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ABSTRACT 

We consider the following equivalence relation in the set of all complex upper 
triangular n x n ‘matrices: A and B are called %-similar if there exists an invertible 
upper triangular matrix S such that A = S-‘BS. If A, B are %-similar, then they 
must have the same diagonal and the same Jordan form. It is known that for n 3 6 
there are infinitely many mutually non-?&similar nilpotent upper triangular matrices 
with the same Jordan form. We introduce an appropriate generalization of the Jordan 
block (called an irreducible matrix), and we prove that each upper triangular matrix is 
Y-similar to a “generalized” direct sum of irreducible blocks, where the location and 
the order of the blocks is fuced and each block is determined uniquely up to 
‘%-similarity. 0 Elsevier Science Inc., 1997 

INTRODUCTION 

In this paper we consider the following problem: Given an upper triangu- 
lar matrix A, what upper triangular matrices U-‘AU are similar to A if U is 

assumed to be an invertible upper triangular matrix (we shall call the matrices 
A and U-lAU Z-simih-; notation A -,, V’AU). Of course, one is inter- 
ested in simple forms for U-‘AU, in analogy to the Jordan form. 

Though not without interest in its own right, an external motivation for 
considering this question came from problems involving triangular forms of 
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matrices (see, e.g., 1, 2, 4, 10): If A E CnXn and (0) c M, c M, c *.a c 

M, = @” is a chain of A-invariant subspaces (i.e., AM, G Mi, dim Mi = i 

for i = 1,2,. . . , n), then the matrix representation A, of A in an ordered 
basis {w,, . . . , w,} such that M, = span({w,, . . . , wk}), k = 1,2,. . . , n, is an 
upper triangular matrix, and if (vi,. . . , v,,} is another basis such that M, = 

spdv,, . . . , y.}), then the matrix representation A, of A in that basis is 
‘%-similar to A,; conversely, if the matrix Z? is g-similar to A,, then it is 
the matrix representation of A in some ordered basis {m,, . . . , m,} such that 
M, = span((m,, . . . , mk}) for each k. 

Given the matrix A and the chain ( Mi) of invariant subspaces, one might 
want to choose a basis (w,, . . . , w,,} as above with an additional property, e.g., 

{w i>“‘> w,,} should be a reordering of a Jordan basis for A. Since the pair 
(A, ( Mi)) determines a %-similarity equivalence class, this is possible only if 
this class contains a “generalized” Jordan matrix, which is usually not the 
case, as we shall see below. 

Another relation between %-similarity and triangular forms arose in [3]; it 
is of a more specialist nature, and a short description can be found in the 
introduction of [9]. 

In the setting of upper triangular matrices over finite fields the problem 
was considered by G. Higman [6, 71 before 1960 and, more recently, by A. 
Vera-Lopez and J. M. Arregi [ll, 121; both deal with the question of 
(estimates for) the total number of equivalence classes (called conjugucy 

classes by these authors), and Vera-Lopez and Arregi provide a full listing of 
all conjugacy classes up to order 5 for the case where the number of elements 
in the field is a power of a prime number. The number of conjugacy classes 
of nilpotent upper triangular n X n matrices over infinite fields was shown to 
be infinite for large enough n by M. Roitman [8], who described an infinite 
family of mutually nonconjugated upper triangular nilpotent 12 X 12 matri- 
ces; later D. Z. Djokovid and J. Malzan [5] provided a similar example 
consisting of 6 X 6 matrices, and this result cannot be improved. 

Let us settle some terminology and notation. The set of all upper 
triangular (complex) matrices of order n will be denoted by ‘&, and S’SP~ 
will denote the group of invertible elements in %“. If A, B E FYn and 
A = U-lBU for some U E F%“, then we shall call the matrices A and B 
%-similar: notation A wU B. 

Next, we generalize the notion of a direct sum of matrices: Let I, U .** U 
z, = {I..., n} be a decomposition of (1, . . . , n} (that is, I,, . . . , Z, are subsets 
withZi~Zj=121ifi+jand(I,...,n}=Z,U~**UZ) If A.=(& )#‘r= s * I xy x>y 1 
are matrices of order #Zj, j = 1,2,. . . , s, then the generalized direct sum is 

defined by 
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where aij = 0 if i E I,, j E I,, k # 1, and aij = aiy if i = i,, j = i, E I, 
= (i,, . . . , i,), i, < iP+l, m = #lk. If all I,#0 and 1+ max Zj= 
min Zj+r, j = 1,. . . , s - 1, then one has the usual direct sum, and we shall 
write A = A, CB **. Q A, in that case. A generalized direct sum of Jordan 
blocks will be called a generalized Jordan matrix. If I, 6 I, is a nontrivial 
decomposition of (1, . . . , n), i.e., if I, # 0, I, # 0, and A E %$ is %(-similar 
to (Ai)rl @ (A,),,, Ai E &I,> i = 1,2, then we shall call A %-reducible. If a 
matrix A E %n is not g-reducible, it will be called %-irreducible. The 
%-irreducible matrices will be the building blocks in the theory of %-similar- 
ity: Each A E %,, is %-similar to a generalized direct sum of %irreducible 
matrices. 

In order to deal with generalized direct sums we use a generalized 
block-matrix notation: Writing @” = spa&e,, . . . , ek)) CD span((ek + r, . . . , 
e,)) (here ei denotes the ith unit vector in C”), the matrix A E 4z(, has the 
usual partitioning 

A, A, 
A= o A. 

( 1 2 

If !I = (i,,...,i,), 1, = (j,,...,jJ, i, < ixfl, j, <jy+l, p + 9 = n, and 
I, u I, = (1,. . .) n), then, with respect to the decomposition C” = span((ek 
1 k E II)> @ span((ek ) k E I,)), th e matrix A E %,, has the generalized parti- 
tioning 

(0.2) 

where A:(a’&=i,~=i, A’: = (u’:,)~=,,~=,. Since A E TX”, one has that 

a’ = 0 if i, > j,, d& = 0 if j, > i,. 
Zi”= (2,4), then 

If for example, n = 4 and I, = (1,3), 

whereas with respect to Zi = (1,4), ZL = { 

0 1 4 6 

0 0 0 3 
0 0 0 0 

:2,3) one would have 

(,” 06) (: $ 
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For 4, B E Z$ one has, with respect to the same decomposition (1,. . . , n} 
= I, u I,, 

AB = (ii;; ;z;)[ I;;; i;;) 

= (A?, +A:%) (A,% +A:&) 

i (A’:B, + A,B;) 1 (A;B: + A,B,) ’ (0.3) 

If C = (C,)rl @ (C,)r, E gn, i.e., if C: = 0, C,” = 0, then we shall call C 

reducible along the decomposition I, iJ I,. For example, if 

A= o I 0 0 0 
’ ’ 5 
0 0 0 4 0 0 0 0 0 

then A is reducible along I, 5 I, 

0 0 0 6 

= {1,3] 6{2,4), but B isn’t: 

whereas B is reducible along Z; G Zi = {1,4} 6(2,3}, but A isn’t. 
We end this introduction with a survey of the main results. In Section 1 

we shall prove that A E %” is %-similar to a generalized direct sum ((~~1 + 

N,),, @ ..* @ (cw,Z + N,&, oi # crj, i #j, yj E % nilpotent, and that the 

corresponding index decomposition I, 6 *a* U Z, is unique. This allows us to 
concentrate on ndpotent upper triangular matrices. Further, it is shown that 
A E %n is %similar to a (unique) generalized Jordan matrix if A is non- 
derogatory or if no partial multiplicity of A exceeds 2 [that is, if Kel( A - 
AZ)’ = Kel( A - hZ)3 for each A]. In Section 2 we obtain for given A E ?Y” 
the existence of a unique index decomposition I, fi *** 6 Z, = (1,. . . , n), all 
Zj # 0, such that A wU (A,),, f~ .a* @ (A& Aj E %‘.‘.rj irreducible, where 

all Al are uniquely determined up to ‘z%similarity. In Section 3 we study 
conditions in order that A E Y&+ 1, A nilpotent, is irreducible if A is 
considered as an extension of the nilpotent matrix A’ E Y& by adding the 
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(n + 1)st column to A’. Using these conditions one obtains infinitely many 
mutually non-%-similar nilpotent irreducible matrices in %n for h > 6 (this 
is, in fact, the example of D. Z. Djokovi; and J. Malzan [5]). Special types of 
extensions will be considered in Section 4, and the paper ends with a 
complete list of all %-similarity equivalence classes of nilpotent irreducible 
upper triangular matrices of orders up to 6. 

