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We have calculated the composite (pseudo) scalar contributions to the anomalous magnetic moment of 
muons in models of walking technicolor. By the axial or scale anomaly the light scalars such as techni-
dilaton, techni-pions or techni-eta have anomalous couplings to two-photons, which make them natural 
candidates for the recent 750 GeV resonance excess, observed at LHC. Due to the anomalous couplings, 
their contributions to muon (g − 2) are less suppressed and might explain the current deviation in muon 
(g − 2) measurements from theory.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

After discovery of Higgs boson [1,2], signals for new physics 
beyond standard model (BSM) have been intensively searched at 
LHC. Very recently both the ATLAS and CMS groups have observed 
an excess at 750 GeV with the local significance by about 3 σ in 
the diphoton channel at the 13 TeV LHC [3,4], which, if confirmed, 
will be a genuine direct signal for new physics at colliders. There 
have been since proposed numerous models of BSM to explain 
this single resonance. In establishing correct models of BSM, it will 
be therefore desired to constrain those proposed models, if possi-
ble, from the precision measurement of low energy physics [5–7], 
which often severely constrain BSM models, otherwise difficult to 
be ruled out at colliders.

It is well known that the standard model (SM) estimation of 
the anomalous magnetic moment of the muon has quite a signif-
icant deviation from the experiments, which might be due to a 
new physics beyond standard model. Recent measurements of the 
anomalous magnetic moment of the muon [8], performed at the 
Brookhaven National Laboratory (BNL), find

aμ = 11659208.0(5.4)(3.3) × 10−10 , (1)

which deviates by 3.2 σ above the current SM estimate, based on 
e+e− hadronic cross sections [9,10]. An improved muon (g − 2)

experiment is approved and under construction at the Fermilab 
to achieve a precision of 0.14 ppm [11,12], which will move the 
deviation, if persistent, to 5 σ .
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In this paper, we estimate the new physics contributions to the 
anomalous magnetic moment of muons to see if it naturally fixes 
the current deviation, provided that the recent excess at 750 GeV
at ATLAS and CMS is due to the scalar or pseudo-scalar resonances, 
predicted in the models of new strong dynamics such as walking 
technicolor [13,14] or models of composite axions [15].

2. Candidates for 750 GeV resonance

The anomalous magnetic moment of muons is one of a few 
physical observables that are measured so precisely, with an accu-
racy of parts per million (ppm). It is therefore quite sensitive to 
new physics at TeV, since generically the new physics contribution 
to the anomalous magnetic moment of muons is given by the di-
mensional analysis as

aNP
μ ∼ αem

π

(
m

MNP

)2

∼ 10−10
(

1 TeV

MNP

)2

, (2)

where m is the muon mass and MNP is a typical scale of new 
physics. Generically the new physics contribution is well within 
the experimental accuracy and thus might explain the current 
3.2 σ deviation [10] if MNP is not too higher than 1 TeV. Indeed 
the new physics contribution is well studied up to two-loops for 
the weakly interacting new particles to exclude certain parameter 
regions in some extension of the standard model such as MSSM or 
simplified models [16,17]. In this paper we focus on strong dy-
namics extension of the standard model, especially the walking 
technicolor (WTC) models which break dynamically not only the 
electroweak symmetry but also the approximate scale symmetry, 
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introduced to accommodate the constraints from the electroweak 
precision measurements [18–20].

By the hypothesis of partially conserved dilatation currents 
(PCDC) among the spin-0 excitations of WTC the lightest one 
should be the techni-dilaton, which is a pseudo Nambu–Goldstone 
boson, associated with the spontaneous broken scale symme-
try [19,21–23]. Since PCDC assumes the techni-dilaton saturates 
the matrix elements of dilatation current at low energy, we have 
from the trace anomaly [22,23]

F 2
DM2

D ∼ m4
TC, (3)

where F D and MD are the dilaton decay constant and mass, re-
spectively, and the trace anomaly is given mostly by the dynamical 
mass of techni-fermions [24], mTC, which characterizes the IR scale 
of WTC, about 1 TeV. Having the theory very near the quasi in-
frared (IR) fixed point, one can separate widely the ultra-violet 
(UV) scale from the IR scale of WTC or FD � mTC to have a light 
dilaton, MD ∼ m2

