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Pakorn Wattana-Amorn,5 Matthew P. Crump,5 John Crosby,5 and Paul F. Long1,*
1School of Pharmacy, University of London, 29-39 Brunswick Square, Bloomsbury, London WC1N 1AX, UK
2Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
3Department of Genetics, University of Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany
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SUMMARY

Aklanonic acid is synthesized by a type II polyketide
synthase (PKS) composed of eight protein subunits.
The network of protein interactions within this com-
plex was investigated using a yeast two-hybrid sys-
tem, by coaffinity chromatography and by two differ-
ent computer-aided protein docking simulations.
Results suggest that the ketosynthase (KS) a and b

subunits interact with each other, and that the KSa

subunit also probably interacts with a malonyl-CoA:
ACP acyltransferase (DpsD), forming a putative min-
imal synthase. We speculate that DpsD may physi-
cally inhibit the priming reaction, allowing the choice
of propionate rather than acetate as the starter unit.
We also suggest a structural role for the cyclase
(DpsY) in maintaining the overall structural integrity
of the complex.

INTRODUCTION

The diversity of biological processes is due to dynamic associa-

tions between cellular components, including noncovalent pro-

tein-protein and protein-ligand interactions (Parrish et al., 2006).

For a number of metabolic pathways, several enzymes that

catalyze sequential reactions often associate noncovalently to

form a multienzyme complex. Such complexes afford increased

reaction rates and protect labile intermediates from decomposi-

tion by channeling intermediates directly from one active site to

another. Studies on enzyme complex formation and substrate

channeling are essential for a better understanding of metabo-

lism. To achieve this, we need to know the reactive groups

involved at the active sites of the enzymes, the amino acids in-

volved in surface binding sites, the specific order in which the

large protein complexes are assembled, and the overall topology

of the complex. Polyketides are a large and structurally diverse

group of natural products that display an impressive range of

biological activities of major economic importance to the phar-

maceutical and agrochemical industries. These compounds are

synthesized by large multienzyme systems called polyketide

synthases (PKSs) that catalyze the sequential decarboxylative
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condensation between short chain coenzyme A (CoA)-derived

carboxylic acids by a mechanism analogous to fatty acid bio-

synthesis. The growing carbon chain backbone then undergoes

regio- and stereoselective modification to give the final natural

product.

Type II PKSs consist of several discrete, monofunctional pro-

teins that form a dissociable complex, usually leading to the

biosynthesis of aromatic polyketides (Hertweck et al., 2007). A

minimal type II PKS is formed on association of a ketosynthase

(KS), termed KSa, a KS homolog lacking the active site cysteine,

often referred to as the chain length factor (CLF) or KSb, and an

acyl carrier protein (ACP). This minimal system controls starter

unit selection, chain length, and the first cyclization of the nascent

polyketide chain. A fourth enzyme, malonyl-CoA:ACP acyltrans-

ferase (MCAT), may be required for substrate loading in vivo

(Revill et al., 1995; Summers et al., 1995), although the demon-

stration of an inherent malonyl transferase activity of the type II

ACP indicates that MCAT may not be needed in vitro (Hitchman

et al., 1998; Matharu et al., 1998). Additional enzymes, such as

ketoreductase (KR), cyclase (CYC), and aromatase (ARO), associ-

ate with the minimal complex to generate aromatic natural prod-

ucts (McDaniel et al., 1995; Kramer et al., 1997; Funa et al.,

1999; Petkovic et al., 1999). There is currently very little detailed

information about the three-dimensional (3D) organization of

type II PKS complexes, a factor that undoubtedly limits the ratio-

nal design of novel polyketides in these systems. Much more in-

formation is available on individual protein structures associated

with type II PKSs.The X-ray structure of the heterodimericKS/CLF

from Streptomyces coelicolor has been solved and the cavity that

determines chain length identified (Keatinge-Clay et al., 2003). A

number of solution structures for PKS ACPs are available (Crump

et al., 1997; Findlow et al., 2003; Li et al., 2003), although, as yet,

the exact nature of the protein-protein interactions between the

carrier protein and the KS/CLF heterodimer that allow the forma-

tion of an active minimal complex remain to be identified. Several

auxiliary enzymes that may interact either with the minimal com-

plex or the ACP component of the complex have also been struc-

turally characterized. These include the KR from S. coelicolor

(Hadfield et al., 2004; Korman et al., 2004), the methyltransferase

from Streptomyces peucetius (Jansson et al., 2004), and the CYC

from Streptomyces nogalater (Sultana et al., 2004), Streptomyces

glaucescens (Thompson et al., 2004), and Streptomyces galilaeus

(Sultana et al., 2004). The CYC may be particularly important for
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Table 1. Matrix of Possible Protein-Protein Interactions for the Entire Daunorubicin/Doxorubicin-Producing PKS Measured Using

a Y2H Assay

Prey

Bait

A (KSa) B (KSb) C (KSIII) D (MAT) G (ACP) E (KR) F (ARO) Y (CYC)

A (KSa) AA++ AB++ AC AD AG+ AE AF+ AY+

B (KSb) BA BB BC BD+ BG+ BE+ BF+ BY

C (KSIII) CA CB CC CD CG+ CE+ CF+ CY+

D (MAT) DA++ DB+ DC DD DG+ DE++ DF+ DY+

G (ACP) GA GB GC GD GG GE+ GF GY+

E (KR) EA EB EC ED+ EG+ EE EF+ EY+

F (ARO) FA+ FB FC FD+ FG+ FE+ FF+ FY+

Y (CYC) YA++ YB++ YC+ YD++ YG YE++ YF YY++

ACP, acyl carrier protein; ARO, aromatase; CYC, cyclase; KR, ketoreductase; KS, ketosynthase; MCAT, malonyl-CoA:ACP acyltransferase. ‘‘++’’

indicates strong interactions revealed by nutritional selection, while ‘‘+’’ indicates weak interactions revealed by LacZ b-galactosidase assay.
the stability of the overall complex, as its addition eliminates the

production of shorter polyketides as well as increasing the turn-

over of the complex (Yu et al., 1998).