Many proofs are abridged or omitted, especially in Sections 3 and 4; for 
the full proofs the reader is referred to [9]. 

If no ambiguity is to be feared, we drop the explicit reference to % in our 
terminology, so “similar” will mean “~-similar,” ‘I N ” mean “ M,, ” and 
“(i&educible” mean “%(ir)reducible.” In writing generalized direct sums 
A = (A,)rl 8 (A,), 63 
no confusion can a&e. 

**a 8 (Ak)rl, we omit the index sets I,, . . . , I, where 

1. TECHNICAL RESULTS 

In this section we prepare the ground for the main results which will be 
proved in the next two sections. Our first result is the observation that similar 
matrices A, B E Yn have the same diagonal: 

LEMMA 1.1. IfA, B E 9X,,, A N B, then a,, = bii, i = 1,2,. . . , n. 

The diagonal entries of A E %n are the eigenvalues of A. The position of 
the eigenvalues on the diagonal gives rise to the spectral reduction of A (cf. 
M. Roitman [8]): 

PROPOSITION 1.2. Let A E ‘SYn have the diflerent eigenvalues CY~, . . . , ok, 
and set Ej = (i 1 a,, = aj}. Then there exist A,, . . . , Ak, Aj E 21NE, u( Aj> = 

{ ofi} such that A N (Ai&, @ *a* 8 ( A,)sk; moreover, $ A - ( Ai&, $ *+* 8 

(&>,,, where A; E Y&, rr(iii>=(olj},thenAj-~j,j=1,2 ,..., k. 

Proof. If v = <vj)jn_i, vi # 0, vj = 0, j > i, then we call v an i-vector. If 
v is an i-vector and Av = CY~V, then i E Ej; in fact, if Ej = {ij,, . . . , ij,), 

ijx < ijx+l, mj = #Ej, then the generalized eigenspace Ker (A - oljZ)” has 
a basis {vjl, . . . , vjmj} such that vjX is an ijx-vector: This can be seen using the 

Gauss reduction algorithm on a given basis of Ker ( A - (Ye Z I” and keeping in 
mind that an i-vector cannot be a generalized eigenvector of A associated 
with CY~ if i G Ej. Observe that Av~= E span({vjl, . . . , vj,)), since A E Vn 
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and ijl, . . . , ijm. I are in increasing order. Define V E E?& by 

V=(Y “2 *** “n), vij,=vjx. 

Then V-‘AV N A has the desired properties. If q = (cl +** G,) E .L%!~ is 

such that ?-‘A? = ( iI),, @ a** CB (Al,),,, then {ci, +. ‘*“’ ‘jm, } is a basis for 

Ker ( A - cxj I>” consisting of ij,-vectors, whereas Ai, E spa&{Gf,,, . . . , Ci, }). 
This proves that Aj N Aj. %m 

A nice application of the spectral reduction is the following 

PROPOSITION 1.3. Let A, B E W,,,, b E @. Define I, = {i ) bij = b), I, = 

{i ( bii # b}. Assume that AB = BA. Then A N (A,III @ (A,)IZ. In particu- 
lar, if A is irreducible, then either I, = 0 (i.e., b is not an eigenvalue of B) 
or I, = 0 (i.e., B - bZ is nilpotent). 

Proof. Without loss of generality we can assume that I, # 0 and b = 0. 
There exists V E .F’%” such that V-lBV = (B,),1 CD (B,),z with 0 e o(B,), 
c+(B,) = {O}, so B, is invertible and B, is nilpotent. Consider 

with respect to (1, . . . ,~ n} = I, 6 I,. From AB = BA one has i(( B,) @ 
(B,)) = ((B,) e (B,))A, so A:B, = B,A:, A’:B, = B,A; and A;B; = 
B,kA’,. = 0, B,k AT = AT Bf = 0 for k 3 #I,. Since Bi. is invertible, this 
proves that A’,. = A:T = 0 and A * A^ = (A,jII @I (A,jIz. n 

A consequence of the spectral reduction in Proposition I.2 is that for the 
description of the equivalence class of A, it is sufficient to describe the 
equivalence class of each “spectral component” Aj, j = 1,2,. . . , k. Since 
A N B if and only if A - PZ _ B - /3Z, we can restrict ourselves to the 
description of the equivalence classes of upper triangular nilpotent matrices; 
we shall use the notation ‘%2 = {& E %” 1 a(A) = IO}}. Obvious candidates 
for representatives of the equivalence claszes seem to be the nilpotent 
generalized Jordan matrices. Indeed, if /, J E %,” are generalized Jordan 
matrices, then J * j if and only if J = J^: Assume that J #J? Setting 

1 = $&=i, j= (s:&~, there exist k < 2 such that ski # sLl; for defi- 
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niteness, ski = 1, siI = 0. Further, interchanging ]:i, if necessary, we can 

achieve that sij = 0 for all j Q I, since no row in ], ] contains m?re than one 
nonzero entry. Assume that V = (uij)y j= 1 E ‘i?$ and that V] = Jv. Then 

n 1 

@.)kl = ukk = (_&kl = c s;pil = c SLiVil = 0, 

i=k+l i=k+l 

and V is not invertible. 
Unfortunately, for rr > 4 there exist %-similarity classes in gno not 

containing generalized Jordan matrices. Consider 

with the partial multiplicities 3 and 1. It is not difficult to show that ]s, 1 is 
irreducible [cf. also Example 3.7(iii) below]. In particular, ]s, 1 is not similar 
to any of the generalized Jordan matrices 

where Jk = ( Si + I, j>Ik, j= i denotes the nilpotent Jordan block of order k. 
A simple test whether a given matrix A E if/z is similar to a generalized 

Jordan matrix is the following: A is similar to a generalized Jordan matrix if 
and only if there exists a basis (v,, . . . , v,} of @” consisting ofJordan chains 
of A such that each vi is an i-vector. 

EXAMPLE 1.4, Let A E 5?Yt be unicellular. Then A ~1~. Indeed, Ak- ’ 
# 0 = Ak; let A = (aij)k7i1 E %{_1 be the matrix consisting of the initial 

k - 1 rows and columns of A. Then Ak- ’ = 0, and hence Ak-‘ek # 0. This 
proves that Ak-‘ek, Ak-‘ek,. . . , 
{Ak-‘ek, Ak-‘ek,. . . , 

Aek, ek is a Jordan chain for A, and 
Ae,,e,} is a basis for Ck. If Ak-jek is a ij-vector, 

then ij < ijfl, as A E 2Cno. But Ak-‘ek # 0, ik = k, 
1,2, . . . , k. 

so ij=j, j= 

It follows from this example that a nonderogatory matrix A E Z$ is 
similar to a generalized Jordan matrix. The same turns out to be true if no 
partial multiplicity of A E P& exceeds two: 
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THEOREM 1.5. Zkt A E %,,, and assume that one of the following two 
conditions is met: 

(i) A is nonderogatory; 
(ii) dimKer(A - hZ)2 = dimKer(A - hZ)3 foreach h E C. 

