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Abstract

We calculate the background field equations for the T-duality symmetric string building on previous work by including the effect of the dilaton
up to two-loops. Inclusion of the dilaton allows us to obtain the full beta functionals of the duality symmetric sigma model. We are able to interpret
the result in terms of a dimensionally reduced O(d,d) invariant target space effective action.
© 2008 Published by Elsevier B.V.
1. Introduction

Recently there has been much interest in the study of non-
geometric backgrounds and in particular T-folds [1]. These are
target spaces in which locally geometric patches are glued with
transition functions taking values in the T-duality group. Al-
though these T-folds are certainly a part of any string landscape
they have proven to be surprisingly elusive to construct explic-
itly.

To understand string theory more easily on such target
spaces it is natural to promote T-duality to be a manifest sym-
metry of the sigma model action [2]. One recent proposal to
do just this is the ‘Doubled Formalism’ in which a target space
with a T d fibration is extended to one with a T 2d fibration [3,4].
The additional d bosons in the doubled fibration are constrained
so that they are identified with the T-dual. The sigma-model in
this formalism has been shown to be equivalent to the standard
sigma-model classically. Equivalence at the quantum level has
been shown for the d = 1 case in the partition function [7,9]
and in canonical quantisation with Dirac brackets [8].

One important question on the quantum equivalence is to un-
derstand the beta functions. It is not at all obvious that these
should be the same as the standard sigma model; they may
receive interesting corrections from the T-dual. This was par-
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tially answered in [10] where the ultra-violet Weyl divergence
coefficients of the doubled sigma-model were calculated. The
geometric interpretation of these Weyl divergences was unclear
from the point of view of a doubled target space. It was only
after integrating out the additional T-dual bosons that the di-
vergences were seen to be equivalent to those obtained for the
standard sigma model.

We should ask what meaning the doubled-beta functions
have in their own right without eliminating the dual coordinates.
This is an interesting question since one might hope to find
T-fold solutions more readily by trying to find doubled target
spaces which satisfy the vanishing of the doubled-beta func-
tions. However, as we show in this Letter, the correct geometric
interpretation of the doubled-beta functions is, perhaps surpris-
ingly, not in terms of either the doubled or non-doubled target
spaces. In fact, the beta functions yield the field equations for
the dimensional reduction of the standard target space theory.
This dimensionally reduced theory has manifest O(d,d) sym-
metry. This connection between the manifest O(d,d) theory
and T-duality manifest world sheets has been discussed previ-
ously in [11].

In this Letter we shall begin by very briefly reviewing the
formalism and approach of [10]. We will then extend these re-
sults to include the contribution of the dilaton to first order
in α′. After extracting the full beta functions (related to the
Weyl divergence by demanding target space diffeomorphism
invariance) we finally demonstrate their target space interpre-
tation.
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1.1. Formalism and review of results

The doubled formalism [1,3,4] is an alternate description of
string theory on target spaces that are locally T d bundles, with
fibre coordinates Xi , over a base N with coordinates Ya . The
fibre is doubled to be a T 2d with 2d coordinates X

A. The dou-
bled sigma model then has Lagrangian1

(1)L = 1

4
HAB(Y )dX

A ∧ ∗dX
B +L(Y ),

where L(Y ) is the standard Lagrangian for a string on the base
and H(Y) is a metric on the fibre which is assumed to depend
only on the base coordinates.2 One may choose a frame where
the metric H has an O(d,d)/O(d) × O(d) coset form as fol-
lows:

(2)HAB(Y ) =
(

h − bh−1b bh−1

−h−1b h−1

)
.

h and b are the target space metric and two-form field on the
fibre of the un-doubled space. In this frame X

A = (Xi, X̃i) with
{X̃i} the coordinates on the T-dual torus. To eliminate the extra
degrees of freedom, the doubled sigma model is supplemented
with a set of worldsheet constraints

(3)dX
A = LABHBC ∗ dX

C,

where the L is an O(d,d) invariant metric such that HL−1H =
L. In the basis where H is given by (2),

(4)LAB =
(

0 1
1 0

)
.

