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Abstract

We give the upper bound
√

2(d −1)(n+1)/2 for the expected number of critical points of a normal random
polynomial with degree at most d and n variables. Using the large deviation principle for the spectral value
of large random matrices we obtain the bound

K exp

(
−n2 ln 3

4
+ n + 1

2
ln(d − 1)

)

for the expected number of minima of such a polynomial (here K is a positive constant). This proves that
most normal random polynomials of fixed degree have only saddle points. Finally, we give a closed form
expression for the expected number of maxima (resp. minima) of a random univariate polynomial, in terms
of hypergeometric functions.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

We consider a random polynomial f over the reals with n�1 variables and degree d �2. The
problem is to compute, on the average, the number of its critical points (the number of real roots
of the system Df (x) = 0), and the number of its local minima. Since a generic polynomial has
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only nondegenerate stationary points, this last number is also given by the real roots of the system
Df (x) = 0 such that D2f (x) is positive definite. This reduces our problem to the computation
of the number of real roots of a polynomial system under certain constraints.

Generally speaking, let F = (F1, . . . , Fn) be a random system of real polynomial equations
with n variables and degree Fi �di. Let NF (U) denote the number of zeros of the system F(x) = 0
lying in the subset U ⊂ Rn and NF (Rn) = NF . Little is known on the distribution of the random
variable NF (U). A classical result in the case of one polynomial of one variable is given by Kac
[10,11], who gives the asymptotic value

E(NF ) ≈ 2

�
ln d

as d tends to infinity when the coefficients of F are Gaussian centered independent random

variables with variances equal to 1. But, when the variance of the ith coefficient is equal to
(

d
i

)
(Weyl’s distribution), we have (see [5,7])

E(NF ) = √
d.

In 1992, Shub and Smale extended this result to a real polynomial system F where

Fi(x1, . . . , xn) =
∑

�1+···+�n �di

ai,�x
�1
1 · · · x�n

n ,

when the coefficients ai,� are Gaussian centered independent random variables with variances
equal to(

di

�

)
= di !

�1! . . . �n!(di − |�|)! ,

where � = (�1, . . . , �n) ∈ Nn is a multi-integer and |�| = �1 + · · · + �n (see [12] on this
distribution and its properties). Their result is

E(NF ) = √d1 · · · dn

that is the square root of the Bézout number of the system.
A general formula for the expected value of NF (U) when the random functions Fi , 1� i�n,

are stochastly independent and their law is centered and invariant under the isometries of Rn can
be found in Azaïs–Wschebor [3]. This includes the Shub–Smale formula as a special case.

This result has also been extended by Rojas [15] to multi-homogeneous polynomial systems,
and then partially by Malajovich and Rojas [13] to sparse polynomial systems.

Wschebor in [18] studies the moments of NF and Armentano–Wschebor [2] consider random
systems of equations of the type Pi(x)+Xi(x), 1� i�n, x ∈ Rn, where the Pis are non-random
polynomials (the signal) and the Xis are independent Gaussian random variables (the noise).

Notice a major difference between these studies and the case considered here: the n equations
of the system Df (x) = 0 are not independent!

Through this paper we denote by P = Pd,n the space of degree at most d, n-variate polynomials
with real coefficients. This space is endowed with the inner product:

〈f, g〉P =
∑

|�|�d

(
d

�

)−1

f�g�
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with

f (x) =
∑

|�|�d

f�x
�1
1 · · · x�n

n =
∑

|�|�d

f�x
�.

We make P a probability space in considering the probability measure

1
√

2�
dim P e−‖f ‖2

P/2 dP = 1
√

2�
dim P e−‖f ‖2

P/2
∧

|�|�d

(
d

�

)−1/2

df�,

i.e. a random polynomial has here Gaussian centered independent random coefficients with vari-

ances equal to
(

d
�

)
.

Let Sn be the space of n×n real symmetric matrices, endowed with the Frobenius inner product
〈R, S〉 = Trace(RT S) and its induced norm

‖S‖2 =
∑

1� i,j �n

S2
ij .

For a matrix S ∈ Sn we write “S > 0” when S is positive definite and we denote the cone of such
matrices by S++

n .
The Gaussian Orthogonal Ensemble is the space Sn together with the probability measure

e−‖S‖2/2

(2�)n(n+1)/4
dS = e−‖S‖2/2

2n/2�n(n+1)/4

∧
1� i � j �n

dSij .

Thus, the entries of a matrix in Sn are independent Gaussian random variables with mean 0 and
variance 1 for a diagonal entry, and mean 0 and variance 1

2 for a non-diagonal entry.
Our first main result is the following:

Theorem 1. Let Cd,n denote the expected number of critical points of a random polynomial of
degree at most d in n variables, and Ed,n the expected number of minima. Let Pn be the probability
that a matrix in the Gaussian Orthogonal Ensemble is positive definite. Then, for every n�2,

C2,n = 1 and E2,n = Pn,

and for d �3

Cd,n �
√

2(d − 1)(n+1)/2 and Ed,n �
√

2(d − 1)(n+1)/2Pn.

When n = 1 one has

Cd,1 = 2Ed,1 = 2
√

d − 1

�

∫ ∞

0

√
d(d − 1)r4 + 2dr2 + 2

(dr2 + 1)(r2 + 1)
dr �1 + √

d − 2.

Moreover, when d → ∞,

Cd,1

1 + √
d − 2

→ 1.
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Let Pn be the probability that a matrix in the Gaussian Orthogonal Ensemble GOE(n) is
positive definite:

Pn =
∫

Sn
++

e−‖S‖2/2

2n/2�n(n+1)/4

∧
1� i � j �n

dSij .