TC/FD � mTC ∼ 1 TeV [22,23]. It is therefore quite 
natural to interpret the 125 GeV boson, discovered at LHC [1,2] as 
the techni-dilaton, if WTC is responsible for electroweak symmetry 
breaking that describes the BSM physics. Compared to the standard 
model Higgs, the techni-dilaton couples to gluons more strongly 
but to SM fermions more weakly. Hence, with current LHC data 
the techni-dilaton is still a viable interpretation of the 125 GeV bo-
son [25]. On the other hand, if WTC is not so extremely conformal, 
the IR and UV scales are not widely separated and the techni-
dilaton mass will not be much smaller than the typical IR scale 
of WTC, mTC ∼ 1 TeV, but it should be still the lightest one in the 
spectrum by PCDC, though it lies close to other scalar excitations 
such as the composite Higgs. In this case the 125 GeV boson may 
be interpreted as the composite Higgs of WTC [20], since it can 
be very light due to the top-quark loop corrections [26], and then 
the 750 GeV resonance may be interpreted as the techni-dilaton of 
WTC that decays into two photons by the trace anomaly.

Being Nambu–Goldstone bosons, pseudo scalars that are as-
sociated with spontaneously broken chiral symmetry of techni-
fermions in WTC are generically also light, though they are 
strongly coupled. If the 750 GeV resonance is a pseudo scalar, 
it may be interpreted as either techni-pion [14] or techni-eta in 
WTC [27] or a composite axion [15], which decay into two pho-
tons by the Adler–Bell–Jackiw anomaly [28,29].

3. New scalars contributions to muon (g − 2)

The low energy interaction Lagrangian density, relevant for our 
discussions on the muon (g − 2), is given as1

Lint = −ψ̄ (gDϕ + iγ5 g AP)ψ + e2 cD

4FD
ϕFμν F μν

+ e2 c A

4FA
P Fμ F̃ μν , (4)

where the techni-dilaton (ϕ) coupling to the muon field, de-
noted as ψ , gD = (3 − γm)m/FD with the anomalous dimension 
of the techni-fermion bilinear, γm ≈ 1. The pseudo-scalar cou-
pling g A , induced by the extended technicolor (ETC) is given as √

3m/(2Fπ ) [30]. Fμν = ∂μ Aν − ∂ν Aμ , the field strength tensor 
of the photon field Aμ with the electric charge e and F̃μν is its 

1 The couplings of composite (pseudo) scalars with other standard model parti-
cles besides muons and photons will be relevant only for two or higher loop con-
tributions to muon g − 2. For instance the techni-dilaton coupling to two-photons 
through the W boson loop will contribute to muon g −2 at two-loop, as in the case 
of Higgs contributions, but further suppressed by (vew/F D )2 and thus much smaller 
than our one-loop results.
Fig. 1. One-loop corrections to the anomalous magnetic moment of muons. The dot-
ted line denotes either the techni-dilaton field (ϕ) or a pseudo scalar P , the neutral 
techni-pion or techni-eta (or composite axion): (a) A diagram similar to the one-
loop SM Higgs contribution. (b) One-loop diagram due to anomalous couplings of 
(pseudo) scalar to photons, denoted as a blob.

dual. The two-photon coupling of techni-dilaton, cD , or pseudo-
scalar (P), c A , is in general the momentum-dependent anomalous 
form factor but can be regarded as a constant in the effective the-
ory, which is determined by the UV physics anomaly.2

At one-loop the (pseudo) scalar contributions to the anomalous 
magnetic moment of muons consists of two pieces (see Fig. 1). The 
diagram in Fig. 1(a), which is same as the one-loop Higgs contri-
bution except the couplings and mass, gives

aNP(a)
μ � g2

i

8π2

m2

M2
i

ln

(
M2

i

m2

)
, (5)

where i denotes either D for the techni-dilaton or A for the 
pseudo scalar fields. From the anomalous coupling diagram, 
Fig. 1(b), we find with ḡi = gi · Fi/m

aNP(b)
μ � αem

2π
ḡici

m2

F 2
i

· ln

(
16π2 F 2

i

M2
i

)

∼ 10−9
(

ḡici

2.5

)
·
(

0.5 TeV

Fi

)2

, (6)

where we have taken 4π Fi as the UV cutoff of the effective inter-
actions in Eq. (4), following the naive dimensional analysis [32].