We may introduce vielbeins to change to a basis where H =
diag(1 ,1), L = diag(1 ,−1) and the constraint (3) is seen to be
a chirality constraint on the bosons. In [10] this constraint was
incorporated into the action using the method of Pasti, Sorokin
and Tonin [12]. The resulting action, after gauge fixing the PST
symmetry, looks like two copies of the Floreanini–Jackiw ac-
tion [13]. In the basis of (2) the action we obtain is

S = 1

2

∫
d2σ

[−Gαβ∂1X
α∂1X

β +Lαβ∂1X
α∂0X

β

(5)+Kαβ∂0X
α∂0X

β
]
,

where Xα = (XA,Y a) and

Gαβ =
(

HAB 0
0 gab

)
, Lαβ =

(
LAB 0

0 0

)
,

(6)Kαβ =
(

0 0
0 gab

)
,

1 The complete formalism also introduces a 1-form connection for the fibra-
tion which we set to zero here. There is also a topological term which plays
no role in our discussion although it is vital to obtaining the equivalence of the
doubled to the non-doubled partition functions [7].

2 Our conventions are that the worldsheet signature is (+,−), ∂± = ∂0 ± ∂1,

ε01 = 1 = ε01 and for convenience we have dropped an overall factor of 2π .
The factor of 1

4 in (1) is half the usual normalisation and is required to make
contact with the standard sigma model.
in which gab is the standard sigma model metric for the base.3

This action is a generalisation of Tseytlin’s duality symmetric
formalism [5,6]. The equations of motion on the fibre integrate
correctly to give the constraint (3) and hence the string wave
equation.

1.2. UV divergences

In [10] the ultra-violet divergences in the doubled formalism
were studied by performing a background field expansion [14]
of the action (5). The fields Xα were written as the sum of a
classical piece Xα

cl and a quantum fluctuation ξα .4 One expands
the exponential of the action to quadratic order and takes Wick
contractions of ξ to determine the one-loop ultra-violet or Weyl
divergence. Since the action (5) is not manifestly worldsheet
Lorentz covariant extra care there are some subtleties and we
refer the reader to [10] for more details.

The result found in [10] was that the L∂1X∂0X term pro-
duced no divergence but that metric term G∂1X∂1X term
did produce divergences with a coefficient which we denote
by Wαβ . These differed from the doubled space Ricci tensor
(which is the geometric quantity one would naively have ex-
pected) and are given by

(7)Wαβ =Rαβ + Sαβ,

where Rαβ is the doubled space Ricci tensor and

(8)Sαβ =
(

0 0
0 − 1

8 tr(∂aH∂bH
−1)

)
.

In component form, we have on the base

(9)Wab = R̂ab + 1

8
∂aHAB∂bH

AB,

where R̂ab is the Ricci tensor constructed from the base metric
g alone. And on the fibre

WAB = −1

2
∂2HAB + 1

2

(
(∂aH)H−1(∂aH

))
AB

(10)+ 1

2
Γ t

abg
ab∂tHAB.

The divergence differs from the doubled space Ricci tensor by
an extra factor of 1/2 in the term on the base containing the
doubled fibre metric H . This is essential to make contact with
the standard sigma-model in [10], it compensates for a doubled
counting coming from doubling the fibre. This difference how-
ever makes it very hard to see a geometric interpretation of the
divergence in the doubled picture. We shall return to address
this later but first let us examine how the dilaton changes the
picture.

3 Notation: Calligraphic objects with Greek indices refer to the total doubled
space; uppercase Roman objects with uppercase Roman indices refer to the
doubled fibre; lowercase Roman objects correspond to the non-doubled picture
with early alphabet lowercase Roman indices denoting the base and late indices
denoting the non-doubled fibre. Hatted objects are those constructed out of the
base metric only.

4 Precisely, ξ is the tangent vector of the geodesic between the classical and
quantum values.
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2. Inclusion of the dilaton

The doubled dilaton Φ is related to the standard dilaton φ by

(11)Φ(Y) = φ(Y ) + 1

2
ln deth

and is included into the string action (even in the doubled for-
malism) with a standard Fradkin–Tseytlin term5

(12)Sdil = 1

8π

∫
d2σΦ(Y )R(2).

We emphasis that this term is an order of α′ up on the rest of
the doubled string action. We should remark that in the con-
formal gauge (which we have used to do the background field
expansion) the dilaton decouples from the theory.

