �= V5G�a� a1� b1� which is spanned by the basis �1�xi� i =
1� 2� 3� 4; fi, i = 1� 2� 3� 4� 5; hi, i = 1� 2� ei� i = 1� 2� 3	 (cf. [Sh]). We adopt
the notation (3.5.1)–(3.5.5) and let

E±2α1 �= e3�(3.7.1)

Then the multiplication table is

�Eβ�Eγ� = c�β� γ�Eβ+γ �= 0�(3.7.2)

β� γ unproportional and β+ γ ∈ ��
where

c�−α1�−�α1+α2��=c�−�α1+α2��2α1+α2�
=c�−α1�2α1+α2�=a�

c�α1�−�α1+α2��=c�α1�−�3α1+α2��=c�α1�α2�
=c�α1�2α1+α2�=c�−�α1+α2��α2�
=c�−�3α1+α2��2α1+α2�=a1�

c�−α1�α1+α2�=c�−α1�3α1+α2�=c�−α1�−α2�
=c�−α1�−�2α1+α2��=c�α1+α2�−α2�
=c�3α1+α2�−�2α1+α2��=b1�

c�−�3α1+2α2��3α1+α2�=c�−�3α1+2α2��2α1+α2�
=c�−�3α1+2α2��α2�
=c�−�3α1+2α2��α1+α2�
=d and all other c�β�γ�=1�

(3.7.2.1)

�E±2α1�Eβ�=


Eβ+2α1� β�α1 unproportional, β+2α1∈�,
aEβ−2α1� β�α1 unproportional, β−2α1∈�,
0� β�α1 unproportional, β±2α1 /∈�;

(3.7.2.2)
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�E±2α1�Eα1�=�E±2α1�E−α1�=0�(3.7.2.3)

�Eβ�Eγ�=aE±2α1� β�γ unproportional, β+γ=2α1�(3.7.2.4)

�3�7�2�4′� �Eβ�Eγ�=E±2α1� β�γ unproportional, β+γ=−2α1�

�Eβ�Eγ�=0� β�γ unproportional and β�γ /∈�∪�2α1�−2α1	�(3.7.2.5)

except

�E−α2�Eα1�=aE−�3α1+α2�� �Eα2�E−α1�=E3α1+α2�

�E−α2�E3α1+α2 �=aE−α1� �Eα2�E−�3α1+α2��=Eα1 �
(3.7.2.6)

�h�Eγ�= γ̄�h�Eγ� γ∈�� h∈H ′ �=�h1�h2��(3.7.2.7)

�h�E±2α1�=0� h∈H ′�(3.7.2.8)

�Eγ�E−γ�=hγ�(3.7.2.9)

where (different from (3.5.6))

hγ= idh1+j�ah1+dh2�� γ= iα1+jα2�(3.7.2.10)

Let L+=�Eγ�γ>0�, L−=�Eγ�γ<0�, and H �=�h1�h2�E±2α1�. We have,
restricted on L+ or L−, �adE±2α1�4=a�adE±2α1�2 �=0. In view of (3.7.2.7)
and (3.7.2.8), condition (5) of Definition 3.1 is satisfied and L=
L−⊕H⊕L+ is a triangular decomposition of L. Suppose 0 �=x �=∑
γ>0c−γE−γ∈L−. Let � �=�γ>0�c−γ �=0	. Let β be a maximal ele-

ment in � . From the multiplication table, in particular (3.7.2.6), we
see that if β �=3α1+α2 or α1, then �Eβ�E−γ�∈�E±2α1�+L+ for all γ
not greater than β and �Eβ�x�∈c−βhβ+�E±2α1�+L+. If β=α1 but
c−α2=0, the above argument applies also. If β=α1, c−α2 �=0, we can
take β=α2 instead of α1. If β=3α1+α2, let y=sE3α1+α2+tEα2 . By
(3.7.2.4), (3.7.2.6), and (3.7.2.1) we have �y�x�≡sc−�3α1+α2�h3α1+α2+
tc−α2h−α2+�sac−α2+ta1c−�α1+α2��E−α1�mod�E±2α1�L+��. We can take s
and t such that �sc−�3α1+α2��tc−α2� �=�0�0� and sac−α2+ta1c−�α1+α2� =0.
Then �y�x�≡h �mod�E±2α1�L+�� where h∈H ′ and h �=0 since h3α1+α2 and
hα2 are linearly independent. By the symmetry of L+ and L− the conditions
of Proposition 3.2(b) are satisfied and we have ��L�=0.

(3.7.3) Remark. If a=1, a1=b1, then the positive and negative parts of
V5G are completely symmetrical: The linear map ϕ� Eβ %→E−β, β �=±�3α1+
2α2�, E−�3α1+2α2� %→dE3α1+2α2 , E3α1+2α2 %→ 1

d
E−�3α1+2α2�, E±2α1 %→E±2α1 , hi %→

hi�i=1�2, is an involution. Another involution has been obtained in [Liu]
by an inspection of the graded Lie algebra structure of V5G considered
in [Sh].
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(3.8) Proposition. The Lie algebras V6G�a�s�, a�s∈�, as �=0, of char-
acteristic 2 in [Sh] are of CL type.