Then there exists a generalized Jordan matrix ] which is V-similar to A. 

Proof. It suffices to consider the case where A E ?Yi and A2 = 0. We 
proceed by induction on n. For n = 1 we have A = (0) and the result is 
trivially true. Assume that the desired result has been proved for 1,2,. . . , n 

- 1. Let A = (aij>tr, j= 1, and set A = (aij)y7$ E ‘SY:_ 1. Then A2 = 0, so 

there exists a generalized Jordan matrix j= (J++r,>r, 8 (J#&, @ **a $ 

(Jxr,)r, E %t-1 such that ?-‘A? = j for some ? E EY” _ i. Since js = 0, 

one has #Zj < 2, i.e., 

Replacing A by [f $ (l)]JIA[? o Cl)] we may assume A to have the 
partitioning 

and replacing A by WAW-‘, where 

w= z w Es%! ( 1 01 IL’ 
w E Im jappropriate, 

we may assume that 

0 
aj’ a. ( 1 ‘I9 

if #Zj=2, Zj = {ijl, ij2}, ijl < ijz- 

Using the fact that Ae, = a 8 (O), 0 = A2e, = fa_@ (O), it is clear that 
a. ,,z = 0, i.e., aj = 0 if #Zj = 2. If a = 0, then A = J 8 (0) is a generalized 

Jordan matrix; so assume that a # 0, and let i, = max{i 1 a, # O}. By dividing 
the nth column and multiplying the nth row in A by aio we replace A by a 
similar matrix such that at0 = 1. If a, # 0, then the ith column of A is 0, the 
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ith row is uiez = (0, . . . , 0, ai) (since {i} = 4 for some j). Now we subtract 

in A, for each i # i, such that a, # 0, ai times the i,th row from the ith 
row, and we add pi times the ith column (which is 0) to the i,th column. The 
ensuing matrix A is similar to A, and, taking I, = {i,) for simplicity, one has 
that 

that is, A^ is a generalized Jordan matrix. 

In the proof we have used the elementary trunsformutions of ZLsimilur- 
ity: The matrix A is transformed to a matrix which is ~-similar with A if (a) 
the kth row is multiplied by c # 0 and simultaneously the kth column is 
divided by c, or (b) a multiple of the kth row is subtracted from the Zth row, 
1 < k, and then the same multiple of the Zth column is added to the kth 
column. 

The other relevant element in the proof of Theorem 1.5 is the concept of 
restriction to matrices of lower order: Assume that A E %,,, and let M, = 

spade,, . . . , ek}) denote the subspace of @” spanned by the initial k unit 
vectors; since M, is A-invariant, one can consider AIM, as an element of YLk!k; 
if A N B, then AIM, N BIM,, 
(CS)r,, then Al M is similar to 

and if A has a reduction A _ (C,)rl @ **- @ 

AJM N (Q,nti ,..., k1 @ *** @ (Qr,nc1,..., k)? 

where cj = CJIspan((e,li~#zln(l,....k)D. The validity of this claim is easily seen, 

writing the standard partitioning of the matrices A, B = V-lAV, V E .F42(: 

A=(; ii), B=(“d ;;), V=(; ;), 
which implies Vi B, = AiV,; observe that the compressions A,, B, of A, B 

to the subspace span({e k + i, . . . , e,}) are also similar. In general, this conclu- 
sion is not correct for the compressions to subspaces of the type M = 
span({ei Ij E J}) where the index set J is neither (1, ._. . , k) nor {k + 1, . . . , n). 
With respect to the decomposition (1, . . . , n} = J U ((1, . . . , nl\J) one has 
for A, B = V-lAV, V E .EY,, the generalized partitioning 
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which yields, e.g., 1 i A V + A’V” = V B + V’B”. and XV” # V’B” can 
easily occur: Consider the examile 

11 rr) r r r r 

where A, = is not similar to B, = 

However, ‘if V 2 (V,) @I (V,) or both A‘= (A,) $ (A,) and B = (B,) 
@ (B,) (see Lemma 2.2 below) then one has A,V, = Vi Bi, i = 1,2, and the 
compressions of A, B to span({ej jj E ]I>, span({ej Ij e Jl), respectively, are 
similar. 

In Section 2 we shall use restrictions and compres_sions of various orders. 
In Section 3 we have the following setting: Given A E Y$‘_1, describe the 

so-called direct extensions A E FY”” of A, i.e., those A E %: such that 
AIY,+ = A. 

2. THE UNIQUENESS OF THE REDUCTION TO SUMS OF 
IRREDUCIBLE MATRICES 

In Section 1 we have seen that the spectral reduction of A E %‘,, is 
essentially unique. Here we shall prove that a reduction of A to a generalized 
sum of irreducible matrices is unique in the same sense: All such reductions 
are based on the same decomposition of the index set {l, . . . , n), and the 
irreducible matrices belonging to the same component are %-similar. This 
shows that the irreducible matrices are the elementary building blocks for the 
%-equivalence classes. 

THEOREM 2.1. Let A = (A,),1 83 .-+ $ (A,)Z,, B = (B~)~~ CB --+ CII 
(&)I, E s”, where A, E %#I, and Bl E %‘+‘+], are nonempty and irreducible. 

Assume that A -” B. Then t = s and Zk f~ 1, f Oimplies Zk =Jl, A, -,, B,. 
Zn particular, if Z1, . . . , Z,, J1, . . . , Jt are ordered so that min Zk < mm Zk + 1, 
minJ~<minJl+,,thens=t, Jk=Zk, A,-B,,k=1,2 ,..., S. 

In the proof of this result we need two lemmas: 

LEMMA 2.2. Let A = (AIjI1 8 (A.& B = (B,)I1 8 (B&, E gn, I, b 

I2 = (1, . . . , n). Then A - B if and only f A, - B, and A, u B,. 
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Proof. The sufficiency of the co$ition is clear; assume that VA = BV 
for V E 5Yzn. The decomposition I, U I, yields the generalized partitioning 

and VA = BV implies V, A, + V,! 0 = B,V, + OVF, Vz 0 + V, A, = OV,! + 
B,V,. Clearly, V,, V, are invertible, so Ai N B,, i = 1,2. n 

LEMMA 2.3. 
SiCh- 

Let I, 6 I, = { 1,. . . , n - 1) and Aj E Z,,I,, j = 1,2. Con- 

A = ( A,h1 ’ ( AdI2 ( cab, @ (‘)‘P 
0 1 0 ’ 

(Al),, @ (Ad& (“)z, ’ cbh, 
0 0 

Then A _ B implies A _ ( A,),1 @ ( A,),z @ ((O))~,). 

Proof. Let . V f SW,,, VA = BV. Decomposing V according to 

(1, *. * > n} = I, U I, U(n), one has 

where v # 0, Vj E 5?%~1,. From VA = BV one has Vi A, = A,V, and V,a = 

A,v,. Define U E .YS?$ iy 

jy = (1) @ (0 ( (-VVl) @ (0) 
0 1 i 

> 

i.e. U-l = ( (1) Q (I) (VVl) @ (0) 
0 I 1 - 

Then U-lAU= (A,) Q (A,) 63 ((O)),~S u - AlV;'v, = 0. n 
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Lemma 2.3 is a special case of more general results on the direct 
extensions of reduced matrices (A,) @ (A,) which we shall meet in the next 
section. 