Via the change of variable S = Q�QT with Q ∈ On and � = diag(�1 � · · · ��n �0) one has

Pn = VolOn

2n

∫
Rn

>

∏
i<j

(�i − �j )
e−‖�‖2/2

(2�)n(n+1)/4
d�,

where � ∈ Rn
> if and only if �1 > · · · > �n > 0 and

VolOn = 2n(n+3)/4�(1/2)n(n+1)/2∏n
j=1 �((n − j + 1)/2)

(see [14] for the description of Pn as an integral over Rn and [8] for the volume of the orthogonal
group). The following values are easy to obtain:

P1 = 1

2
, P2 = 2 − √

2

4
, P3 = � − 2

√
2

4�
.

P3 was computed by Carlos Beltrán.
Using the large deviation principle for the spectral value of large random matrices Dean and

Majumdar give in [6] the asymptotic value of Pn for large values of n (see also [9] on that subject)

Pn ∼ exp

(
−n2 ln 3

4

)
.

Thus, there exists a positive constant C such that, for every n�1,

Pn �C exp

(
−n2 ln 3

4

)
.

This gives our second main theorem:

Theorem 2. There exists a positive constant K such that for every n and d the number of minima
of a random polynomial satisfies

Ed,n �K exp

(
−n2 ln 3

4
+ n + 1

2
ln(d − 1)

)
.

Remark 1. This is a quite surprising result: it shows that most of random polynomials of reason-
able degree have only saddle points. Thus, in general, the solution of a polynomial programming
problem will be found on the boundary of the feasible set and not in its interior.
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2. The space of n-variate polynomials

The inner product space P, 〈·, ·〉P has several interesting properties resumed in the following:

Lemma 1. 1. It admits the reproducing kernel K(z, x) = (1 + 〈z, x〉)d :

f (x) = 〈K(., x), f 〉P (1)

for any x ∈ Rn and f ∈ P .
2. It has a representation formula for the derivatives: for any integer k�1 and x, u1, . . . , uk ∈

Rn we have

Dkf (x)(u1, . . . , uk) = 〈Kk(., x, u1, . . . , uk), f 〉P (2)

with

Kk(z, x, u1, . . . , uk) = Dk
xK(z, x)(u1, . . . , uk)

= d · · · (d − k + 1)〈z, u1〉 · · · 〈z, uk〉 (1 + 〈z, x〉)d−k . (3)

3. This scalar product is orthogonally invariant:

〈f ◦ U, g ◦ U〉P = 〈f, g〉P (4)

for any f, g ∈ P and the orthogonal transformation U ∈ On.

Proof. The first two formulas are well known and easily obtained via a direct computation. For
the orthogonal invariance see [4, Section 12.1], or [12]. �

A second interest of Weyl’s distribution for polynomials is due to the following identity: let
f (x) = xT Sx (here S is a symmetric n×n matrix) be a homogeneous degree 2 polynomial, then
‖f ‖P = ‖S‖. This is the reason why

Proposition 1. C2,n = 1 and E2,n = Pn.

Proof. Since a generic degree 2 polynomial has only one critical point we have C2,n = 1. Given
f ∈ P2,n we can write it

f (x) = � +
∑

1� i �n

bixi +
∑

1� i �n

aiix
2
i +

∑
1� i<j �n

aij xixj .

One has

‖f ‖2
P = �2 + 1

2

∑
1� i �n

b2
i +

∑
1� i �n

a2
ii + 1

2

∑
1� i<j �n

a2
ij

so that

E2,n =
∫

D2f (0)>0

e−‖f ‖2
P/2

2n(n+1)/4(2�)(n+1)(n+2)/4
d� db da

=
∫

D2f (0)>0

e
−
(∑

i a2
ii+ 1

2

∑
i<j a2

ij

)/
2

2n(n−1)/4(2�)n(n+1)/4
da.
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To compute this last integral we let S = 1
2D2f (0); this gives

E2,n =
∫

S>0

e−‖S‖2/2

(2�)n(n+1)/4
dS = Pn. �

3. An integral formulation

Let us define

eval1 : P × Rn → Rn, eval1(f, x) = Df (x).

The incidence variety for real critical points of a polynomial is defined by

V = {(f, x) ∈ P × Rn : eval1(f, x) = 0
}
.

The derivative of eval1 is given by

Deval1(f, x)(ḟ , ẋ) = Dḟ (x) + D2f (x)ẋ

for any f, ḟ ∈ P and x, ẋ ∈ Rn. Since this derivative is onto, V is a submanifold and its dimension
is

dim V = dim P =
(

n + d

d

)
.

The tangent space at (f, x) ∈ V is given by

T(f,x)V = ker Deval1(f, x) =
{
(ḟ , ẋ) ∈ P × Rn : Dḟ (x) + D2f (x)ẋ = 0

}
.

The restriction �2 : V → Rn of the projection P × Rn → Rn is surjective and is also a regular
map because for any (f, x) ∈ V the derivative D�2(f, x) : T(f,x)V → Rn is surjective. The fiber
of �2 above x ∈ Rn

Vx = {(f, x) ∈ P × Rn : eval1(f, x) = 0
}

is isomorphic to a dim P − n linear space. Vx is equipped with the volume form inherited from
the induced metric.