2.1. Generalised conformal invariance

We can understand how the dilaton enters into the metric
Weyl divergence in a slightly indirect way [17]. Consider start-
ing with a sigma model with no dilaton term. To demand that
the sigma model is Weyl anomaly free we do not actually need
that Wαβ is identically zero. Since the sigma model should not
be affected by on-shell target space field transformation induced
by Xα → Xα + V α we only need that the Weyl divergence is
zero up to such redefinition. Therefore we demand that the full
beta function vanishes, that is:

(13)βαβ =Wαβ −DαVβ = 0.

As explained in [17] we should restrict Vβ to be the derivative
of a scalar which we are led to associate with the dilaton. Hence

(14)βαβ =Rαβ + Sαβ −DαDβΦ = 0.

We express this on the base and fibre and obtain:

(15)βab = R̂ab + 1

8
∂aHAB∂bH

AB − ∇̂a∇̂bΦ,

βAB = −1

2
∇̂2HAB + 1

2

(
(∇̂aH)H−1(∇̂aH

))
AB

(16)− 1

2
∇̂aHAB∇̂aΦ.

We have chosen to express these with hatted covariant deriv-
atives constructed out of the base metric gab and the reader
should bear in mind that these objects are actually blind to in-
dices on the fibre, e.g.,

∇̂aHAB = ∂aHAB, ∇̂2HAB = ∂a∂
aHAB + Γ̂ a

ab∂
bHAB.

With this notation we are tempted to think of fibre indices as
not really labeling target space coordinates but labeling mod-
uli fields contained in H . In other words it seems like these
beta-functionals may have a geometric interpretation in a tar-
get space that has been dimensionally reduced so that only the
base coordinates remain. We will see later that this is indeed a
sensible interpretation.

5 Note the normalisation of 1
8π

which is for later convenience. A different
normalisation would require amending the relation between Φ and φ.
2.2. Dilaton beta function

Now let us consider the dilaton beta function. The leading
order part will be the familiar

(17)βΦ = 26 − D

6
+ O(α′),

where D is the dimension of the non-doubled target space. The
reason for this is seen quite clearly by counting the central
charge c of the doubled theory; if we double d coordinates we
have D + d bosons however 2d of them are chiral and only
count half in the central charge. We thus expect the central
charge to remain equal to the standard target space dimension.
The factor of 26 arises from the determinant that arise from in-
tegration over world sheet metrics [15]. From here on we shall
work in the critical dimension.

The next order in α′ contribution is more complicated. There
are two sources of contributions, namely those which are 1-
loop and arise from the background field expansion of Sdil to
quadratic order and those which are 2-loops and arise from the
expansion of the action (5).

Let us first evaluate the one loop contribution. Since the dila-
ton action is the same as for the standard string we can read off
the 1-loop result that

(18)βΦ = 1

2
α′(−2DαDαΦ − (DΦ)2 + 2-loops

)

(19)= 1

2
α′(−2∇̂a∇̂aΦ − (∇̂Φ)2 + 2-loops

)
.

We have used that Γ I
Ia = trH−1∂aH = 0 to get to the second

line.
To evaluate the two loop contribution we need to background

field expand (5) to third and fourth order. The relevant terms
are those that do not directly couple to the classical fields ∂Xα

and whose contractions have a power counting of p−2. At third
order we find

(20)

S(3) = 1

2

∫
Lαβ;γ ξγ D0ξ

αD1ξ
β +Kαβ;γ ξγ D0ξ

αD0ξ
β + · · · ,

and at fourth order

S(4) = −1

6

∫
RασδβD1ξ

αD1ξ
βξσ ξδ + 1

48

∫ [
12Lαβ;σδ

+ 4
(
LαρRρ

σδβ +LβρRρ
σδα

)]
D0ξ

αD1ξ
βξσ ξδ

+ 1

48

∫ [
12Kαβ;σδ + 8KαρRρ

σδβ

]

(21)× D0ξ
αD0ξ

βξσ ξδ + · · · ,
where the dots signify contributions not relevant for the dila-
ton.

So to calculate the quantum effective action we will need to
calculate the wick contractions of the exponential of the action.
That is, we will have to consider 〈(S(3))2〉 and 〈S(4)〉. One could
find the correct propagator contractions by considerations sim-
ilar to those in the appendix of [10]. It would, of course, be a
matter of some considerable detail to calculate all the diagrams
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needed. However we can quickly see by taking a few test con-
tractions of Rαβσδ with Gαβ,Lαβ and Kαβ that the result, which
must be a scalar, will be given in terms of two underlying ob-
jects; the base Ricci scalar R̂ and two-derivative contractions of
the fibre coset metric H .