Daunorubicin (DNR) and the C-14 hydroxylated derivative,

doxorubicin, are among the most widely used antitumor anthra-

cyclines (Minotti et al., 2004). Both anthracyclines are produced

by S. peucetius through a pathway involving a type II PKS (Kea-

tinge-Clay et al., 2004). This PKS catalyzes the condensation

between a propionyl-CoA starter unit and nine malonyl-CoA ex-

tender units, producing a 21 carbon decaketide. Aldol conden-

sation followed by C-12 oxidation of the decaketide leads to the

formation of the first enzyme-free intermediate, aklanonic acid.

The gene cluster encoding DNR biosynthesis consists of eight

genes, designated dpsA, -B, -C, -D, -G, -E, -F, and -Y (Grimm

et al., 1994). Genes dpsA and -B encode the KS and CLF en-

zymes, while the ACP is encoded by dpsG, unusually positioned

6.8 kb upstream of the position seen in other type II PKSs. This

PKS is also unusual in the choice of a propionate rather than

an acetate starter unit (Rajgarhia and Strohl, 1997), with the en-

zymes encoded by dpsC and -D playing a crucial role in the

specification of this starter unit (Bao et al., 1999a, 1999b). The

enzyme encoded by dpsC is a homolog of the b-ketoacyl: ACP

synthase III (KASIII) responsible for the condensation between

the starter unit and the first extender unit, while dpsD encodes a

proposed MCAT (Rajgarhia and Strohl, 1997). The genes dpsC

and -D are rare, and equivalent enzymes have only been de-

scribed in this and other type II PKS clusters that utilize nonace-

tate starters (Bibb et al., 1994; Piel et al., 2000; Raty et al., 2002).

Their role in starter unit selection is not, however, entirely clear,

as deleting dpsC but not dpsD shifted starter unit selection

from propionate to predominantly acetate (Rajgarhia and Strohl,

1997), suggesting that dpsC and not dpsD contributes to, but

does not dictate, starter unit selection. The dpsE gene product

is a KR, with dpsF coding for an ARO (Meurer et al., 1997).

Although initial studies failed to identify the function of dpsY (Lo-

movskaya et al., 1998), it was known to be essential for the pro-

duction of DNR in S. peucetius, as its deletion leads to the forma-

tion of aberrant cyclization products. Its function as a CYC was

later confirmed (Wohlert et al., 2001). To date, few of the type II

DNR PKS enzymes have been expressed and purified; none have

been structurally characterized. In this article, we extend our

initial studies (Castaldo et al., 2005) to obtain further information
Chemistry & Biology 15, 1156–11
on the in vivo protein-protein interactions involved in the bio-

synthesis of aklanonic acid.

RESULTS AND DISCUSSION

Investigating Protein-Protein Interactions
Using a Yeast Two-Hybrid System
To investigate interactions between proteins forming the minimal

aklanonic acid-producing PKS (Grimm et al., 1994; Hutchinson

and Colombo, 1999), the genes encoding the KS subunits (a,

dpsA; b, dpsB), the ACP (dpsG), the KASIII (dpsC), and MCAT

(dpsD) were cloned and assayed as both prey and bait using

a matrix of all possible protein interactions (Table 1). All potential

interactions were tested independently three times along with

the relative controls. Strong interactions were assessed by nutri-

tional selection using ADE2 and HIS3 markers. The results from

these assays (Table 1) suggest that DpsA (KSa) interacted with

DpsB (KSb or CLF). Such an interaction between the KS subunits

has been described for many complexes. It has also been known

for some time that, if the equivalent subunits from other type II

PKS systems are expressed and purified, they coelute, suggest-

ing strong, noncovalent interactions (Carreras and Khosla, 1998;

Matharu et al., 1998). These interactions can be identified from

the crystal structure of the actinorhodin KS/CLF heterodimer

(Keatinge-Clay et al., 2004). The assays also suggest that KSa

(DpsA) interacts strongly with itself, in contrast to the actinorho-

din KSa, which is monomeric (Keatinge-Clay et al., 2004). Struc-

tural studies of the actinorhodin KSa-KSb have demonstrated

that these two proteins form an amphipathic tunnel, with polyke-

tide synthesis at the heterodimer interface (Keatinge-Clay et al.,

2004). This structure is thought to predict overall chain length

as well as partially specifying correct first-ring cyclization. The

aklanonic acid-producing KSa-KSb proteins also show strong

interactions and, by analogy with the actinorhodin system, may

dictate chain length and correct cyclization in a similar fashion.

It has been suggested that the actinorhodin KSb acts as a ma-

lonyl-CoA decarboxylase, thereby generating the acetyl-ACP

starter for this biosynthetic pathway (Bisang et al., 1999). This

has not been unanimously accepted, with the KSa implicated

as the alternative source of the decarboxylase activity (Dreier and

Khosla, 2000), nor has such an activity been identified in KSb

(DpsB). It is known that acetyl-CoA can act as a starter unit in
65, November 24, 2008 ª2008 Elsevier Ltd All rights reserved 1157
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anthracycline biosynthesis, suggesting that decarboxylation by

either of the KS subunits would be unnecessary (Rajgarhia and

Strohl, 1997). Decarboxylation has not been ruled out, however,

and the weak interactions between ACP and both of the KS sub-

units suggest that this may still be a possibility.