The restriction �1 : V → P of the projection P × Rn → P is a smooth map. A given f ∈ P
is a regular value of �1 when either f has no critical point or when, for any x such that (f, x) ∈ V ,
D�1(f, x) : T(f,x)V → P is surjective. This last condition is satisfied when the second derivative
D2f (x) is an isomorphism which is the generic situation:

�′ =
{
(f, x) ∈ V : det D2f (x) = 0

}
is an algebraic variety in V and dim �′ < dim V . Thus �′ and its image � = �1(�′) have
zero measure and we may ignore them. For any (f, x) ∈ V \ �′ and any ḟ ∈ P we have
D�1(f, x)(ḟ , ẋ) = ḟ for ẋ = −D2f (x)−1Dḟ (x) and the fiber above f

Vf = {(f, x) ∈ P × Rn : eval1(f, x) = 0
}

consists of a finite number of points.
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Given (f, x) ∈ V \�′ we are in the context of the implicit function theorem that is V is locally
around (f, x) the graph of the function

G = �2 ◦ �−1
1 ,

where �−1
1 is the local inverse of �1 such that �−1

1 (f ) = (f, x). Since the graph of DG(f ) is the
tangent space T(f,x)V we get

DG(f )ḟ = −D2f (x)−1Dḟ (x) (5)

for any ḟ ∈ P .
Like in [4, Section 13.2, Theorem 3], we have the following:

Proposition 2. Let U be a measurable subset of V . Let us denote by #(f, U) the number of pairs
(f, x) ∈ U and by EU the expectation of #(f, U) when f is taken at random:

EU =
∫

P
#(f, U)

e−‖f ‖2
P/2

(2�)dim P/2
dP. (6)

With these notations, one has

EU =
∫

Rn
dx

∫
Vx∩U

det(DG(f )DG(f )∗)−1/2 e−‖f ‖2
P/2

(2�)dim P/2
dVx. (7)

Remark 2. In our context two sets are of particular interest: U = V to compute the average
number of critical points of a polynomial Cd,n, and U = V+ with

V+ =
{
(f, x) ∈ P × Rn : Df (x) = 0 and D2f (x) > 0

}
for the average number of local minima Ed,n.

We have now to compute the determinant appearing in Eq. (7). This is done in the following:

Proposition 3. Under the notations above

det(DG(f )DG(f )∗) = dn(1 + ‖x‖2)n(d−1)−1(1 + d ‖x‖2)

∣∣∣det D2f (x)

∣∣∣−2
. (8)

Proof. Let us denote Dḟ (x) = Dxḟ . Since DG(f )ḟ = −D2f (x)−1Dxḟ and since D2f (x) is
symmetric, we get

DG(f )DG(f )∗ = D2f (x)−1DxD
∗
xD2f (x)−1

so that

det(DG(f )DG(f )∗) = det(DxD
∗
x)

∣∣∣det D2f (x)

∣∣∣−2
. (9)

To compute det(DxD
∗
x) we use the representation formula for the derivative (Eq. (2)) with k = 1.

Let us denote by ei , 1� i�n, the canonical basis in Rn. Then, for any ḟ ∈ P ,

Dxḟ =
∑

i

ei

〈
K1(., x, ei), ḟ

〉
P
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so that, with ẋ ∈ Rn, ẋ =∑i ẋiei ,

〈
D∗

x ẋ, ḟ
〉
P = 〈ẋ, Dxḟ

〉 =
〈
ẋ,
∑

i

ei

〈
K1(., x, ei), ḟ

〉
P

〉
=
∑

i

ẋi

〈
K1(., x, ei), ḟ

〉
P .

Thus, we get

D∗
x ẋ =

∑
i

ẋiK1(., x, ei)

and consequently

DxD
∗
x ẋ =

∑
i

ei

〈
K1(., x, ei),

∑
j

ẋjK1(., x, ej )

〉
P

=
∑

i

ei

�
�zi

⎛
⎝∑

j

ẋj d
〈
z, ej

〉
(1 + 〈z, x〉)d−1

⎞
⎠
∣∣∣∣∣∣
z=x

=
∑
i,j

ei ẋj ×
{

d(d − 1)xixj (1 + ‖x‖2)d−2 if i �= j,

d(d − 1)x2
i (1 + ‖x‖2)d−2 + d(1 + ‖x‖2)d−1 if i = j,

which correspond to the matrix

d(d − 1)(1 + ‖x‖2)d−2xxT + d(1 + ‖x‖2)d−1In.

Its eigenvectors are x and any nonzero vector in the orthogonal subspace x⊥. The corresponding
eigenvalues are

d(d − 1)(1 + ‖x‖2)d−2 ‖x‖2 + d(1 + ‖x‖2)d−1 = d(1 + ‖x‖2)d−2(1 + d ‖x‖2)

with multiplicity 1, and

d(1 + ‖x‖2)d−1

with multiplicity n − 1 so that

det DxD
∗
x = dn(1 + ‖x‖2)n(d−1)−1(1 + d ‖x‖2).