Proof of Theorem 2.1. According to Proposition 1.2 it is sufficient to 
prove the theorem under the extra assumption that A, B E i!YJ. We apply 
induction on the order n of the matrices A, B. For n = 1 we have A = B = 
(0) and the result is trivially true; next, we assume that n 2 2 and that the 
desired result has been obtained for the orders 1,2,. . . , n - 1. Let min Zk < 
min Zk+i, min J, < min Jl+i, and let n E Z,, n E J,. Set M = spa&e,, 
. . ..e._& A’ = AI 

one has 
M, B’ = BIM E %:-I. Writing Z: = Z, \{n), 1; = JY\{n), 

where A: and BS are respectively the restrictions of A, and B, to the initial 

#I, - 1 and #], - 1 coordinates. Using appropriate similarities, based on 
matrices of the type 
replace A’, B’ by 

(I) 0 (U’),~, and (I) 6~ (U,>Z;, respectively, one can 

A” = [(I) 8 (Y?)]A’[(Z) 8 (v,)], 

B” = [(I) @ &?)]B’[(Z) @ (&)I> 

where 

with s’ = 0 (t’ = 0) if A: (Bb) is empty. If Z, U J, # (1,. . . , n}, then our 
induction hypothesis implies that Z, = Jlo, A, - B, for some u # x, w z y, 
and according to Lemma 2.2 the desired result then follows through applica- 
tion of the induction hypothesis to @r ~ u (AI),, - elz w ( Bl),[. So we can 

assume that Jy U Z, = (1, . . . . n). Let r Q y for definiteness. Then z = 1, 

i.e. n E I,, and there exist 1 <jr < *mm <j,,_, < t’, 1 Q i, < a.. < i,,_i < 
s’ such that Zk+ 1 = Jyjk, Jk = Zxi,, k < y, and Jk+ 1 = I+, k > y, whereas 

the sets {Z,l IZ Z ii,. . . , itl_il and {JyI 12 #j,, . . .rjst_l} coincide, with Ak+l 
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N Byjk, k = 1,2,. . . , s - 1, B, - Axi,, k < y, Bk+l - Axi,, k a y, and B,, 
- A,, if I,,, = 

A” 
],I. This follows from the induction hypothesis, applied to 

- B”. Using a similarity based on a matrix V’ E F%“_ 1 of the form 

one has A” = V’-lB”V’. Define V = V’ @ (1) E .Y’%!~. Replacing A, B by 

A = [(I) @ (V) @ WI AK0 a3 (4) @ ml T 

B’ = [(I) @ (G1) @ (l)]B[(Z) @ (v,) @ @>I 

(which means replacing A, by A^, - A, and B, by 2, - B, in A and B, 
respectively), and defining 

t-1 

Kl = U ‘xi,, K,= (JZl. K, = L\(b) ” Kl)Y 
1=1 1=2 

one has 

Since V = (qljK, @ (qSjK, CB (VJ,, @ ((l))(,,, the structure of A, g, and V 
allows us to consider the compressions to spaces span({ei 1 i E K, U K, U 
{n)}), p # q E {1,2,31. In particular 

2 = (A1)f~~ @ (&)t~, (ads, Q (a3)K, 
I 

i 
0 i 0 ’ 
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and the compressions of A and V-‘gV to the subspace span((ei ( i G Jy n 
ZJ U {en)> = span({ei I i E K, U K, U {n})) yields 

A^ = (&)K, @ (QK, bl)K, a3 (O>K, 
i 0 0 1 

N ( 4)Kl @ (QK, (%l cl3 (bhb 
i 0 1 0 * 

According to Lemma 2.3 there exist 

(z)K, @ (z)K, b>K1 @ (o)K, Egg 

0 1 
#K,+#K,+l 

such that fi-‘kfi = (A,>,, @ (A,),, @ ((0))I,,; defining u = (6)K1” K, “{,,) 

cB(Z),~ and setting v’ = (I) Q (I), u0 = (u> CB CO), one has 

and 

I (6) (0) (+I) 
u = (0) (1) (0) 

0 1 

u-“&J 

= (61) @(I) ( ([( 4) @( &)lc) @(A) ([( 4) @(~z)l~O+bl) @CO)) @(a31 

0 0 1 
= (tF’[(A;) @ (&)]ti) 8 (&) (+‘([(&) @(4)]uo+(al) @CO>>) @(ad ( 0 0 i 
= (h)@(&)@(A) (O)@(O)@W ( 0 1, 

as [(A,) @ (A,)lG = CKA,) @ (A,)l, fi-‘{I(A,) @ (A211u, + (a,) @ (0)) 
= (0) CD (0). Using the special structure of V and U-l, one can consider the 

compression of A and CTIAU to span({e, 1 i E K, u K, U {n}}) and thus 



UPPER TRIANGULAR SIMILARITY 133 

obtain 

A (A,) * (As) (4 @ (as) (A,) @ (As) (0) @ (4 
x 

0 0 0 

Since A, is irreducible, this implies Al = 0. The same type of argument 
shows 

implying Aa = 0. Hence s = t = 1 = x = y, and A N B is irreducible. n 

3. EXTENSION THEORY 

Let A E ‘@ be a nilpotent upper triangular matrix. The matrix A E %i+ 1 

will be called a direct extension of A if Alspan(b l., , enI) = A. If 

is the final column of A, then a determines A as a direct extension of A, and 
we shall call A the a-extension of A. If A is similar to V’AV = B, 
V E g%,,, then the a-extension of A is similar to the V-la-extension of B. 
Conversely, if a direct extension A of A is similar to C E %J+ r, then A is 
similar to the restriction C lspanue l,. . , en~p 

In this section we shall outline a construction process for the (equivalence 
classes of) irreducible elements in %:+ i as extensions of representatives of 
the equivalence classes in gn. ’ If the a-extension of A E ?Lno is reducible, 
then there can be two reasons for this: 

_ 
(1) A N A 8 (01, i.e., there is a reduction along the decomposition 

(I,. . *, n, n + 1) = (1, . . . , n} U {n + l}, 

(2). A and A $ (0) are not similar, but A has a reduction along (1, . . . , n} 
= I, U I,, then A has a reduction along (I, U {n + 1)) 6 I,. 

If A is irreducible, then only the first possibility exists, and we shall deal with 
that situation first. 

PROPOSITION 3.1. Let A E %,“, a, b E C”. 

(i) The a-extension and the b-extension of A are similar ij- and only if 
there exist V E .F%,,, v # 0, such that VA = AV and Va - vb E Im A. 
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(ii) The a-extension of A i.s similar to A @ (0) if and only ij- a E Im A. 

Proof. (i): 

ifandonlyifV~~~~,v#O,andVA=AV,Va=Av+vb. 
(ii): Apply (i) with b = 0, and use V-IA = AV- ‘. 

COROLLARY 3.2. Let A E Zjf be irreducible and a E C”. Then the 
a-extension of A is irreducible if and only if a 6 Im A. 

Observe that the a-extension and the b-extension of A are always similar 
if b - a E Im A. For irreducible A E %i it follows from Proposition 1.3 
that the requirement VA = AV with V E g%n implies 

V = ul + N, N E ‘ZY;, NA = AN, (3.la) 

and the other requirement in Proposition 3.1(i) reads 

ua - vb + Na E Im A. (3.lb) 

EXAMPLE 3.3. 

(i) Let J,, E %z denote the nilpotent Jordan block. If b = (bJin_ I E C”, 
then the b-extension of J,, is irreducible if and only if b, z 0. If b, z 0, then 
Ze, - bi’b E Im J,, and up to similarity I,,+ i, the en-extension of I,, is the 
only irreducible extension of Jn. 