Interestingly, the nutritional selection assays also revealed a

strong interaction between KSa (DpsA) and the MCAT, DpsD,

but its role in aklanonic acid biosynthesis is not clear, as deletion

of dpsD from the gene set does not affect compound production

(Grimm et al., 1994). In addition, initial experiments involving

heterologous expression of all of the genes involved in aklanonic

acid production, but excluding dpsC and dpsD, seemed to result

in synthesis of the correct tricyclic 21 carbon intermediate (Raj-

garhia and Strohl, 1997). However, the polyketide SEK43 was

produced in subsequent in vitro studies, indicating the use of

acetyl, and not propionyl-CoA, to form this aberrant cyclized

product (Meurer et al., 1997). The anthracycline, feudomycin D,

could also be isolated from the dpsC and dpsD mutant (Rajgar-

hia and Strohl, 1997). This anthracycline is formed via desmethy-

laklanonic acid, again an acetate-initiated polyketide, with mis-

cyclization to SEK43 prevented by the presence of additional

cyclases. DNR is also produced in this system, but only at 40%

of control levels. The correct propionate starter could only be en-

sured if dpsC (though not necessarily in tandem with dpsD) was

present, confirming the suggestion that the dpsC gene product

specifies propionyl starter unit selection (Grimm et al., 1994; Raj-

garhia et al., 2001). It has been suggested that KASIII (DpsC),

along with KSa (DpsA) and KSb (DpsB), are together responsible

for this process, so it is surprising that KASIII (DpsC) does not ap-

pear to interact strongly with the KS subunits, nor does it interact

with MCAT (DpsD), suggesting that these are not a tandem pair

of enzymes. The MCAT (DpsD) does not appear to select the

CoA-derived polyketide starter, and its absence in vivo still leads

to the production of aklanonic acid. In vitro, however, extracts

containing all of the PKS genes, except MCAT (DpsD), failed to

produce any polyketide products irrespective of whether pro-

pionyl- or acetyl-CoA were provided to initiate the biosynthesis

(Rajgarhia et al., 2001), suggesting a structural role within the

complex. This has also been observed for other type II systems

that contain an MCAT (DpsD) homolog (Tang et al., 2004), sug-

gesting instability in the PKS complex that may be compensated

for in vivo by other cellular components. Indeed, crosstalk be-

tween the S. coelicolor FAS malonyl transferase and the actino-

rhodin PKS complex has previously been suggested (Summers

et al., 1995; Raty et al., 2002). Alternatively, MCAT (DpsD) may

act as an acyl-ACP thioesterase, which selectively hydrolyzes

acetyl groups, thereby favoring propionyl starter selection. This

activity has been described for ZhuC, a homologous enyzyme

to MCAT (DpsD), which acts as part of the initiation module from

the R1128-producing PKS (Tang et al., 2003).

No strong interactions between the dpsG gene product (the

ACP), and either the KS subunits (DpsA and B), or KASIII (DpsC)

or MCAT (DpsD), could be detected, suggesting that interactions

between the ACP and these components of the complex are

weak or transient. No phosphopantetheinyl (PPT) transferase

(PPTase) has yet been identified that is involved in secondary

metabolism in Saccharomyces cerevisiae (Wattanachaisaeree-

kul et al., 2008). It has been demonstrated that heterologous ex-

pression of the 6-methylsalicylic acid synthase from Penicillium
1158 Chemistry & Biology 15, 1156–1165, November 24, 2008 ª200
patulum in S. cerevisiae does require coexpression of an exoge-

nous PPTase to convert apo-ACP to its holo form (Kealey et al.,

1998; Wattanachaisaereekul et al., 2008). PPT phosphate may

well be a major binding-energy contributor, so it is feasible that

no strong interactions between the ACP (DpsG) and the other

domains were observed because the ACP (DpsG) was in the apo

form when expressed in S. cerevisiae for the yeast two-hybrid

(Y2H) assay. For this reason, and in order to investigate poten-

tially weaker interactions between the proteins of the minimal

DNR PKS, LacZ assays were performed on combinations where

no interactions could be observed by nutritional selection (shown

in Table 1). When no interactions were detected either by nutri-

tional selection or by lacZ assay, Western blots confirmed pro-

tein expression in the yeast heterologous host (data not shown).

Using the lacZ assay, weak interactions were observed between

the ACP (DpsG) and both of the KS subunits, as well as the KASIII

homolog (DpsC) and the MCAT (DpsD). A homodimeric interac-

tion between two ACPs was not observed. Such an interaction

has been described for several type II PKS ACPs (Hitchman

et al., 1998; Matharu et al., 1998; Florova et al., 2002), an interac-

tion that facilitates the inter-ACP transfer of malonate. It is pos-

sible that, in the aklanonic acid-producing PKS, this acyl transfer

is performed by another component of the complex, possibly

MCAT (DpsD). ACPs are known to be essential for polyketide

production in a number of type II minimal systems (McDaniel

et al., 1995; Matharu et al., 1998), and it has been shown that the

levels of ACP may be a limiting factor in the production of these

secondary metabolites (Decker et al., 1994; Matharu et al.,

1998). A model for the S. coelicolor actinorhodin minimal PKS

complex has been described where the ACP dissociates from

the KS/CLF after each round of condensation (Dreier and Khosla,

2000). This model would also be consistent with the observation

that the ACP interacts weakly with the other components of the

minimal complex. The weak interaction between the ACP and

KASIII (DpsC) supports the hypothesis that the KASIII homolog

acts in the priming reaction catalyzing the condensation of the

starter unit, propionyl-CoA, to a malonyl-CoA extender unit with

the product transferred to the 40-phosphopantetheine thiol of the

ACP. No homodimeric interactions involving KASIII (DpsC) were

observed, as supported by previous studies (Bao et al., 1999a,

1999b), although this appears to be a unique feature in the akla-

nonic acid-producing PKS, since other KASIII-like proteins—for

example, the FabH of Escherichia coli (Qin et al., 2001; Qiu et al.,

2001) and ZhuH in R1128 biosynthesis (Pan et al., 2002)—show

a homodimeric structure.