Our proposition combines this value and Eq. (9). �

If we combine Propositions 2 and 3 we obtain the following integral formulation:

Proposition 4. Let U be a measurable subset of V . One has

EU =
∫

Rn
dx

∫
Vx∩U

∣∣det D2f (x)
∣∣

dn/2(1 + ‖x‖2)(n(d−1)−1)/2(1 + d ‖x‖2)1/2

e−‖f ‖2
P/2

(2�)dim P/2
dVx. (10)

An action of the orthogonal group On on P × Rn is defined by

(Q, f, x) ∈ On × P × Rn → (f ◦ Q, QT x) ∈ P × Rn.
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This action leaves the incidence variety V invariant and also the scalar product 〈., .〉P (Lemma 1).
For this reason, when the measurable set U is itself invariant, the integral on Vx ∩U in Proposition
4 only depends on r = ‖x‖. Thus, taking spherical coordinates in Rn, we get:

Proposition 5. Let U be a measurable subset of V invariant under the action of On (for any
(Q, f, x) ∈ On × U we have (f ◦ Q, QT x) ∈ U ). Under this condition

EU = �n

dn/2

∫ ∞

0

rn−1 dr

R(d−1)n−1(dr2 + 1)1/2

∫
Vre1∩U

| det D2f (re1)| e−‖f ‖2
P/2

(2�)dim Vre1/2
dVre1 ,

where �n = VolSn−1

(2�)n/2 = 2
2n/2�(n/2)

, R = √
r2 + 1 and reT

1 = (r, 0, . . . , 0).

Remark 3. The measurable sets considered here:U = V andU = V+ = {(f, x) ∈ V : D2f (x)

> 0}, are clearly invariant under the action of On.

4. The inner integral

Our objective is now to compute the integral over Vre1 ∩ U appearing in Proposition 5.
Let D2 : Vre1 → Sn denote the operator f �→ D2f (re1). We would like to compute its

pseudo-inverse � : Sn → (ker D2)⊥. This means that � is the minimum norm right inverse of
D2 (D2 ◦ � = idSn

).
This will allow us to “integrate out” ker D2:∫

Vre1∩U

| det D2f | e−‖f ‖2
P/2

(2�)dim Vre1/2
dVre1

=
∫

D2(Vre1∩U)

|det S| ∣∣det �∗�
∣∣1/2 e−‖�(S)‖2

P/2

(2�)dim Sn/2
dS. (11)

To compute �(S) and
∣∣det �∗�

∣∣ we need the following lemma:

Lemma 2. Let us denote

• ei , 1� i�n, the canonical basis in Rn,
• �ei

= K1(z, re1, ei),
• �eiej

= K2(z, re1, ei, ej ),

• R = √
1 + r2.

Then,

1.
〈
�e1 , �e1

〉
P = d(1 + dr2)R2d−4.

2. If i �= 1, then
〈
�ei

, �ei

〉
P = dR2d−2.

3. If i �= j , then
〈
�ei

, �ej

〉
P = 0.

4.
〈
�e1 , �e1e1

〉
P = d(d − 1)(dr2 + 2)rR2d−6.

5. If (i, j, k) �= (1, 1, 1), then
〈
�ej

, �eiek

〉
P = 0.

6.
〈
�e1e1 , �e1e1

〉
P = d(d − 1)

(
d(d − 1)r4 + 4(d − 1)r2 + 2

)
R2d−8.

7. If k �= 1, then
〈
�e1ek

, �e1ek

〉
P = d(d − 1)((d − 1)r2 + 1)R2d−6.
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8. If i �= 1 and k �= 1, then
〈
�eiek

, �eiek

〉
P = (1 + �ik) d(d − 1)R2d−4 (�ik is the Kronecker

symbol).
9. If {i, k} �= {j, l}, then

〈
�eiek

, �ej el

〉
P = 0.

Proof. It is a consequence of the representation formulas given in Lemma 1:

• 〈�e1 , �e1

〉
P = 〈K1(., re1, e1), K1(., re1, e1)〉P = �

�z1
K1(z, re1, e1)

∣∣
z=re1 = �

�z1
dz1(1 +

rz1)
d−1

∣∣
z=re1 = d(1 + r2)d−2(1 + dr2),

and similarly

• 〈�ei
, �ei

〉
P = �

�zi
K1(z, re1, ei)

∣∣
z=re1 = �

�zi
dzi(1 + rz1)

d−1
∣∣
z=re1 = d(1 + r2)d−1,

• 〈�ei
, �ej

〉
P = �

�zi
K1(z, re1, ej )

∣∣
z=re1 = �

�zi
dzj (1 + rz1)

d−1
∣∣
z=re1 = 0 when i �= j ,

• 〈�e1 , �e1e1

〉
P = �

�z1
K2(z, re1, e1, e1)

∣∣
z=re1 = �

�z1
d(d − 1)z2

1(1 + rz1)
d−2

∣∣
z=re1 = d(d −

1)r(2 + dr2)(1 + r2)d−3,

• 〈�ej
, �eiek

〉
P = �

�zj
d(d − 1)zizk(1 + rz1)

d−2
∣∣
z=re1 = 0 when (i, j, k) �= (1, 1, 1),

• 〈�e1e1 , �e1e1

〉
P = �2

�z2
1
d(d − 1)z2

1(1 + rz1)
d−2

∣∣
z=re1 = d(d − 1)(1 + r2)d−4(2 + 4(d − 1)r2 +

d(d − 1)r4),

• 〈�e1ek
, �e1ek

〉
P = �2

�z1zk
d(d−1)z1zk(1+rz1)

d−2
∣∣
z=re1 = d(d−1)(1+r2)d−3(1+(d−1)r2),

• 〈�eiek
, �eiek

〉
P = �2

�zizk
d(d − 1)zizk(1 + rz1)

d−2
∣∣
z=re1 = (1 + �ik)d(d − 1)(1 + r2)d−2,

• 〈�eiek
, �ej el

〉
P = �2

�zizk
d(d − 1)zj zl(1 + rz1)

d−2
∣∣
z=re1 = 0 when {i, k} �= {j, l}. �

Let us now evaluate �. Recall that

Vre1 = {f ∈ P : Df (re1) = 0}
or, in other words, f ∈ Vre1 if and only if〈

f, �ei

〉
P = 0, 1� i�n.