Proof. Let L �=V6G�a�s� which is spanned by the basis �1�xi� i=
1�2�3�4; fi� i=1�2�3�4�5; h′1�h2; e1�e

′′
2	 (cf. [Sh]). We adopt the notation

(3.5.1) and (3.5.2) and let

E−α1 �=e1� Eα1 �=e′′2�(3.8.1)

E0�±2α1 �=h′1�(3.8.2)

Then the multiplication table is as follows.

(I) β�γ∈� unproportional, β>0�γ>0 or β<0�γ<0.

�3�8�I�1� �Eβ�Eγ�=c�β�γ�Eβ+γ �=0� β+γ∈��
except

�3�8�I�2�
�E−α1�E−�α1+α2��=0� �E−α1�E−α2 �=aE−�3α1+α2��
�Eα1�Eα2 �=E3α1+α2� �E−α1�E−�2α1+α2��=E−�α1+α2��

�Eα1�E2α1+α2 �=aEα1+α2�

where

�3�8�I�3� all c�β�γ�=1 except c�α1�α1+α2�=a−1s�

�3�8�I�1′� �Eβ�Eγ�=0� β+γ /∈��
except

�3�8�I�2′� �Eα1�E�3α1+α2��=sEα2 �
(II) β�γ∈��β�γ unproportional, β<0, γ>0.

�3�8�II�1� �Eβ�Eγ�=d�β�γ�Eβ+γ �=0� β+γ∈��
except

�3�8�II�2�

�E−�α1+α2��E2α1+α2 �=0� �E−α1�E2α1+α2 �=0�

�E−�2α1+α2��Eα1�=E−�3α1+α2�� �E−�2α1+α2��E3α1+2α2 �=E3α1+α2�

�E−�3α1+2α2��E2α1+α2 �=aE−�3α1+α2�� �E−α2�E3α1+2α2 �=Eα1+α2�
�E−�3α1+2α2��Eα2 �=E−�α1+α2��

where, for β=−�iα1+jα2�, γ= i′α1+j′α2,

�3�8�II�3� d�β�γ�=



1� if j+j′ ≡0 (mod 2��

�β�γ� �=�−�2α1+α2��α1+α2�,
a−1� β=−�2α1+α2��γ=α1+α2,
s� if j+j′ ≡1 (mod 2�;
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�3�8�II�1′� �Eβ�Eγ�=0�β+γ /∈��
except

�3�8�II�2′�
�E−α2�Eα1�=E−�α1+α2�� �E−α2�E3α1+2α2 �=Eα1�
�E−α2�E2α1+α2 �=ah2� �E−�2α1+α2��Eα2 �=h2�

(III) β∈�� β= iα1+jα2,

�3�8�III�1� �E−β�Eβ�=




sh2� if i+j≡0 (mod 2�,
sE0�±2α1� if i+j≡1 (mod 2�

and j≡0 (mod 2�,
E0�±2α1� if i+j≡1 (mod 2�

and j≡1 (mod 2�.
(IV) For γ= iα1+jα2∈�� let ht�γ�= i+j.

�3�8�IV�1� �h2�Eγ�=ht�γ�Eγ�
(V) γ∈�.

�3�8�V�1� �E0�±2α1�Eγ�=
{
aEγ−2α1� if γ−2α1∈��γ �=α1,
Eγ+2α1� if γ+2α1∈��γ �=−α1,
0� otherwise.

(VI) Finally,

�3�8�VI�1� �E0�±2α1�h2�=0�

Let H �=�E0�±2α1�h2��L−=�Eγ�γ>0�, and L+=�Eγ�γ<0�. We have

�adE0�±2α1 �L±�4=a�adE0�±2α1 �L±�2 �=0�(3.8.3)

�adh2�L±�2=adh2�L± �(3.8.4)

We see that L=L−⊕H⊕L+ is a quasi-triangular decomposition of L. Let
0 �=x �=∑

γ<0cγEγ∈L+, � �=�γ�cγ �=0	, and let −ω be a maximal element
in � . If ω �=α2, then from the multiplication table �Eω�E−γ�∈L+ for any
γ not less than ω. Hence �x�Eω�=cωhω+y+ where 0 �=hω=�E−ω�Eω�∈
H and y+∈L+. If ω=α2, then there may appear a multiple of h2 (cf.
(3.8.II.2′)) which, however, is linearly independent of [E−α2�Eα2 �=E0�±2α1 .
Thus, in any case, �x�Eω�=h+y+ where 0 �=h∈H and y+∈L+. For x∈
L− the argument is similar. Then the conditions of Proposition 3.2(a) are
satisfied and ��L�=0.

(3.8.5) Remark. V6G varies from G2 quite far. In some cases, the roles
of ±α2 and ±�2α1+α2� and α1 and −α1 are mixed, respectively. At any
rate, the affinity of V6G to G2 is still clearly recognizable.

Summing up, we have

(3.9) Theorem. The Lie algebras in (2.15) are of CL type.
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(3.10) Erratum to [Sh]. As pointed out by D. Liu (cf. [Liu]), the Lie
algebras V ′

4 �V
′
5 , and V

′
6 are restricted and all isomorphic to sl�3�. Hence

the statements about the “newness” of V ′
i , i=4�5�6, in [Sh, Theorem 3.1]

are incorrect and should be omitted. The author regrets these unfortunate
mistakes.
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