Finally, the proteins involved in auxiliary processing of the

growing polyketide carbon chain, the KR (DpsE), the ARO (DpsF),

and the CYC (DpsY) were investigated. As before, initial screen-

ing was performed by nutritional selection to indicate the stron-

gest interactions, while weaker interactions were highlighted

using the LacZ assay. Results, shown in Table 1, revealed that

the CYC (DpsY) interacts strongly with the two subunits of the

KS (DpsA and DpsB), with the MCAT (DpsD), and with the KR

(DpsE). The CYC also interacts strongly with itself, suggesting

either a dimeric or tetrameric arrangement, quaternary struc-

tures that have also been observed for the tetracenomycin F2

CYC from S. glaucescens (Thompson et al., 2004) and for SnoaL,

the enzyme catalyzing the last cyclization step in S. nogalater

(Beinker et al., 2006). A stronger interaction was also observed
8 Elsevier Ltd All rights reserved
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between MCAT (DpsD) and the KR (DpsE). For DpsE, there

appears to be no indication of a dimeric form, which has been

described for the actinorhodin KR (Hadfield et al., 2004; Korman

et al., 2004). Weak interactions between all of the enzymes tested

were observed, with the exception of KSa (DpsA) with KR (DpsE),

and KR (DpsE) with itself.

As with all techniques, the interpretation of the results must

take into account the limitations of the methods used, and the

Y2H approach has a number of well-documented disadvan-

tages. False-positive interactions are possible through autoacti-

vation of the bait fusion. False-negative interactions may also

arise through incorrect folding of either the bait or prey chimeric

proteins. Many proteins also require posttranslational modifica-

tions in order to attain the correct structure and full biological

activity, and the Y2H assay may fail to detect proteins whose

interactions depend on such modifications. The necessity for

phosophopantetheinylation of the ACP in order to generate the

active form is well documented (Mootz et al., 2001), although co-

valent modifications have also been identified for other type II

PKS enzymes. Some are subjected to proteolytic processing,

while others show a combination of truncation and covalent

addition (Gramajo et al., 1991; Hesketh et al., 2002). The Y2H sys-

tem may also be unsuitable for the detection of interactions with

membrane proteins, which may be improperly folded due to

exposed, highly hydrophobic patches. This may be a particular

problem for the KS, as this enzyme, which is central to the PKS

minimal complex, may be membrane associated (Gramajo

et al., 1991).

Investigating Protein-Protein Interactions Using
Tandem Affinity Purification
From the Y2H results, KSa (DpsA) appeared to be central to the

formation of a ‘‘minimal’’ PKS, which we speculate to be a homo-

dimer composed of a head-to-tail arrangement of KSa (DpsA),

KSb (DpsB), and MCAT (DpsD). Tandem affinity purification

(TAP) (Rigaut et al., 1999) was used to investigate this associa-

tion further, with the TAP tag fused at the N terminus of KSa

(DpsA). This technique allows purification of protein complexes

under native conditions by using two different affinity purification

steps. Expression of the minimal PKS with the hybrid protein TAP

tag-DpsA was performed under the control of the strong consti-

tutive promoter ermE*p (Carreras and Khosla, 1998) using the

heterologous host S. coelicolor A3(2). Transcription of dpsA,

dpsB, dpsC, dpsD, and dpsG were detected by RT-PCR. The

presence of hybrid protein TAP tag-DpsA was detected by im-

munoblotting using IgG antibody that binds the ProtA epitope lo-

cated at the N terminus of the TAP tag. Subsequent analysis of

the protein eluates collected at the end of the purification step

by SDS-PAGE revealed the presence of only KSa (DpsA) and

KSb (DpsB), which was confirmed by mass spectrometry. Pro-

teins corresponding to KASIII (DpsC), MCAT (DpsD), or the

ACP (DpsG) could not be detected by SDS-PAGE followed by

staining with Coomassie brilliant blue (a one-dimensional [1D]

SDS-PAGE gel is shown in the Supplemental Data available

online—see Figure S1).

Strong interaction between KSa (DpsA) and KSb (DpsB) was

not unexpected, since similar interactions had been predicted

from the X-ray crystal structure of KSa/KSb from the actinorho-

din-producing PKS (Keatinge-Clay et al., 2004) and by copurifi-
Chemistry & Biology 15, 1156–11
cation of these proteins by gel chromatography as an a2b2 het-

erotetramer (Carreras and Khosla, 1998). Comparison with the

crystal structure of the actinorhodin KSa/KSb complex would

suggest that the N terminus of KSa (DpsA) is sufficiently exposed

and not involved in crucial interactions with KSb (DpsB). How-

ever, the presence of the TAP tag in this region of the protein

might have impaired the interaction with the other ‘‘minimal’’

components, such as MCAT (DpsD). Failure to recover KASIII

(DpsC) and the ACP (DpsG) might have been expected, since

these proteins were found to form only weak interactions with

the minimal PKS by the lacZ assay in the Y2H screen. This has

also been suggested by the proposed mechanism of action of

KASIII in type II fatty acid biosynthesis (Jackowski et al., 1989)

and the ACP in the biosynthesis of thiolactomycin by E. coli

(White et al., 2005).