Thus, by Lemmas 2 and 3, �ei
, 1� i�n, constitute an orthogonal basis of V ⊥

re1
. We also have

ker D2 = Span
{
�eiej

, 1� i�j �n
}⊥ ∩ Vre1 ,

hence

(ker D2)⊥ = Span
{
P�eiej

, 1� i�j �n
}
,

where P stands for the orthogonal projection onto Vre1 . We have seen that for (i, j, k) �= (1, 1, 1),
�eiej ⊥ �ek (Lemmas 2–5). Hence,

P�e1e1 = �e1e1 − �e1

〈
�e1e1 , �e1

〉
P

‖�e1‖2
P
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and for (i, j) �= (1, 1),

P�eiej
= �eiej

.

Let us now show that

�(S) =
∑

1� i � j �n

Sij

P�eiej

‖P�eiej
‖2
P

.

Since this expression is clear in (ker D2)⊥ it suffices to prove that D2 ◦�(S) = S for any S ∈ Sn,
i.e.

D2�(S)(re1)(ek, el) = Skl

or, using Lemma 1, that〈
�ekel

,
∑

1� i � j �n

Sij

P�eiej∥∥P�eiej

∥∥2
P

〉
P

= Skl.

This last equality holds because P�eiej
, 1� i�j �n, is an orthogonal basis of (ker D2)⊥.

It is important to have in mind that � is not an isometry, we have

‖�(S)‖2
P =

∑
1� i � j �n

S2
ij

‖P�eiej
‖2
P

.

We introduce now the functions

A(d, r) =
√

d(d − 1)r4 + 2dr2 + 2

(dr2 + 1)R4

and

B(d, r) =
√

(d − 1)r2 + 1

R2
,

where again R = √
1 + r2.

Lemma 3. Let i�j . Then,

‖P�eiej
‖2
P = d(d − 1)R2d−4 ×

⎧⎨
⎩

A(d, r)2 if i = 1 and j = 1
B(d, r)2 if i = 1 and j �= 1
(1 + �ij ) if i �= 1 and j �= 1

with �ij = 1 when i = j and 0 otherwise.

Let us now compute det �∗�. For any f = ∑
1� i � j �n fijP�eiej

∈ (ker D2)⊥ and for any
S ∈ Sn we have〈

�∗(f ), S
〉 = 〈f, �(S)〉P =

∑
1� i � j �n

fij Sij .



100 J.-P. Dedieu, G. Malajovich / Journal of Complexity 24 (2008) 89–108

Therefore, we have always for any T ∈ Sn:

〈�∗�(T ), S〉 =
∑

1� i � j �n

Tij Sij∥∥P�eiej

∥∥2
P

.

We write the matrix of the operator �∗� with respect to the orthonormal basis of S given by

e1eT
1 , . . . , eneT

n and then, for i < j , 1√
2

(
eieT

j + ej eT
i

)
:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
‖P�e1e1‖2

. . .
1

‖P�enen‖2

1
2‖P�e1e2 ‖2

. . .
1

2‖P�en−1en‖2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Using Lemma 3 we obtain:

Lemma 4.

(det �∗�)1/2 = 2− (n+2)(n−1)
4

(
d(d − 1)R2d−4

)− n(n+1)
4

A(d, r)−1B(d, r)−(n−1).

At this point

Proposition 6. Under the conditions above,

EU = �n

dn/2

∫ ∞

0

(
det �∗�

) 1
2 rn−1 dr

(dr2 + 1)1/2R(d−1)n−1

∫
D2(U∩Vre1 )

|det S|
(2�)dim Sn/2

e−‖�(S)‖2
P/2 dSn.

In particular,

Cd,n = �n

dn/2

∫ ∞

0

(
det �∗�

) 1
2 rn−1 dr

(dr2 + 1)1/2R(d−1)n−1

∫
Sn

|det S|
(2�)dim Sn/2

e−‖�(S)‖2
P/2 dSn

and

Ed,n = �n

dn/2

∫ ∞

0

(
det �∗�

) 1
2 rn−1 dr

(dr2 + 1)1/2R(d−1)n−1

∫
Sn

++
det S

(2�)dim Sn/2
e−‖�(S)‖2

P/2 dSn,

where Sn
++ denotes the set of positive definite matrices. When n = 1,

Cd,1 = 2Ed,1 = 2
√

d − 1

�

∫ ∞

0

√
d(d − 1)r4 + 2dr2 + 2

(dr2 + 1)(r2 + 1)
dr.
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Proof. The three first formulas are obtained by combining Proposition 5, Eq. (11) and Lemma 4.
For the case n = 1 we obtain

Ed,1 = 2

d
√

d − 1
√

2�

∫ ∞

0

dr

A(dr2 + 1)1/2R2d−4

∫ ∞

0

s√
2�

e
− s2

2d(d−1)R2d−4A2 ds

=
√

d − 1

�

∫ ∞

0

√
d(d − 1)r4 + 2dr2 + 2

(dr2 + 1)(r2 + 1)
dr.