(ii) Consider the irreducible matrix 13, 1 E gdo introduced in Section I. 
One has Im Js, 1 = span({e,, es + es)), and modulo Im Js,i a vector a e 
Im Js, i is of the form a = xes + ye,, (x, y) # (0,O). In order to apply (3.1) 
we consider N = (n,)f .=1 E FYj such that N]s,i = Js,i N. This implies 

%3 = 0, nz4 = n12 + n13. ‘1: ut n34 is arbitrary. Observe that Im NI,,,,u,,,.,,.,,, 
E spa&e,)) C Im J3, i. Hence 

( 1 -I-XeeT a-e,=0 
Y Y234 i 

if y#O, 

and the a-extension and the e,-extension of J3, i are similar. We shall denote 
the e,-extension of J3, i by B,. If y = 0, then x # 0 and (l/x>Za - e3 = 0. 
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Thus, for y = 0, the a-extension of Js3, I is similar to the e,-extension, which 
we shall denote by B2: 

B, = 

0 1 0 0 0 
0 0 1 0 

0 1 0 
0 1 

0 

B, = 

10 1 0 0 0 

0 0 1 0 
0 1 1 

0 0 
\ 0 

Since B, has the partial multiplicities 4,1 and B, has the partial multiplici- 
ties 3,2, the matrices B, and B, are clearly nonsimilar. 

(iii) Next we consider the extensions of B, and B,. 

(a) For B, the stuation is analogous to that for 13,i: One has Im B, = 

spde,,e, + e3, e,}), so a e Im B, is a = xe3 + yes modulo Im B,; the 
same type of argument as in (ii) leads to the conclusion that up to similarity 
the es-extension B, 1 and the e,-extension B, 2 are the only possible 
irreducible extensions of B,; these matrices are 

B 1,l = 

010000 

0 0 1 0 0 
0 1 0 0 

0 1 0 

0 1 
0 

> B 1,2 = 

‘0 1 0 0 0 0 
0 0 1 0 0 

0 1 0 1 

0 10’ 

0 0 
01 

Since B,, 1 has the partial multiplicities 5,1 and B,,, has the partial multi- 

plicites 4,2, the matrices B,, 1 and B,,, are nonsimilar. 
(b) It turns out that B, has infinitely many nonsimilar irreducible direct 
extensions: Im B, = span({e,, e2, e,)) has codimension 2, and the equation 
NB, = B,N, N E ‘22: implies Im N 2 Im B,. Thus, the a-extension and the 
b-extension of B, are not similar if a, b are linearly independent modulo 
Im B,. Writing a = xeq + ye, CC Im B,, and choosing x = 1 if x # 0, 
y = 1 if r = 0, one obtains the irreducible extensions 

0 1 0 0 0 o\ 

0 0 1 0 0 

B 0 1 1 0 2.2 = 
0 0 1’ 

2 E a=, 

0 2 
0) 
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B 2,m = 

where B, 1. , has the partial multiplicities 4,2 for each z E @, and B,,, has 

the partial multiplicities 3,3. It is not difficult to see that these matrices are 
g-equivalent to the transposes X,’ of the matrices X, found by Djokovid and 
Malzan [S]; here B,, z corresponds to X, with (Y = -z/(1 + z), B2, o(I to 
X-i. n 

COROLLARY 3.4. For n > 6 there are infinitely many mutually non-%!- 
similar P-irreducible matrices in YXnQ. 

Indeed, since codim Im A > 1 for A nilpotent, each irreducible A E ‘Z(z 

has at least one irreducible extension, and if A and B are not %-similar, then 
no direct extension of A can be %similar to a direct extension of B. 

For n < 5 there are only finitely many irreducible equivalence classes in 
%t: for n = 4 these are represented by I4 and Js, i, whereas besides Is, B,, 
and B, there are two further irreducible classes in 2!: which have reducible 
restrictions to span((e,, e2, es, e,}); these will be constructed below. 

Next, we consider the extensions of a matrix A E %$’ which as a 
reduction A N (A,) @ (A,). Decomposing the vectors a, b E @” in the 
same way as a = (a,) o (a,), b = (b,) CB (b2>, we describe the relations 
which must exist if the a-extension and the b-extension of A are similar. A 
first result in this direction was Lemma 2.3. 

PROPOSITION 3.5. Ld I, 6 I2 = (1, . . . , n} and Aj E %iI , a. b E @#‘I, 

j = 1,2. Then the (a,jIl @ (a2),2-extension ofand the (bl>r, @ \b2$12-dcten.sion 
A = ( A,),I @ ( A2)I, are ‘&similar if and only if there exist Vj E .9%(Atlj, 

vj E d=#‘j, j = 1,2, 27 # 0, V~(v:,>~~,,,“fg,, Vz = (v” >#2 #‘11, viy = 0 for 
P4 P 1-q 

i, > j,,, and v;q = 0 forj, > i, (where I, = {iI,. . . , i,,), I, = Ij,, . . . , j,,), 

G < i,+lTjy <j,+,) such that 

(i) V, A, = A,V,, V, A, = A,V,, V,A, = A,V:, VL’A, = A,V:‘, 
(ii) V,a, + Via, = Alv, + vb,, Vza, + V,a, = A,v, + vb,. 

Proof. It suffices to write out the equations implied by the fact that 

VE=%+1 intertwines the (a,) CB (a&extension and the (b,) @ (b,)- 
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extension of (A,) 8 (A,): 

1 
(vd 
(v2) 

V 

137 

I n 

The equations presented in Proposition 3.5 are quite often solvable if 
concrete additional information allows to simplify them, e.g. if 

(1) for given A,, A,, I,, I, the relations (i) reduce the possible choices of 
V,, V, , V,.‘, V:, making the description of the solutions of (ii) possible, or 

(2) a given irreducible extension is known and one can find conditions for 
another irreducible extension to be similar to it. 

In order to decide on the reducibility of the (a,) 8 (a,)-extension of (A,) CB 
(A,) along the decomposition (1, . . . , n + 1) = (Zr U {n + 1)) U I, [II 

b(Z, U {n + l})], one sets b, = 0 [b, = 01, 5 = I, v = 1, and treats b, [b,] 
as an additional unknown: 

PROPOSITION 3.6. Let I,, I,, A,, A,, a,, as be as in Proposition 3.5. 

(i) The (a,),, CB (a,)rz-extension of (A,),I 8 (A,),p is reducible along the 

decomposition (I, U {n + 1)) 6 I, if and only if there exist V:, vz E d=#Iz 
such that 

(a) vi9 

G-4 a2 

= 0 for j, > i,, V,!‘A, = A,V:‘, 
= A,v, - Vi’s,. 

(ii) The (al),l fe (a2),p-ertension of (A,),1 @ (A2)l, is reducible along the 
&composition I, U(Z, U {n + 1)) if and on!y if there exist Vi, v1 E a=#‘~ 
such that 

“:y = 0 for i, > jy, V:A, = A,Vi, 

a, = A,v, - Vr’az. 

The proof can be found in [9, Proposition 3.61. 
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EXAMPLE 3.7. 

(i) Zrreducible extensions of (Jz> CB (Jz). Here 

A,=A,=],= 

and I, = {il, i21, 1, = (j,, j,) are to be specified. For the (a,> @ (a,>- 

extension of (Ja) @ (Js) t o b e irreducible, the requirement is (a,) 8 (a,> E 
Im (1s) CB (Js), and up to %-similarity one may assume 

0 
a1 = a2 = 1 * ( 1 

If I, = {1,2}, I2 = {3,4}, then VF = 0, but Vr’ can be any matrix commuting 
with J2; taking V: = -I, v1 = 0 solves (b’). So the e2 @ e,-extension of 
J2 f~ J2 is reducible along {1,2) U {3,4,5}; in fact, it is similar to J2 8 Js. If 
I, = {1,3}, I, = {2,4), then 

vrj = x y ( 1 0 x 

commutes with J2; taking x = - 1, y = 0 solves (b’), and the es + e4- 
extension of (J2)ti, a) 8 <J2)t2, 4) is %-similar to Q2)t1,s) @ (J3)t2,2,4,51. If, how- 
ever, I, = {1,4}, I, = {2,3), then 

v:=(; T), v:=(; ;); 

requiring J2V$” ) = V$’ )J2 implies that both V,!‘, Vi are multiples of J2, and 
the equations (b), (b’) are unsolvable. Hence 