So with constants A and B undetermined we will have

(22)

βΦ = α′

2

(−2∇̂a∇̂aΦ − (∇̂Φ)2 + AR̂ + B
(∇̂aH

−1∇̂aH
))

.

2.3. Integrability condition

We shall use an indirect way to determine these coefficients.
For the standard string the vanishing of the metric beta function
and the Bianchi identity imply that the divergence of the metric
beta function is equal to the gradient of some scalar. This scalar
is identified as the dilaton beta function. We show that with a
little extra work the same is true for the doubled case, that is

(23)Dαβ(G)αβ =Dββ(Φ).

It is straightforward to see that

(24)Dαβ(G)αβ =Dα(Rαβ + Sαβ −DβDαΦ)

= 1

2
Dβ

(
R− 2D2Φ − (DΦ)2)

(25)+ SαβDαΦ +DαSαβ.

It is also easy to see that on the fibre (when β = B) both sides
of (23) are zero by the assumption that no fields depend on the
fibre coordinates. So we will need to evaluate this expression
on the base (when β = b). We find

Dαβαβ

∣∣
β=b

= ∇̂b

(
R̂

2
+ 1

8
tr
(∇̂aH ∇̂aH−1) − ∇̂2Φ − 1

2
(∇̂Φ)2

)

(26)+ (
DαSαβ + SαβDαΦ

)∣∣
β=b

.

To proceed we are going to need a suitable Bianchi-like iden-
tity for Sαβ to allow us to pull out a total derivative. We can
find such an expression by consider the base components of the
doubled space Bianchi identity,

(27)DαRαβ

∣∣
β=b

= 1

2
DβR

∣∣
β=b

.

On the right-hand side one finds

(28)
1

2
∇̂bR = ∇̂b

(
1

2
R̂ + 1

8
tr
(∇̂aH

−1∇̂aH
))

,

whilst on the left one finds with a bit of manipulation

DαRαβ

∣∣
β=b

= ∇̂aR̂ab + 1

4
tr
(∇̂aHH−1∇̂bHH−1∇̂aHH−1)

(29)− 1

4
tr
(∇̂aHH−1∇̂a∇̂bHH−1).

After equating these last two expression (and using the Bianchi
identity of the base Ricci tensor) we have an identity that allow
us to see that
1

2
∇̂b tr

(∇̂aH
−1∇̂aH

) = tr
(∇̂aHH−1∇̂bHH−1∇̂aHH−1)

(30)− tr
(∇̂aHH−1∇̂a∇̂bHH−1).

We now look at the S terms in (26). For the first we have

(31)DαSαβ

∣∣
β=b

= −1

8
∇̂a tr

(∇̂aH ∇̂bH
−1)

= −1

8
tr
(∇̂2H ∇̂bH

−1)

− 1

4
tr
(∇̂aHH−1∇̂bHH−1∇̂aHH−1)

(32)+ 1

8
tr
(∇̂aHH−1∇̂a∇̂bHH−1).

For the second we find

SαβDαΦ
∣∣
β=b

= −1

8
tr
(∇̂bH

−1∇̂aH
)∇̂aΦ

(33)= −1

8

(∇̂bH
IJ

)∇̂aHIJ ∇̂aΦ.

We can now use the vanishing of the fibre components of the
doubled metric beta function (16) to swap the dilaton for some
more terms involving H . We find

SαβDαΦ
∣∣
β=b

= 1

8
tr
(∇̂bH

−1∇̂2H
)

(34)+ 1

8
tr
(∇̂aHH−1∇̂bHH−1∇̂aHH−1).

Upon invoking the identity (30) we find that

(35)
(
DαSαβ + SαβDαΦ

)∣∣
β=b

= − 1

16
∇̂b tr

(∇̂aH ∇̂aH−1).
Thus from the integrability condition (23) we determine the
dilaton beta function to be

(36)

βΦ = α′

2

(
−2∇̂a∇̂aΦ − (∇̂Φ)2 + R̂ + 1

8

(∇̂aH
−1∇̂aH

))
.