The identity Cd,1 = 2Ed,1 is easy. �

5. Some integral lemmas

The term e−‖�(S)‖2
P/2 in the inner integrals of Proposition 6 can be simplified through additional

changes of coordinates. We reparametrize the spaces Sn and S++
n through a stretching S �→ T =

�−1S�−1.
The stretching coefficients are �i = (

2d(d − 1)R2d−4
)1/4

for i�2, �1 = B(d, r)�2 and
� = Diag(�1, �2, . . . ,�n). We obtain

‖�(S)‖2
P = 1

d(d − 1)R2d−4

⎛
⎝S2

11

A2
+

n∑
j=2

S2
1j

B2
+

∑
1<i � j �n

1

1 + �ij

S2
ij

⎞
⎠

and

‖�−1S�−1‖2 = 1

d(d − 1)R2d−4

⎛
⎝ S2

11

2B4
+

n∑
j=2

S2
1j

B2
+

∑
1<i � j �n

1

1 + �ij

S2
ij

⎞
⎠

so that

‖�(S)‖2
P = ‖�−1S�−1‖2 +

(
1

A2
− 1

2B4

)
S2

11

d(d − 1)R2d−4
.

Let us define T = �−1S�−1. We get

‖�(S)‖2
P = ‖T ‖2 +

(
2B4

A2
− 1

)
T 2

11

so that, via this change of variable,∫
D2(U∩Vre1 )

|det S|
√

2�
dim Sn

e−‖�(S)‖2/2 dS

=
(

n∏
i=1

�i

)n+3 ∫
�−1

D2(U∩Vre1 )�−1

|det T |
√

2�
dim Sn

e
− 1

2

(
‖T ‖2+

(
2B(d,r)4

A(d,r)2
−1

)
T 2

11

)
dT .

If U ⊂ V , we define the auxiliary quantity

CU(d, r, n) =
∫

�−1
D2(U∩Vre1 )�−1

|det T |
√

2�
dim Sn

e
− 1

2

(
‖T ‖2+

(
2B(d,r)4

A(d,r)2
−1

)
T 2

11

)
dT .
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There are two cases of interest corresponding to U = V for the average of critical points and
U = V+ for the average number of local minima. The corresponding functions are denoted as
CV (d, r, n) and CV+(d, r, n). Using Proposition 6 we get (the proof is easy and left to the reader)

Proposition 7.

EU = 2
√

2(d − 1)n/2

�(n/2)

∫ ∞

0

((d − 1)r2 + 1)2

R2
√

d(d − 1)r4 + 2dr2 + 2

rn−1

Rn−1
CU(d, r, n) dr.

Moreover

CV (d, r, n) =
∫

Sn

|det T |
√

2�
dim Sn

e
− 1

2

(
‖T ‖2+

(
2B(d,r)4

A(d,r)2
−1

)
T 2

11

)
dT

and

CV+(d, r, n) =
∫

Sn
++

det T
√

2�
dim Sn

e
− 1

2

(
‖T ‖2+

(
2B(d,r)4

A(d,r)2
−1

)
T 2

11

)
dT .

6. Proof of Theorem 1

To prove our main theorem we use both Proposition 7 and the case d = 2 already investigated
in Proposition 1. We have

1 = C2,n = 2
√

2

�(n/2)

∫ ∞

0

rn−1

Rn−1

CV (2, r, n)√
2

dr

and

CV (2, r, n) =
∫

Sn

|det T |
(2�)n(n+1)/4

e− 1
2

(‖T ‖2+2r2T 2
11

)
dT .

Lemma 5. The quantity �(d, r) = 2B(d,r)4

A(d,r)2 − 1 satisfies, for all r > 0 and d �2, the scaling
law:

�(2, r
√

d − 1)��(d, r)��

(
2,

√
5

2
r
√

d − 1

)
.

Proof. We write

�(d, r) = 2(d − 1)r2 + d − 2

d

(d − 1)r4

(d − 1)r4 + 2r2 + 2
d

.

The lower bound is now obvious. The upper bound is obtained as follows:

�(d, r) = 2(d − 1)r2 + d − 2

d

(d − 1)r4

(d − 1)r4 + 2r2 + 2
d

� 2(d − 1)r2 + d − 2

2d
(d − 1)r2
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� 5

4
�(2, r2

√
d − 1)

= �

(
2,

√
5

2
r2

√
d − 1

)
. �

It follows from Lemma 5 that

CV (d, r, n) =
∫

Sn

| det T |
√

2�
dim Sn

e− 1
2

(‖T ‖2+�(d,r)T 2
11

)

�
∫

Sn

| det T |
√

2�
dim Sn

e− 1
2

(‖T ‖2+�(2,r
√

d−1)T 2
11

)

= CV (2, r
√

d − 1, n)

and similarly CV +(d, r, n)�CV +(2, r
√

d − 1, n). Now we have:

Cd,n = 2
√

2(d − 1)n/2

�(n/2)

∫ ∞

0

((d − 1)r2 + 1)2

R2
√

d(d − 1)r4 + 2dr2 + 2

rn−1

Rn−1
CV (d, r, n) dr

� 2
√

2(d − 1)n/2

�(n/2)

∫ ∞

0

((d − 1)r2 + 1)2

R2
√

d(d − 1)r4 + 2dr2 + 2

rn−1

Rn−1
CV (2, r

√
d − 1, n) dr.

We set s = r
√

d − 1 and S = √
d − 1 + s2 to obtain

Cd,n � 2
√

2(d − 1)n/2

�(n/2)

∫ ∞

0

(d − 1)(s2 + 1)2

S2
√

d
d−1 s4 + 2 d

d−1 s2 + 2

sn−1

Sn−1
CV (2, s, n)

ds√
d − 1

= 2
√

2

�(n/2)

∫ ∞

0

sn−1

(1 + s2)(n−1)/2

CV (2, s, n)√
2

Ads

with

A = (d − 1)n/2 (d − 1)(s2 + 1)2

S2
√

d
d−1 s4 + 2 d

d−1 s2 + 2

(1 + s2)(n−1)/2

Sn−1

√
2√

d − 1
.