Investigating Protein-Protein Interactions
by Computer Simulation
ClusPro (Comeau et al., 2003) is a fully automated, Web-based

program for docking protein structures. It is designed as a multi-

stage protocol, which first performs rigid body searches using

ZDOCK (Chen et al., 2003). ZDOCK uses fast Fourier transform

to search all possible binding modes for the proteins. Its scoring

functions combine shape complementarity, desolvation energy,

and electrostatics in its calculations. Docked structures are then

filtered using distance-dependent electrostatics and an empirical

potential representing desolvation. The 2000 conformations re-

tained after filtering are clustered based on pairwise root-mean-

square deviation (rmsd), which is the measure of the average

distance between the backbones of the superimposed proteins.

The representative conformations from the 30 largest clusters are

selected and refined using a brief CHARMm minimization

(CHARMm is a program within ClusPro for macromolecular en-

ergy, minimization, and dynamics calculations). In our docking

simulations, the first 10 cluster representatives were retained.

As second docking simulations, PatchDock (Schneidman-

Duhovny et al., 2005), in conjunction with FireDock (Mashiach

et al., 2008), were used to evaluate the results obtained by

ZDOCK. PatchDock (Duhovny et al., 2002) is a geometry-based

molecular docking algorithm. The PatchDock algorithm divides

the Connolly dot surface representation of the molecules into

concave, convex, and flat patches. Complementary patches are

then matched in order to generate candidate transformations.

Each candidate transformation is further evaluated by a scoring

function that considers both geometric fit and atomic desolva-

tion. FireDock (Andrusier et al., 2007) is a method for the refine-

ment and rescoring of the rigid-body docking solutions. Each

candidate generated by the rigid-body docking method was re-

fined using a restricted interface side chain rearrangement and

by soft, rigid-body optimization. Refined candidates are then

ranked by the binding score, which includes atomic contact en-

ergy, softened van der Waals interactions, partial electrostatics,

and additional estimations of the binding free energy. The output

is a ranked list of all the input solutions. For docking simulations,

PatchDock was used with default settings, and the first 100

solutions were refined using Firedock. The top 10 results from

FireDock were retained.

The use of docking algorithms to investigate protein interac-

tions requires knowledge of the tertiary structure of the putative
65, November 24, 2008 ª2008 Elsevier Ltd All rights reserved 1159
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interacting proteins. However, the number of structurally charac-

terized proteins is extremely low compared with the annotated

primary structure of proteins present in databases (Zuiderweg,

2002; Bairoch et al., 2005). Comparative modeling is widely rec-

ognized as a reliable method to generate a 3D model of a target

protein from its primary structure (Tramontano and Morea, 2003;

Moult, 2005). An essential requirement for this method is the

identification of at least one experimentally solved 3D structure

of a protein homolog that can be used as the template.

Solutions could only be reasonably computed for interactions

between DpsA/DpsB, DpsA/DpsD, DpsAB/DpsD, DpsAB/DpsY,

DpsD/DpsY, and DpsD/DpsE. An interaction between KSa

(DpsA), KSb (DpsB), and the ACP (DpsG) could not be predicted

using a monomeric model of KSa (DpsA) and KSb (DpsB). Iden-

tifying the residues involved in the crucial interaction between

the ACP and KS subunits will be a matter of important future re-

search that will require more sophisticated biophysical methods

(e.g., electron microscopy). Both programs returned solutions

for KSa (DpsA) and KSb (DpsB) models that matched the pre-

dicted 2.0 Å X-ray crystal structure of the KS subunits from the

actinorhodin-producing PKS (Figure 1). It was the first solution

from FireDock and the second from ClusPro. The Ca rmsd of

superimposed solutions was 0.42 Å. Stroud and coworkers

(Keatinge-Clay et al., 2003) reported that the two KS subunits

interact via tight complementary contacts that bury over one-

fifth of the surface area of each monomer, forming an amphi-

pathic tunnel. The cavity at the interface of the two monomers

Figure 1. Computational Docking Simulat-

ing the Protein-Protein Interactions between

DpsAB and DpsD

The DpsA (green)/DpsB (red) interaction matches

the predicted 2.0 Å X-ray crystal structure of the

KS subunits from the actinorhodin-producing PKS.

The simulation also supports the Y2H (Table 1)

results where a strong interactions between DpsA/

DpsB and DpsA/DpsD were observed. These

results also suggest that the failure to pull down

an intact DpsAB/DpsD complex could be due to

the design of the coaffinity chromatography, as

discussed in the main text. DpsD is shown in

yellow.

is where the polyketide backbone is syn-

thesized, and its 17.0 Å length influences

the chain length of the growing polyketide

(Keatinge-Clay et al., 2004). A ‘‘grasping

loop’’ structure formed between the a7

helix of the KSa and a8 helix of the KSb

is responsible for the tight interactions

between the two subunits. In particular,

Tyr118 of KSa and the Phe116 of KSb,

were found to be involved in establishing

close interactions. The active sites of the

KSa, Cys169 and Phe116 are thought to

represent the gating residues that regu-

late chain length marking the beginning

and the end of the amphipathic tunnel,

respectively (Keatinge-Clay et al., 2004).