0 1 o\ 
0 1 0 

c 3.2 
= 0 1 , with partial multiplicities 3,2, 

0 1 
\ 01 

is a representative of the unique class of irreducible direct extensions of a 
matrix with partial multiplicities 2,2. 
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(ii) Zrreducible extensions of (]3)11 o (Jzjr,, I, 6 I, = (1,. . . ,5]. As in 

(i), one only has to consider the (es) 8 (e,)-extension of (Js) ~3 (Ja). The 
same type of argument as in (i) leads to the conclusion that out of the ten 
possible choices for I, only five lead to irreducible extensions: I, = 
{l, 2], {1,3}, {1,4}, {2,3}, {2,4}. Thus we have five mutually nonsimilar 6 X 6 
matrices with the partial multiplicities 4,2 which are extensions of a reducible 
matrix (Js) ~3 (Ja); th e y are listed in [9, Example 3.7(n)]. Since these matrices 
are direct extensions of reducible matrices, none of them is %-similar to the 
matrices B, a or B, 1. from Example 3.3(iii), as those are extensions of the 
irreducible matrices ‘B,, B,. 

{k}. 
(iii) Irreducible extensions of (]2)1, o ((0)jI,), 1 Q k < 3, I, = (1,2,3)\ 

Take a G Im A; one may assume a = (e,) @ ((1)). The relevant equa- 
tion for the reducibility of the a-extension is (1) = (0)~~ - VFe,, V,!’ = 
(ei u,) such that OV,!’ = (O,O> = V:‘Jz = (0 vi), i.e., ei = 0. For k = 1,2 

one can choose ua + 0, and the given extension is reducible, unless k = 3. 
For k = 3 one has V;’ = (0 0) and the e2 CB (l)-extension of Jz @ (0) that 
is, 

13.1 = 

is irreducible. 

I 0 0 1 0 0 0 1 1 

The above examples suggest several special cases where the analysis of the 
extension problem is relatively simple. These will be considered in the next 
section. We conclude this section with a few remarks concerning the exten- 
sions of matrices A = (A,)rl @ *a* o (AkjIk where k > 3; the proofs of the 

first two results can be found in [9]. 

PROPOSITION 3.8. Let A E %J be given by A = (A,)rl @ (A,),% 

@ .** CB (Ak)Ik, each Zj # 0, and let a = (aljI, CD hJI, CD --* CB (akjlk, aj E 

@#‘j. In order for the a-extension of A to be irreducible it is necessary that 
for each nonewzpty subset S E (1, . . . , k} the 
CEj E s ( Ajjlj be irreducible. 

ej E s (a,),-extension of 

The validity of this proposition is immediately clear, taking b = (O),; d 
(b’),,, Z; u Zi = lJj E s Zj in the next lemma. 
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LEMMA 3.9. Let A, a, and S be as in Proposition 3.8. Zf the ej E s (aj)rj 
extension and the b-extension of ej E s (Ajjlj are %-similar, then the a-ex- 

tension of A is %-similar to the ( ej e s (a&,) 8 (b)-extension of A. 

The above proposition is useful in the search for irreducible extensions in 
several ways: Evdiently, one must require ai CL Im Ai for the matrix A and 
the vector a as in the proposition; further, only certain orderings of the index 
sets are possible to allow irreducible extension: (Jz>r, @ (J2)r2 could only 
occur for i,, < izl < i,, < i,,, where Zj = {ijl, ij2}. Finally, the presence 

of certain combinations of components Ai sometimes simply contradicts the 
existence of an irreducible extension. Having formulated all necessary condi- 
tions implicated by Proposition 3.8 the research can then be finalized by 
means of Proposition 3.6, using the following lemma: 

LEMMA 3.10. Let A @,!= 1 ( Aj)Ij, k > 2, Aj irreducible, and a E Im A. 

If the a-extension of A is reducible, then it has a reduction along the 
decomposition ZjO 6 (( lJj + j, Zj> U (n + 1)) for somjO. 

Proof. Let (A;)xl @ .** A CD (Al)xl be a complete reduction of the a-ex- 

tension of A. For definiteness, let n + 1 E K,. Then m = #K, > 2. Evi- 
dently, A is similar to 

Since A;, . . . , &_ 1 tre irreducible, there must exist 1 < jl, . . . , j,_ 1 < k 
such that K, = ZjX, A, = Ajz, x = 1,2,. . . ,I - 1. As 1 - 1 > 1, this com- 
pletes the proof. n 

EXAMPLE 3.11. 

(i) Extensions of matrices containing ((0)) @ ((0)). If A = @$ 1 ( AjjI, 

and Aj = (0) for at least two different indices, then A has no irreducible 
direct extensions: For n > 2 the zero matrix 0 E 9: has no irreducible 
extensions, as can be verified by a direct calculation (see [9]>. 

(ii) Extensions of (J2) @ (Jz> @ ((0)). Because of Example 3.7(i) we 
must consider A = (J2)fi,,i,J 63 <J,&,, isj @ ((O))t,)with i, < i, < i, < i,, and 

a = (ey_)ti,,i,) @ <e&, ig) @ ((l))(kJ. Let 1, = {il, i,, i,, i4), 1, = {AI. An ar- 

gument as in Example 3.7 shows that one must have k = 5, so I, = {1,4}, 
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I, = {2,3}, and 

141 

I 0 1 0 1 0 0 I 

13,2,1 = j ’ o o ;I, 

with partial multiplicities 3,2, I is up to similarity the only possible irre- 
ducible extension of a matrix (J2> 8 (]a) 8 ((0)). That ]3,2, i is indeed 
irreducible is shown in [9, Example X11($]. 

(iii) Extensions of (J2) 8 (J2) 8 (J2). Here, evidently, the only option 
is the matrix 

c 3,2,2 = 

0 1 0 
0 1 0 

0 1 0 

0 1 

0 1 

0 1 
0 

with the partial multiplicities 3,2,2 which is the es + es +- e,-extension of 

(12){1,6) ’ (./2),2,5) ’ (12)(3,4)- That ‘3.2.2 is indeed irreducible is shown in 
[9, Example 3.1 l(iii)]. 

In the next section we shall describe extensions of matrices of the type 
(A,) @ ((0)). 

4. EXTENSIONS OF SPECIAL TYPES 

In this section we consider situations where conditions with respect to the 
solvability of the equations on Proposition 3.6 are simple. For example, if 
A = A, @ A, is a (nongeneralized) direct sum, and a2 e Im A,, then the 
ai @ a,-extension of A has no reduction along the decomposition (Zi U {n 

+ 1)) 6 I,, as VF = 0 if max I, = min I2 - 1; Vr’, on the other hand, is 
potentially a “full” matrix, and the intertwining relation V,.‘A, = AiV,! should 
be used for analyzing the solvability of the equation al = Aiv, - V:a,. 



142 PHILIP THIJSSE 

Another interesting situation occurs where A = (A,) @ (0). Choosing 
a2 = (11, one has to consider the solvability of 1 = 0 - V,!‘al, V,!’ a row 
vector with V,!‘A, = OT, and a, = Aiv, - V,!, Vi a column vector with 
A,Vi = 0. This leads to the next proposition, for which a proof can be found 
in [9, Proposition 4.11. 

PROPOSITION 4.1. Let A = (A,jII CB ((O)& where 1 < k < n, I, = 

0, * * *, n}\(k), and A, E ZJ_l, and let a, b E C”-l. 