Since

s2 + 1

S2
�1 and

(s2 + 1)2

S2
√

d
d−1 s4 + 2 d

d−1 s2 + 2
�1,

we obtain A�
√

2(d − 1)(n+1)/2 so that

Cd,n �
√

2(d − 1)(n+1)/2C2,n = √
2(d − 1)(n+1)/2.

The same argument holds for Ed,n and we are done.

7. The Riemann surface

We rewrite the case n = 1 (Proposition 6) for convenience as

Ed,1 = (d − 1)
√

d

2�

∫
R

g(z) dz (12)
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with

g(z) =
√

z4 + 2
d−1z2 + 2

d(d−1)

(1 + z2)(1 + dz2)
.

At this point we encounter a classical situation: we want to compute a line integral of a function
g(z), which is a two-branched meromorphic function of C. In order to apply the residue theorem,
we need first to replace g by a regular meromorphic function, defined in the relevant Riemann
surface R. The branching points of the Riemann surface are the roots of the polynomial inside the
square root. If we set

� =

√√√√−1 + i

√
1 − 2

d

d − 1

with the branch of the external square root in such a way that � belongs to the positive quadrant,
we can now factorize

z4 + 2

d − 1
z2 + 2

d(d − 1)
= (z − �)(z − �̄)(z + �)(z + �̄).

It follows that the Riemann surface R is a twofold cover of C with branch points �, −�̄, −�, �̄.
Let � be the arc of circle (centered in the origin) joining −�̄ to � crossing the positive imaginary

axis. Notice that it crosses the segment [i/√d, i]. Let D denote the upper half plane with �
removed.

Then, the positive branch of
√

z4 + 2
d−1z2 + 2

d(d−1)
on R extends to a unique branch on D.

The square root is real and positive on [0, i|�|] and real and negative on [i|�|, i∞).
The residue theorem is now:∫

R
g(z) dz − 2

∫
�
g(z) dz2�iRes[z=i/

√
d]g(z) + 2�iRes[z=i]g(z).

Residues are respectively −i

2(d−1)
√

d
and −i

√
d−2

2(d−1)
√

d
. Therefore,

Ed,1 = 1

2
+

√
d − 2

2
+ (d − 1)

√
d

�

∫
�
g(z) dz. (13)

(we mean the integral of the branch that is positive on i|�|).
Now, in order to integrate g(z), we introduce a linear fractional transformation mapping the

real line onto the circle containing � (Fig. 1). Namely,

�(w) = Aw + B

Cw + D

with A = |�|, B = i|�|, C = i, D = 1. For the record, AD − BC = 2|�|.
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1s

s-1

0

is3

is1

ii

1

¯

0

i d

|�|

w-planez-plane

√

�

�

Ψ

Fig. 1. The linear fractional map w �→ z = �(w).

Let s = Re(�)
|�|+Im(�) . Define also s1 = 1−|�|

1+|�| , s2 = s−1
1 , s3 = 1−|�|√d

1+|�|√d
and s4 = s−1

3 . We have the

following mapping table for �:

w �(w) w �(w)

−1 −|�| is1 i
0 i|�| is2 −i

1 |�| is3 i/
√

d

−s−1 −� is4 −i/
√

d

−s −�̄
s �
s−1 �̄

Changing coordinates,∫
�
g(z) dz = 2c(d)Re

∫
[0,s]

√
(w2 − s2)(w2 − s−2)∏4

k=1(w − isk)
dw

with

c(d) =
(AD − BC)

√
A4 + 2

d−1A2C2 + 2
d(d−1)

C4

(A2 + C2)(dA2 + C2)
∈ O(d−3/2)

(more precisely: lim d3/2C(d) = −27/4
√

2−√
2√

2−1
� −6.2151).
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Table 1
Residues and arguments

Pole Residue Rk Argument nk

is1 i
(s1 − s2)(s1 − s−2)

(s1 − s2)(s1 − s3)(s1 − s4)
− s2

s2
1

is2 i
(s2 − s2)(s2 − s−2)

(s2 − s1)(s2 − s3)(s2 − s4)
− s2

s2
2

is3 i
(s3 − s2)(s3 − s−2)

(s3 − s1)(s3 − s2)(s3 − s4)
− s2

s2
3

is4 i
(s4 − s2)(s4 − s−2)

(s4 − s1)(s4 − s2)(s4 − s3)
− s2

s2
4

At this point, good practice seems to be:

1. Multiply numerator and denominator by the conjugate of the denominator, in order to obtain
a real polynomial in the denominator.

2. Multiply numerator and denominator by the square root.
3. Expand in partial fractions.
4. Put into Legendre normal form.
5. Write down the integral in terms of elliptic functions K and �.

We expand the integrand in partial fractions:

∫
�
g(z) dz = 2c(d)

∫
[0,s]

1√
(w2 − s2)(w2 − s−2)

(
1 +

4∑
k=1

Re
Rk

w − isk

)
dw

= 2c(d)

∫
[0,s]

1√
(w2 − s2)(w2 − s−2)

(
1 +

4∑
k=1

s−2
k Re (Rk(w + isk))

1 + w2s−2
k

)
dw

= 2c(d)

∫
[0,s]

1√
(w2 − s2)(w2 − s−2)

(
1 +

4∑
k=1

s−1
k Rki

1 + w2s−2
k

)
dw

(the last step uses the fact that all residues Rk are pure imaginary). Residues are given in Table
1. We use formula [1, 17.4.45] to compute the parameter m = s4. Then we set sin � = s2 above,
and also w = s sin � to obtain the Legendre normal form:

∫
�
g(z) dz = 2c(d)s

∫ �/2

0

1√
1 − sin2 � sin2 �

(
1 +

4∑
k=1

Rkski

1 − nk sin2 �

)
d�.