Tyr118 is conserved in the same position in the amino acid se-

quence of KSa (DpsA), whereas Phe116 of KSb is substituted

by leucine on position 118 (Leu118) in the model (position

Leu138 in the primary sequence) of KSb (DpsB). With the substi-

tution of Phe with Leu, the length of the amphiphatic tunnel is in-

creased to�19 Å, possibly reflecting the difference in acyl chain

length between actinorhodin and daunorubicin polyketides. In

a similar fashion to the actinorhodin system, we can speculate,

based on the docking simulation using the predicted 3D struc-

tures of KSa (DpsA) and KSb (DpsB), that the aklanonic acid

backbone is also synthesized in a polyketide tunnel, the length

of which is determined by the distance between the two resi-

dues, Cys169 on DpsA and Leu118 on DpsB (Phe116 on act

CLF). The docking simulation with two DpsA monomers revealed

a complex that was comparable with the crystal structure of the

actinohrodin KS-CLF complex and predicted DpsA-DpsB com-

plex. This was the first solution from both docking methods. The

Ca rmsd of superimposed solutions was 1.92 Å.

The proposed orientation (Figure 1) for the interaction between

DpsAB/DpsD showed that docking of DpsD occurs in a pocket

on DpsA created between helices a2 Pro57-Ala60, a3 Ala64-

Arg69, a6 Thr111-Ser122, and the loop formed from residues

Ser38-Arg46, which is located between helices a1 and a2. In

this interaction, DpsD is involved with two a helices from small

subunit a8 (Gly149–Asn15) and a9 (Val174–Leu184) and the N

terminus of helix a10 (Pro203-Thr219), from which Pro203 and

Met204 are involved in establishing hydrophobic interactions
1160 Chemistry & Biology 15, 1156–1165, November 24, 2008 ª2008 Elsevier Ltd All rights reserved
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with Phe55 from the loop connecting helices 1 and 2 on DpsA. It

is possible that flexible docking would show closer interactions

with the conformational change in the loop connecting helices

1 and 2 in the DpsA. In the Y2H assays, KSa (DpsA) was found

to establish homotypic interactions. In order to investigate

whether this association would have any influence on the orien-

tation of the interaction with MCAT (DpsD), a docking simulation

was also performed between KSa (DpsA), as a homodimer, and

MCAT (DpsD), and the DpsA monomer with DpsD. In both

simulations, matching complexes were the first solutions from

both programs.

The proposed orientation for the docking between MCAT

(DpsD) and the homodimer of the CYC (DpsY) revealed an inter-

esting interface between these two proteins (Figure 2). This was

the eighth solution in Firedock and the third solution in ClusPro.

The MCAT (DpsD) appeared to interact mainly via interactions

established with the C terminus of helix a10 (Pro203–Ser218),

the N terminus of helix a11 (Leu240–Leu252), and the loop con-

necting these helices (Thr219–Gln239). DpsY interacts with both

of its subunits, with DpsD helix a10, penetrating into a pocket

between the monomer subunits. The b1 sheet (Met6–Glu8) and

loop connecting b sheets 2 and 3 from one DpsY monomer,

and the loops connecting sheet b4 and helix a2, and sheet b6

and helix a3 from the second DpsY monomer are involved in the

interaction.

The simulation for the docking between the MCAT and KR

(DpsD/DpsE) revealed a particular interface chosen from the first

solution of FireDock and the second of ClusPro with a Ca RMSD

of 1.92 Å (Figure 2). MCAT (DpsD) takes part in the interaction with

the helices a3 (Arg54–Asp60), a4 (Ala63–Asp67) and the loop

connecting helices a2 and a3 (Asp40–Leu53). This corresponds

to the region between the small subunit and helical flap of MCAT.

The KR (DpsE) contributes to the interface with the C-terminal

region of helix a8 (Glu205–Lys215), a6 (Ala150–Leu170), small

helix a5 (Thr140–Gly142), and the loop connecting helices a5

and a6 (Lys143–Gly149). Hydrophobic amino acid residues are

also likely to be involved in establishing the interaction. The sim-

ulation for the docking between the KS-CLF/CYC (DpsA-B/DpsY)

showed an interesting complex where DpsY dimmer positions

itself on DpsA in the proximity of the entrance to the amphipathic

tunnel. The selected complex was the first solution in FireDock

and the fifth in ClusPro. The DpsY dimer in this solution interacts

with both KS and CLF. DpsY takes part in the interaction mostly

with loops used in subunit binding that interact with helix a16

(Lys314–Tyr333), C terminal of helix a11 (Pro202–Ala210) and a

loop connecting sheet b6 and helix a14 (Asn271–Gly282) on

DpsA, and with helix a7 (Pro126–His128), helix a4 (Lys66–Gln71)

and loop connecting helix a5 and sheet b4 (Ser90–Glu99) on

DpsB. This arrangement of proteins would be favorable to reduc-

ing spontaneous cyclization, and is also in close proximity to the

amphipathic tunnel (Figure 3). This represents what is, to our

knowledge, the first study attempting to analyze in vivo protein

interactions forming a type II PKS. A better understanding of

the protein-protein interactions within the type II PKS complex

should allow us to formulate new design rules for the synthesis

of aromatic polyketides through combinatorial biosynthesis.

SIGNIFICANCE

Using a yeast two-hybrid (Y2H) screen, the core components

forming the polyketide synthase (PKS) complex were the ke-

tosynthase (KS) subunits, predicted to be a heterotetramer

with the two KSa (DpsA) polypeptides interacting strongly

with each other, and with KSb (DpsB). The heterodimeric

core was further extended to include two malonyl-CoA:ACP

acyltransferase (MCAT) (DpsD) polypeptides, again inter-

acting strongly with KSa (DpsA). Correlating our data with

those of previous in vivo and in vitro experiments (Rajgarhia

et al., 2001), we propose that, within the complex, the MCAT

(DpsD) might act in a structural role; perhaps its physical

position prevents chain initiation using an acetate starter.