(i) The (a),l 8 ((l))Ikj-extension of A is not reducible along the decomposi- 

tion (II U {n + 1)) Ij{k} ifund only if a E spa&e,, . . . , ek._r}) + Im A,. 
(ii) The (ajIl @ ((l))Ckl-extension of A is not reducible along the decompo- 

sition I, 6 {k, n + 1) if and only if a 65 Im A, + (Ker A, n span({e,, . . . , 

ek_ ,I>). 
(iii) The (a),, 8 ((l)){k)- and (b)l, @ ((l))(k)-&ensions of A are ‘%-similar 

if and only if the vectors Va, b are linearly dependent module Im A, + 
(Ker A, rl span({e,, . . . , ek_ ,}>> for some V E .l?%~_1 commuting with A,. 

We shall call the type of extension considered in Proposition 4.1 an 
a-(0)k-etiension of A,. If k = n, then the condition under (i) is automatically 
satisfied; we call the extension the a-O-extension of A, in that case. If A, is 
irreducible, then Proposition 4.1 contains necessary and sufficient conditions 
for the irreducibility of the a-(0)k-etiensions of A,. 

COROLLARY 4.2. Let A, E %i_ 1 be a irreducibze and a, b E @“- ‘. 

(i) The a-(o)k-extension of A, is irreducible if and only if 

a E [Im Al + Spm({q,. . .) ekwl))]\ 

[Im A, + (KerAr n span({el,...,ek_r}))]; 

the a-(o)k&e&on and the b-(0)k-extension of A, are %-similar if and only if 
there exists some V E E?& 1 which commutes with A, such that Va and b 
are ZineurZy dependent module Im A, + Ker A, n lin({e,, . . . , ek_ ,)I. 

(ii) The a-O-extension of A, is irreducible if and only zy a t?G Im A, + 
Ker A,, and it is %-similar to the b-O-extension of A, if and only if there 
exists some V E .FZ!_ r which commutes with A, such that Va, b are 
linearly dependent nwduZo Im A, + Ker A,. 
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EXAMPLE 4.3. 

6) Let A, = Jn_l, n > 3; then span({e,, . . . , ek_l)) C Im A, = 
spade,, . . . . e,_,}) for k < n - 1; thus for k < n - 1 an a-(0)k-extension is 
always reducible. For k = n it is not difficult to see that the e,_ i-o-extension 
of Jn_ i, which is the e, _ 1 + en-extension of J,, _ i CB (O), is irreducible and 
that up to %(-similarity it is the only a-(0)k-extension of In_ i which is 
irreducible; we shall denote it by J”, i E %j+ i, as it has the partial multiplici- 
ties n, 1. The matrix ]a, i is the simplest example (with n - 1 = 21, as n = 2 
would lead to extensions of (0) GB (O), which has no irreducible extensions. 

(ii) Next, consider the possible a-(0)k-extensions for Jn, i. Observing that 

ImJ,,, = span({e,,...,e,_z,e,_, + e,))G @"+l, 

KerJ,,, = span({e,,e,)) C @"+l, 

and using that 

for k Q n - 1 and k = n + 1; hence only k = n and k = n + 2 can lead to 
irreducible (O&extensions; it turns out that the e,-CO)-extension of Jn, i [which 
is the e,,, + en-extension of (]n,1)~1,...,n_l,n+l,n+2) 63 ((WC,,1 is he- 

ducible, and up to %-similarity it is the unique irreducible a-CO),-extension of 

.l + it has the partial multiplicities n, 2,1. For k = n + 2 the e, + ,-O-exten- n. l> 

sion of Jn, i is up to %-similarity the unique irreducible a-O-extensions of I,,, 1; 
it has the partial multiplicities n + 1, 1,l. For n = 3 the relevant extensions 
are 

k3), 2). 1 = 

01 0 0 0 
0 010 

0 1 
011 

0 0 
0 

I 4.1.1 = 

010 0 0 
0 01 0 

01 0 
0 1 

01 
0 

Evidently, these matrices are nonsimilar. 
(iii) In Example 3.11(") n we have analysed the possible a-CO)-extensions 

for the reducible matrix A, = (Js) CB (Js). We have seen that the e3 + e,-O- 
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extension of (Jz >ti, 4) @ (J2)t2,s), denoted by ]s,s, r in Example 3.11(ii), is the 
only possible option. 

It follows from Corollary 4.2 that for irreducible A, there is (up to 
%-similarity) just one irreducible a-(0)k-extension if the quotient space 

Tk := [Im A, + span({e,, . . . , e,-,})I/ 

[Im A, + (Ker A, f~ span([e,,...,ek-i})] 

is one-dimensional (see [9, Proposition 4.41). If dim Tk > 2, then one may 
have infinitely many mutually nonsimilar a-(O),-extensions of A,, but also 
only finitely many. The situation is completely analogous to that of direct 
extensions [cf. Example 3.3(Z)]: The structure of those matrices N E Zno_ 1 
which commute with A, determines the situation. 

EXAMPLE 4.4. 

(i) The matrix B, E s?$’ which was constructed in Example 3.3(u) has 
(up to %/-similarity) two irreducible -(O)-extensions; these are represented by 
the e3 + e,-CO),-extension (which has the partial multiplicities 4,2,1) and 
the es + es-o-extension (i.e., the extension with k = 61, which has the partial 
multiplicities 5, 1,l (cf. [9, Example 4.5(i)]). 

(ii) The matrix B, E sZ$ which was also constructed in Example 3.3(u) 
has (up to S?!-similarity) one irreducible -(O&-extension, represented by the 
e4 + es-(O&-extension with the partial multiplicities 4,2,1; -but infinitely 
many mutually non-%-similar irreducible a-O-extensions, represented by the 
e4 + zes + es-O-extensions, z E C, which all have the partial multiplicities 
4,2,1, and the es + es-o-extension, which has the partial multiplicities 3,3,1 
(see [9, Example 4.5(n)]). 

(iii) The matrix C, 2 introduced in Example 3.7(i) has irreducible a-(Ojk- 
extensions for k = 4, ‘5, and 6; these are represented, respectively, by the 
e4 + es-CO),-extension, the e4 + es-(O&-extension, both with the partial mul- 
tiplicities 3,3,1, and the two extensions for k = 6, namely the e4 + es-O- 
extension with the partial multiplicities 3,3,1, and the es + es-o-extension 
with the partial multiplicities 4,2,1. The complete verification of these results 
can be found in [9, Example 4.51; th ere it is also stated that the e,-extension 
(with partial multiplicities 3,3) and the es-extension (with partial multiphci- 
ties 4,2) are the possible direct extensions of C,, 2. 
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It is not difficult to generalize the results concerning the a-O-extensions of 
a matrix A, to extensions of the direct sum A, @ Jk; the proof of this result 
can be found in 19, Proposition 4.61. 

PROPOSITION 4.5. Let A E S-Y: be irreducible, a, b E C”. 

(i) The a CB ek-extension of A d Jk is irreducible if and only if a E Im A 
+ Ker Ak. 

(ii) The a (3 ek- and b 8 ek-extensions of A @ Jk are ?Y-similar if and 
only if Va, b are linearly dependent module Im A + Ker Ak for some 
V E WS& commuting with A. 

EXAMPLE 4.6. The matrices B, @ J2, B, @ /s, C,,, f~ Jz, where 
B,, B,, C,,, are the matrices occurring in Example 4.5, have the irreducible 
extensions 

1 1 0 0 0 0 
0 0 1 0 0 

0 1 0 0 
0 1 0 

0 1 
0 1 0 

0 1 
0 

3 0 0 1 0 
0 1 0 0 

0 0 1 
0 1 

0 

respectively. 