3. Target space interpretation

For the standard string a result of fundamental importance is
that the beta functions can be connected to the field equations
of a target space theory [16]. The identification is schematically
given by

(37)βG − 1

α′ Gβφ ∼ δGS,

(38)
1

α′ β
φ ∼ δφS,

(39)βmatter ∼ δmatterS,

where S is the action for the target space theory. Given that we
have seen that the beta functions appear geometric in a dimen-
sionally reduced target space it is naturally to guess that the
correct target space theory is the dimensional reduction of the
standard bosonic string target space theory. We now show that
this is indeed the case.
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Starting with the d = 26 bosonic space time action,

(40)S26 =
∫

d26x
√−Geφ

{
R(G) + (∇φ)2 − 1

12
H 2

}
,

we reduce on T d with the relevant ansatz (in this case a simpli-
fied diagonal reduction) given by

G =
(

h(Y ) 0
0 g(Y )

)
, B =

(
b(Y ) 0

0 0

)
,

(41)φ(Y ) = Φ(Y) − 1

2
ln deth.

With this ansatz we see that the T-dual invariant (i.e., doubled)
dilaton Φ emerges in the reduced action since

(42)
√−Geφ = √−g

√
heφ = √−geφ+ 1

2 ln deth = √−geΦ.

This expression also helps understand the choice of normalisa-
tion of (12). The standard result is a low energy effective action
which displays manifest O(d,d) symmetry, e.g., [11,18]

S26−d = vol
(
Md

)∫
d26−dy

√−geΦ

{
R̂(g) + (∇̂Φ)2

(43)+ 1

8
tr
(
L∇̂aHL∇̂aH

)}
.

The fields arising from the internal components of the metric
and B-field are thought of as moduli in that they parametrise the
vacuum of the dimensionally reduced theory. They have been
organised in an O(d,d) invariant way by placing them in coset
metric HIJ .

We can see that the reduced action does not ‘remember’
which T-dual compactifaction it arose from. In this sense it is
natural to expect a clear linkage with the doubled formalism.
In performing this dimensional reduction we assumed that the
fields had no dependence on the internal coordinates. This as-
sumption does not contradict the general aim of understanding
T-folds since a non-trivial fibration over the base is still allowed.

From the variation with respect to the metric we find Ein-
stein’s equation:

(44)0 = R̂ab − 1

2
gabR̂ − Tab,

where the stress-energy is given as

Tab = ∇̂a∇̂bΦ − gab∇̂2Φ − 1

2
gab(∇̂Φ)2

(45)− 1

8

(
tr
(∇̂aH

−1∇̂bH
) − 1

2
gab tr

(∇̂aH
−1∇̂aH

))
.

Varying with respect to the fields H

(46)0 = ∇̂(
eΦH−1∇̂H

)

(47)

= eΦHIJ
(∇̂2HIJ + ∇̂aΦ∇̂aHIJ − (∇̂aHH−1∇̂aH

)
IJ

)
,

and from the dilaton

(48)0 = −2∇̂2Φ − (∇̂Φ)2 + R̂ + 1

8
tr
(∇̂H−1∇̂H

)
.

Immediately we see that fibre components of the doubled
metric beta function βIJ , given by (16), are proportional to the
field equations for HIJ (46), the doubled dilaton beta func-
tion βΦ is proportional to the field equation for Φ (48) and
the identification rules (37)–(39) are satisfied with the base beta
function βab playing the role of the βG in (37).

4. Conclusions

We conclude by making a few remarks about potential gen-
eralisations. In general the dimensional reduction above in-
cludes a U(1)2d gauge field coming from isometries of the T d

and transformations of the B-field on the fibre. It would be nice
to shown that these fields arise when one considers a connec-
tion in the doubled-fibration. However, in this case it becomes
more subtle to find the constrained action akin to (5). It seems
that the PST procedure would result in off-diagonal elements in
both G and L. This would significantly increase the computa-
tional burden in calculating the Weyl divergences.

To summarise, we have shown that the full beta-functions
of the T-duality symmetric string led to a O(d,d) invariant di-
mensionally reduced target space theory. This was perhaps to
be expected though the utility of this Letter is that the detailed
relationship between the string in the doubled geometry and the
equations of motion of the background are now made manifest.
One hopes this may ultimately lead to a better understanding of
how T-folds may work.

Note added

When this Letter was in preparation two papers appeared concerning inter-
esting aspects of T-folds and doubled geometry [19].
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