The cyclase (CYC) (DpsY) was found to interact with all of the

proteins forming the complex, which may indicate a signifi-

cant structural role, maintaining the complex in a biologically

active configuration, as has been suggested for post-PKS

modifying activities of other type II complexes (Petkovic

et al., 1999; Perić-Concha et al., 2005). From the Y2H assays,

KSa (DpsA) was predicted to play a key role in the proposed

head-to-tail arrangement of the ‘‘minimal’’ PKS and, there-

fore, was chosen as the target protein to fuse to the tandem

affinity purification tag. The ‘‘pulldown’’ experiments re-

sulted in the purification of the KSa (DpsA) and KSb (DpsB)

Figure 2. Superimposed Computational Docking Solutions for the

Protein-Protein Interactions between DpsD/DpsE and DpsY/DpsD

DpsE (blue) docks in a region between the small subunit and helical flap of

DpsD (yellow). The DpsY subunits (in different shades of green) interact planar

to DpsD.
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subunits, but failed to copurify the MCAT (DpsD), which, from

the previous Y2H results, was predicted to interact strongly

with KSa (DpsA). Both programs used for docking simula-

tions were also able to predict a docking orientation for KSa/

KSb (DpsA/DpsB), similar to that observed for the solved

crystal structure of the actinorhodin KSa/KSb heterodimer

(Keatinge-Clay et al., 2004). The docking simulations also

suggest that the MCAT (DpsD) might have a structural role

in bringing the active sites of the ketoreductase (DpsE) and

the CYC (DpsY) in to close proximity, allowing the proteins

to carry out adjacent modifications of the aklanonic acid

backbone in conjunction with the CYC/aromatase (DpsF).

EXPERIMENTAL PROCEDURES

Y2H Experiments

Each dps gene was subcloned by PCR using the plasmid template

pWHM1012. All the forward primers were designed incorporating an NdeI

site upstream of the translational start codon, while all the reverse primers

were designed with an EcoRI site downstream of the translational stop codon

(Table S1). The amplified products were purified from agarose gels using

QIAEX II following the manufacturer’s instructions (QIAGEN GmbH, Hilden,

Germany). The purified fragments were then cloned via NdeI/EcoRI recogni-

Figure 3. Computational Docking Simulat-

ing the Protein-Protein Interactions be-

tween DpsAB and DpsY

The location of the docking site is in the proximity

of the entrance to the amphipathic tunnel (shown

yellow on DpsAB surface). The entrance to the

cavity containing active site of DpsY is also in the

proximity of the entrance to the amphiphatic

tunnel (Thompson et al., 2004). The surface of the

DpsAB complex is colored based on hydrophobic

properties of the residues using the Kyte-Doolittle

scale. Colors range from blue, for the most hydro-

philic residues, through white, and then to red for

the most hydrophobic residues.

tion sites into the polylinker of both Y2H plasmids

pGADT-7 (prey) and pGBKT-7 (bait). The con-

structs were sequenced to check that the dps gene

inserts were in frame with Gal4-AD (pGADT-7) and

Gal4-BD (pGBKT-7). Y2H experiments were per-

formed in S. cerevisiae AH109 using procedures

described by the manufacturer (BD Biosciences/

Clonetech, Palo Alto, CA). Triplicate yeast trans-

formations, using each dps gene in combination as

both prey and bait, were plated out on both SD-2

(Trp- and Leu-) and SD-4 (Trp-, Leu-, Ade-, and

His-) media and incubated at 30�C for up to 14

days. Colony lift LacZ assays were also performed

on yeast cells grown on SD-2 medium to verify pro-

tein interactions. Protein expression was checked

where no interactions were observed. Protein ex-

traction was performed using 1 ml of SD-2 cultures

(1 3 107 cells ml�1) with trichloroacetic acid. Pre-

cipitated proteins were resuspended in 300 ml of

SU buffer (5% w/v SDS, 8 M urea, 125 mM Tris-

HCl, pH 6.8, 0.1% EDTA, 15 mg/ml DTT, and

0.005% w/v bromophenol blue). The proteins

were separated by 10% SDS-PAGE and electro-

blotted onto nitrocellulose membranes for West-

ern blot analysis. The antibodies used to perform Western blots were obtained

from Abcam Limited (Cambridge, UK). The primary antibodies were mouse

monoclonal anti-c-Myc and mouse monoclonal anti-HA tag. The secondary

antibody was a rabbit polyclonal to the mouse IgG H&L horseradish peroxi-

dase-conjugated anti-IgG. Detection was performed using 3,30,5,50-tetrame-

thylbenzidine, as specified by the manufacturer (Sigma Aldrich, St. Louis, MO).

TAP

Plasmid designated pNC147 is a derivative of pWHM1012 encoding the genes

dpsA, dpsB, dpsC, dpsD, nd dpsG, which translates a TAP tag fused to the

N terminus of DpsA. Details of the cloning strategy to construct pNC147, in

five steps, are described in Figure S2. Expression of proteins encoded by

pNC147 used the heterologous host S. coelicolor A3(2) grown in 50 ml of

YEME medium supplemented with thiostrepton (15 mg/ml) as described by

Kieser et al. (2000). The mycelium was collected by centrifugation and washed

twice with 0.09 M Tris-Cl, pH 7.9. The TAP tag procedure followed was as de-

scribed by Rigaut et al. (1999). Proteins were separated by 1D SDS-PAGE and

digested in-gel with trypsin. The peptide digests were extracted from each gel

band and separated by nanoRP-LC (Micromass CapLC, Waters) before MS

analysis using a Q-TOF Ultima Global (Waters). The mass spectrometric acqui-

sition was performed in a data-dependent manner, with a 1 s MS survey scan

followed by MS/MS scans (1 s) on the 3 most abundant multiply charged ions.