D 1 0 0 0 0 
0 0 1 0 0 

0 1 1 0 
0 0 1 

0 0 
0 1 0 

0 1 
0 

0 

0 
0 
0 
1 

0 1 0 
0 1 

0 

Describing the irreducible extensions (if any exist) of (A)rl d (Jk)r,, 
I, i, I, = (1, . ..) n + k), is more complicated. For the case Jz necessary and 
sufficient conditions, based on Proposition 3.5, are derived in [9]; we present 
the result without proof (Proposition 4.8 in [9]) and a few examples. 
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PROPOSITION 4.7. Let A E %z be irreducible and {k, I} 6 I, = (1, . . . , n 

+2) with k < 1. Denote by Pk the orthogonal projection on lin(Iek, . . . , e,)>. 
Then the (a>,, @ (e,& -&en&on 
only if 

of (A),, CB (J2)Ck,lJ is irreducible if and 

a E Im A + span({e,,...,el_,}) + KerPkA 

and 

a $C Im A + (Ker A2 n Ker Pk A r7 span({e,, . . . ,e~-~})); 

further, the (a& @ (e2)fk,~l- extension and the (b),, @ (e2&+xtension of 

( A)II @ (I&. I) are Ssimilar if and only if Va, b are linearly dependent 
modzrlo Im A + (Ker A2 n Ker Pk A 17 span({e,, . . . , el_,))> for some V E 
82$ which commutes with A. 

EXAMPLE 4.8. 

(i) Let A = 13; then Im A = spa&e,, e,)) = Ker A’. Thus the (es),, @ 
(ez)tk,tj-extension of (JJr, $ (]2)tk,Il is irreducible if and only if C3 = Im A 

+ spade, , . . . , e[_,)) + Ker PkJ3. Observe that P3J3 = P4J3 = 0, so Ker 
Pk]s = C3, k = 3,4, but Ker PkJ3 c span({e,, ea)) E Im A for k = 1,2. 
Further, span((e,, es, er_s)) = C3 for I = 5. Thus the described extensions 
are irreducible for the following. decompositions: {l, 2,s) \j{3,4), {1,2,3) 
U (4,551, {1,2,4) U {3,5), {1,3,4) U {2,5), {2,3,4) U (1,s). The corresponding 
mutually nonsimilar matrices were described in Example 3.7Ciii). 

(ii) Let A = ]3,1. Then Im A = spa&e 1, e2 + e3)), Ker A = 
spadte,, es)) = Ker P, A, Ker A2 = spa&e,, e2, es)) = Ker Pk A, k = 2,3, 
Ker Pk A = C4, k = 4,s. Observe that Im A + Ker Pk A = span({e,, e2, e3}) 
for k d 3, Im A + Ker Pk A = C4 for k = 4,5. Using the same type of 
argument as before, one can conclude that the (e3)r 8 (e2)tk,,)-extension of 

(13, A Q U2)(k, I) is irreducible for k = 1,l < 4 and for k = 2,l = 3, whereas 
the (eJ1 CB (e2jCk,r1-extension of (J3,ij1 63 (J2)tk,1j is irreducible for k = 4, 
1 = 5 and for k arbitrary, 1 = 2. For the remaining five combinations {k, 2) 
such that Z b{k,Z) = 11 , . . . ,6) the matrix (Js, 1>1 0 (J2)tk,11 has no irre- 
ducible extensions. The details can be found in [9, Example 4.9(n)]. 

Observing that span({e,, . . . , el_,}> = Ker Pl_ 1 A’, it is natural to guess 
the following test for the irreducibility of extensions of (A) @ (/,I, where A 
is irreducible: The (a), CB (e3)Ck, ,, ,)-extension of(A), @ (J&, I, m) (with k < 2 
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< m) is irreducible if and only if 

a E Im A + KerPkA2 + KerI’_rA + hn([e1,...,e,_3)), 

a g Im A + (Ker A3 n KerPkA2 n KerPl_,A n lin({e1,...,em-3}). 

In [9] the validity of this criterion is tested for the case where A = I3 itself, 
considering the (e,) @ (e,)-extension of (J3) @ (J3): if the corresponding 
decomposition is (1, . . . , 6) = (a, b, c) u{k, 2, m} (with a < b < c, k < I < 
m), then one can assume a = 1 because of the symmetry. It turns out that 
the (e,) @ (e,)-extension can only be irreducible if I > b or c > m; using 
k > 2, one derives from the above test that one must have m - 2 < 3 or 
KerP’_ J3 c span({e,, e,}), implying 1 < 3; as 1 2 3, m > 4, this means that 
1 = 3 or m < 5; clearly, m < 5 means c = 6 > m, and 1 = 3 means b > 4 
> 1. The test thus leads to the same result. Applying the test with k = 1 leads 
to the condition m = 6 > c or Z > 4 > b, which is the same result with the 
two index sets interchanged. The conclusion is that (J3) 8 (I31 has an 
irreducible extension in five configurations: Fixing a = 1, one can have 
k = 2 and either b = 4, c = 5 or 6 or b = 5, c = 6, whereas k = 2, b = 3, 
c = 6 and k = 3, b = 2, c = 6 are also possible. 

5. CONCLUSIONS 

We have outlined a way of constructing irreducible matrices in Yi+ i as 
extensions of matrices A E Yz. Already for irreducible A there may be 
several, even infinitely many, nonsimilar irreducible extensions. If A is 
reducible, then the number of possibilities also seems to increase with the 
sixes of the irreducible blocks: if **. ((0)) 8 ((0)) *** appears in the reduction 
of A, then no irreducible extension is possible, whereas *** (J2) 8 (1,) *.a 
can appear only in one way. This implies, e.g., that 

a generalized sum of n copies of J2, has an irreducible extension only if the 
associated decomposition is {1,2n} U(2,2n - 1) U **. U{n, n + 1). How- 
ever, both ***<J2> @ (J3)*.* and *.*(I~) @ (13)*.. can appear in five differ- 
ent ways, and a** (J2) @ (Js, 1> .a* allows for no less than ten variants. 



148 PHILIP THIJSSE 

We conclude this report with a listing of all irreducible matrices in %: for 
n Q 6. In the previous sections many of these matrices have been described. 

ng3: Jn. 

n = 4: J4, Ja,r. 

n = 5: (a) Direct extensions of irreducible matrices in gdo: 

Js (of 14); 
R,> B, [of ]3,1; cf. Example 3.3(ii)]. 

(b) Direct extensions of reducible matrices in Z$“: 
J4, r [of J3 @ (0); cf. Example 4.3(i)]; 
C,,, [of (Ja) 8 (J&; cf. Example 3.7(i)]. 

n = 6: (a) Direct extensions of irreducible matrices in 9:: 
]G (of 1,); 
B,, 1 and II,,, [of B,; cf. Example 3.3(iii)]; 
B z,m and B, z’ z E C [of B,; cf. Example 3.3(iii)]; 
the es-extension of J4, i (partial multiplicities 5,l); 
the e,-extension of J4, r (partial multiplicities 4,2); 
the e,-extension and the es-extension of C,,, [cf. Example 
4.4(iii)]. 

(b) Direct extensions of reducible matrices in %$: 
(i) a-(O&extensions of matrices in Ydo: 

I 5, l> the es-o-extension of J4; 
J((s, s, i), the es-(O),-extension of Js, 1 [cf. Example 4.3(ii)l; 

k:. 

the e,-O-extensions of Js, 1 [cf. Example 4.3(n)]; 
[cf. Example 3.11(ii) and Example 4.3(iii)]; 

(ii) Direct extensions of (Jz> @ (Is): The five matrices de- 
scribed in Example 3.7(ii) are the representatives of this 
class. 

’ Of course, many examples from 9, have been presented above. At the 
same time it is clear that a complete analysis of the case n = 7 is much more 
complicated than the case n = 6. 

In a paper by A. Vera-Lopez and J. M. Arriga [ll] one can find a 
complete listing of all conjugacy (i.e., equivalence) classes up to order 5 in the 
case of matrices over a field with pk elements, p a prime number. 
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