4. Results and discussion

For the contribution from the diagram in Fig. 1(a), Eq. (5), 
which is doubly suppressed by (m/Fi)

2 and (MH/Mi)
2, is more 

suppressed than the one-loop SM Higgs contribution, a(2)EW(H)
μ <

5 × 10−14:

2 The exact form of the anomalous form factor is difficult to calculate due to its 
non-perturbative nature. As in the QCD corrections to the light-by-light contribution 
to muon (g −2), one may approximate, to correctly reproduce its asymptotic UV be-
havior similar to the Lepage–Brodsky formula in QCD, the anomalous form factor by 
a single (techni) vector-meson Fiγ γ (q2, Q 2) ≈ Ci M2

V /(Q 2 + M2
V ) [10] or an infinite 

tower of (techni) vector mesons in holographic models [31]. However, since the 
form factor will significantly differ from the constant approximation only for the 
internal momentum bigger than the vector meson mass, Q 2 � M2

V and the loop 
diagram Fig. 1 (b) is dominant by the momentum smaller than the (pseudo) scalar 
mass, M2

i , the error that we are making is about M2
i /M2

V ≈ (Mi/4π Fi)
2 � 0.25, if 

MV � 1.5 TeV.
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aNP(a)
μ ≈ a(2)EW(H)

μ ·
(

MH

Mi

)2

·
(

vEW

Fi

)2

, (7)

where the vacuum expectation value of Higgs, vEW = 246 GeV. 
MH = 125 GeV is the Higgs mass and Mi (Fi ) is the mass (de-
cay constant) of either the techni-dilaton or a pseudo scalar. On 
the other hand, since the one-loop contribution, Eq. (6), from the 
anomalous coupling, the diagram in Fig. 1(b) is singly suppressed 
by (m/Fi)

2, compared to the one-loop QED contribution, it may 
be comparable to the current 3.2σ deviation, 
aμ = aexp

μ − ath
μ ≈

(290 ± 90) × 10−11 [10]. Indeed, for ḡici = 2.5 and Fi = 0.5 TeV, 
we find that the new physics contribution Eq. (6) is of the order of 

aμ . However, if Fi is much bigger than 0.5 TeV or the product of 
the Yukawa and diphotons couplings, ḡi ci , of the (pseudo) scalar is 
too small, the muon anomaly may not be explained in models of 
WTC.

In models of WTC, the anomalous couplings ci ’s are generi-
cally too small to account for the muon anomaly, since they are 
suppressed by the techni-fermion loop factors.3 One could add to 
this model an extra techni-lepton of an electric charge qe, which is 
electrically charged but QCD-color neutral, to enhance the dipho-
ton coupling. For a minimal WTC model [20,33], which has one 
techni-fermion doublet of the symmetric second-rank tensor with 
the electric charge (q + 1, q) will give the anomalous coupling 
cD = NTC(NTC + 1)(2q2 + 2q + 1)/(12π2) from the one-loop QED 
beta function. For q = 3 we get cD = 2.53, if NTC = 3, but the beta 
function is still perturbative, βQED(e)/e < 1 [7].4 Similarly for the 
case of pseudo-scalars, one can enhance the anomalous coupling 
c A by introducing techni-fermions with large axial charges.

To conclude, we have calculated the one-loop contributions to 
the anomalous magnetic moment of muons in models of walk-
ing technicolor, which contain generically a light techni-dilaton, 
techni-pions or techni-eta. At one-loop the diagrams that involve 
the anomalous coupling of (pseudo) scalar to two-photons is sup-
pressed only by a single power of muon mass squared, (m/Fi)

2, 
compared the one-loop QED contribution, where Fi is the de-
cay constant of either techni-dilaton or techni-pion (eta), roughly 
of the order of the ultra-violet scale of the effective interaction, 
Eq. (4). We find for Fi ∼ 0.5 TeV and the anomalous coupling 
to diphoton ci = O(1) the one-loop contribution of WTC is com-
parable to the current 3.2σ deviation and thus may explain the 
deviation in the anomalous magnetic moment of muon. However, 
the anomalous couplings are generically small in models of WTC, 
since they are suppressed by the loop factors, unless one intro-
duces extra techni-fermions with large electric charges or axial 
charges. In this case the 125 GeV Higgs is the composite Higgs and 
the 750 GeV resonance is the techni-dilaton or the techni-pion or 
techni-eta in the scenario of WTC.

Note added

After this paper is finished, it appeared the paper [34] which 
studies a similar problem but for the weakly interacting new 
(pseudo) scalars.

3 In the case of one-family WTC model, the neutral techni-pion is conjectured 
to the 750 GeV resonance [14]. In this model, the number of technicolor NTC = 3, 
the techni-pion decay constant Fπ = 123 GeV, and c A ḡ A = 1/(2π)2, which gives 
aNP
μ ≈ 6 × 10−11.
4 However, if we introduce too many electrically-charged techni-fermions or a 

techni-lepton with too large electric charge, QED or U (1)Y might develop a Landau 
pole at much below the Planck scale.
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