This is a combination of one complete elliptic integral of the first kind and four complete elliptic
integrals of the third kind. The arguments nk = −s2s−2

k of the integrals of the third kind are given
in Table 1.
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Therefore,

∫
�
g(z) dz = 2c(d)

(
K(m) +

4∑
k=1

Rkski�(nk; m)

)
,

where K and � denote the complete elliptic integrals of the first and third kinds, respectively.
ASYMPTOTICS: s → √

2 − 1, so m → 0.029437251, � → 0.172425997 rad � 9◦52′45.42′′.
Also, s1, s2 → 1 and s3 = s−1

4 =→ (1 − √
2)/(1 + √

2).
EXPERIMENTAL DATA: The hypergeometric functions were evaluated using Romberg itera-

tion. Coefficients and residues were obtained symbolically and then numerically. Digits are not
guaranteed to be all significative.

d EU − 1
2 −

√
d−2
2

3 −0.280134
4 −0.319279
5 −0.337448
6 −0.348064
7 −0.355053
8 −0.360010
9 −0.363712
10 −0.366583
102 −0.387335
103 −0.389199
104 −0.389384
105 −0.389402
106 −0.389404
107 −0.389405
108 −0.389405
109 −0.389405

Remark 4. Rybowicz [16] provided the following alternative formula for Cd,1 = 2Ed,1:

Cd,1 = − 4d(u − 2)√
u(u − 1)(u − d)�

K(v)

+ u + 1√
u(u − 1)�

�

(
− (u − 1)2

4u
, v

)

+ (2 − d)(u + d)√
u(d − u)�

�

(
− (d − u)2

4du
, v

)
,

where

u =
√

2d

d − 1
and v =

√
2 − u

2
.

His formula agrees with ours up to six decimal places.



108 J.-P. Dedieu, G. Malajovich / Journal of Complexity 24 (2008) 89–108

Acknowledgments

We want to thank Alice Guionnet, Manjunath Krishnapur and Balint Virag who introduced us
to the world of large deviation delicacies, D.S. Dean and S.N. Majumdar who sent us their paper
about the asymptotic value of Pn and to the anonymous referees for their precise comments.

References

[1] M. Abramowitz, I. Stegun (Eds.), Handbook of Mathematical Functions, Dover, New York, 1964.
[2] D. Armentano, M. Wschebor, Random systems of polynomial equations. The expected root number under smooth

analysis, preprint.
[3] J.-M. Azaïs, M. Wschebor, On the roots of a random system of equations. The theorem of Shub and Smale and some

extensions, Found. Comput. Math. (2005) 125–144.
[4] L. Blum, F. Cucker, M. Shub, S. Smale, Complexity and Real Computation, Springer, Berlin, 1998.
[5] E. Bogomolny, O. Bohias, P. Leboeuf, Distribution of roots of random polynomials, Phys. Rev. Lett. 68 (1992)

2726–2729.
[6] D.S. Dean, S.N. Majumdar, Large deviations of extreme eigenvalues of random matrices, Phys. Rev. Lett. 97 (2006)

160201.
[7] A. Edelman, E. Kostlan, How many zeros of a random polynomial are real?, Bull. AMS 32 (1995) 1–37;

A. Edelman, E. Kostlan, How many zeros of a random polynomial are real?, Bull. AMS 33 (1996) 325.
[8] H. Federer, Geometric Measure Theory, Springer, Berlin, 1969.
[9] A. Guionnet, Large deviations and stochastic calculus for large random matrices, Probab. Surv. (2004).

[10] M. Kac, On the average number of real roots of a random algebraic equation, Bull. Am. Math. Soc. 49 (1943)
314–320, 938.

[11] M. Kac, On the average number of real roots of a random algebraic equation (II), Proc. London Math. Soc. 50 (1949)
390–408.

[12] E. Kostlan, On the expected number of real roots of a system of random polynomial equations, in: Foundations of
Computational Mathematics, World Scientific Publishing Company, Hong Kong, 2002, pp. 149–188.

[13] G. Malajovich, M. Rojas, High probability analysis of the condition number of sparse polynomial systems, Theor.
Comput. Sci. 315 (2004) 525–555.

[14] M. Mehta, Random Matrices, Academic Press, New York, 1991.
[15] M. Rojas, On the average number of real roots of certain random sparse polynomial systems, in: J. Renegar, M.

Shub, S. Smale (Eds.), The Mathematics of Numerical Analysis, Lectures in Applied Mathematics, vol. 32, 1996.
[16] M. Rybowicz, personnal communication.
[17] M. Shub, S. Smale, Complexity of Bézout’s Theorem II: Volumes and Probabilities, in: F. Eyssette, A. Galligo

(Eds.), Computational Algebraic Geometry, Progress in Mathematics, vol. 109, Birkhäuser, Boston, MA, 1993,
pp. 267–285.

[18] M. Wschebor, On the Kostlan–Shub–Smale model for random polynomials systems: variance of the number of roots,
J. Complexity (2005) 773–789.