The raw MS/MS spectra were processed to ‘pkl’ files using MassLynx software

version 4.1 (Waters) and analyzed using GeneBio Phenyx Software (Geneva,

Switzerland).
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Computer Docking Simulations

Two sets of models were built. One using Swiss-Model (Arnold et al., 2006;

Guex and Peitsch, 1997) and the other using MODELER 9.4 (Fiser and Sali,

2003). Both sets were evaluated using DOPE function (Shen and Sali, 2006)

from MODELER 9.4 and Verify3D (Mashiach et al., 2008). Models with the most

favorable energy profile and profile score were selected for protein-protein

docking simulations. For Swiss-Model 3D templates were chosen based on

the results obtained using GenTHREADER (McGuffin et al., 2000), Modbase

(McGuffin et al., 2000) and Predict protein (Rost et al., 2003). Templates used

in MODELER were selected by scanning the query sequence against a library

of sequences extracted from known structures in Protein Data Bank (PDB),

which was obtained from MODELER (http://salilab.org/modeller/). Alignments

were created with MODELER, unless stated otherwise. The DpsA model was

built using the ‘‘Automated Mode’’ in Swiss-Model with 1TQYA as a template

which has 62.5% sequence identity to DpsA. The DpsB model was built using

the ‘‘Automated Mode’’ in Swiss-Model with 1TQYB as a template which has

57.75% sequence identity to DpsB. The DpsC model was built using the ‘‘Pro-

ject Mode’’ in Swiss-Model with 1HNJA as the template which had 22.3% se-

quence identity to DpsC. The model was built based on an mGenTHREADER

(McGuffin et al., 2000) sequence alignment and optimized using the SWISS-

MODEL server (Arnold et al., 2006). The DpsD model was built using MODELER

9.4. As templates, 1MLAA (30% identity), 1NM2A (34% identity) and 2CUYA

(32% identity) were used. The DpsE model was built using MODELER 9.4;

1X7GA (59% identity) and 2PH3A (41% identity) were used as templates.

The DpsF model was built using MODELER 9.4 with 2RERA as the template,

which had 23.2% sequence identity to DpsF. The model was built based on

an mGenTHREADER sequence alignment. The DpsG model was built using

MODELER 9.4; 1NQ4A (40% identity), 1OR5A (38% identity), and 1AF8A (38%

identity) were used as templates. The DpsY model was built using MODELER

9.4 with 1R61A as the template, which had 24.9% sequence identity to DpsY.

The model was built based on an mGenTHREADER sequence alignment; the

model was built as a dimer. Sequence alignments are available upon request

to the corresponding author.

These proposed models cover the KSa (DpsA) amino acid sequence from

Arg3 to Arg419, with the expected structural characteristics including the po-

sition of the catalytic Cys169. The model for KSb covers amino acid sequence

from Arg26 to Ala424, with the highly conserved Gln161 of the actinorhodin

homolog occupying position 183 in the primary sequence of KSb (DpsB). The

homodimer of KSa (DpsA) was obtained by docking simulation using Patch-

Dock/FireDock. The heterodimer of DpsA/DpsB was obtained by docking

simulation using PatchDock/FireDock (first solution). The putative models for

the MCAT (DpsD) and KR (DpsE) cover their entire primary structure. A 3D

structure for the CYC (DpsY) was modeled using the deposited structure of

a predicted metal-dependent hydrolase from Bacillus stearothermophilus as

a template (PDB accession code: 1R61). This template was chosen based on

mGENthreader results. The model for the CYC (DpsY) covers its amino acid

sequence from Thr12 to Glu272. Protein docking simulations between each

pair of predicted 3D structures were performed using PatchDock and ClusPro.

PatchDock was used with default settings and the best 100 solutions were

refined using FireDock. The first 10 solutions were returned as results. ClusPro

was used with default settings, and ZDOCK was used as the docking program.

The top 10 solutions were returned as results. Solutions that were found by

both programs were chosen for analysis of the interface. Docking simulation

between the two KS subunits (DpsA and DpsB) were performed using KSa

(DpsA) as receptor and KSb (DpsB) as ligand, based upon the published crys-

tal structure for the actinorhodin orthologs. Docking simulation between KSa/

CYC (DpsA/DpsY) were performed using the dimer of the CYC (DpsY) as re-

ceptor and KSa (DpsA) as ligand. A docking simulation between KSb and CYC

(DpsB/DpsY) was performed in a similar fashion. The docking between the two

subunits of the KS dimer (DpsA/DpsB) and the homodimer of the CYC (DpsY)

was performed using the KSa/KSb (DpsA/DpsB) dimer as receptor and the

CYC (DpsY) homodimer as ligand. Docking simulation between the KSa and

MCAT (DpsA/DpsD) was performed using KSa (DpsA) as receptor and MCAT

(DpsD) as ligand. Docking between homodimer of KSa (DpsA) and MCAT

(DpsD) was also performed using the KSa (DpsA) homodimer as receptor and

MCAT (DpsD) as ligand. For the KR/CYC (DpsE/DpsY) simulation, the homo-

dimer of the CYC (DpsY) was the receptor and KR (DpsE) was the ligand.

The MCAT/CYC (DpsD/DpsY) docking was simulated using the homodimer
Chemistry & Biology 15, 1156–11
of the CYC (DpsY) as receptor and MCAT (DpsD) as ligand. The MCAT/KR

(DpsD/DpsE) docking was simulated using MCAT (DpsD) as receptor and

KR (DpsE) as ligand.

SUPPLEMENTAL DATA

Supplemental Data include one table and seven figures and can be found

with this article online at http://www.chembiol.com/cgi/content/full/15/11/

1156/DC1/.
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