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Abstract

We give a complete obstruction to turning an immersfonM™ — R”" into an embedding whem3:4m + 5.
It is a secondary obstruction, and exists only when the primary obstruction, due to André Haefliger, vanishes.
The obstruction lives in a twisted cobordism group, and its vanishing implies the existence of an embedding in the
regular homotopy class bin the range indicated. We use Tom Goodwillie’s calculus of functors, following Michael
Weiss, to help organize and prove the result.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The story of immersions and embeddings of smooth manifolds begins with Whitney in 1936, when he
proved his so-called “easy” embedding theorem:

Theorem 1(Whitney[25]). Suppose >2m+ 1.Any mapf : M™ — N'" is homotopic to an embedding

In [26] he proved that every smooth manifalf” immerses irR?"~1 and embeds iR?". There are
obstructions in both cases: forimmersions the proposed map might have singularities, and for embeddings
the map might have self-intersections. In both cases he came up with a geometric elimination of the
obstruction when it vanishes algebraically, and algebraic vanishing is automatic in this case. For maps
into R2”, this method of elimination is known as the Whitney trick. If we consider embeddingg’of
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in N2, there is a further obstruction to carrying out the Whitney tricklifs not simply connected.
More generally, we can use the same ideas to eliminate intersectiopsoéaifold andg-manifold in a
(p + g)-manifold. One application of this version of the Whitney trick is in the proof oftlvebordism
theorem, a corollary of which is the Poincaré conjecture in dimensions five and higher. The reason for
the dimensional restriction is that the Whitney trick works only fog > 2.

In 1962, Haefligef11] generalized the Whitney trick in a range of dimensions. Haefliger's assumption
on dimension assures the immersion in question has no triple points, but the precise number really depends
on making sure the Whitney trick will work.

Definition 2. AmapF : M x M — N x N is called isovariant if it i2-equivariant with respect to the
action which switches the coordinates, and has the propertyttiatd ) = A andDF (47 n) = A7 u,
wheredy denotes the diagonal &f x X. We denote the space of isovariant maps by iviald x M,

N x N).

For example, iff is an embedding, theii x f is isovariant. To ease the statements of subsequent
theorems and for the purposes of this paper we specialize=tdR".

Theorem 3 (Haeflizer[11]). Suppos&n >3m + 3.Letg : M™ — R”" be an immersiorand suppose
there exists an isovariant map(x, y) : M™ x M™ — R" x R" and an equivariant homotopy from F
to g x g. Then g is regularly homotopic to an embedding

Thereis amap End/, R") — ivmap*2(M x M, R" x R") givenby f — f x f,and Theorem 3 says
that this map is 0-connected. Haefliger also showW&ifthat if 2n > 3m + 3, thenthe mag — f x f
is 1-connected. There is a further improvement, due to [Bh»as follows.

Theorem 4. The mafEmb(M, R") — ivmap 2(M x M, R"* xR") given byf — f x fis(2n—3m—3)-
connected

Similar statements are true with a generic smooth manNalu place ofR”.

Dax’s improvement is interesting because it gives a stable range description of the space of embeddings
in terms of something more homotopy theoretic. This reduction of questions in differential topology
to questions in homotopy theory is very much in the spirit of the Smale-Hirsch Thd@®a6] for
immersions, which states that the space of immersiodg'din N is homotopy equivalent to the space
of vector bundle monomorphisms ®M in TN if m <n (and form = n we need to additionally assume
thatM has no compact components). The approximation in question here replaces the global condition
that an embeddinfishould send a distinct pair of points to a distinct pair of points by a local property,
thatF should take off-diagonal points to off-diagonal points.

Following [24], we analyze spaces of embeddings through the calculus of functors. Denote by
Emb(M, N) the space of embeddings & in N", and the corresponding space of immersions by
Imm(M, N). We assumen < n. The idea is to consider Enb, N) as acofunctor(contravariant func-
tor) from the poset’ (M) of open subsets dfl to the category of space®,—~ Emh(V, N). Theorems of
Goodwillie et al.[8,10] say that whem — m > 2, there is a map from Enib/, N) to a space made from
Emb(V, N), whereV ranges over open subsets diffeomorphic to at rkogen balls, whose connectivity
increases witlk (see below). We can understand embeddindadidtinct balls in terms of configurations
spaces ok points plus some tangential information.
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The Taylor towerof the embedding cofunctor is a sequence of cofunctofEmb(V, N) with maps
TEMb(V, N) — 7 ,_1Emb(V, N), whereV € 0(M). We abbreviate7 ;Emb(M, N) by 7. The
spaces7 ; are piecemeal descriptions of E(, N) in the sense that they only consider “compatible”
embeddings ok disjoint balls inM. A useful case to think about i 1Emb(M, N), for it turns out to be
homotopy equivalent to Imfd/Z, N). We define

J1Emb(M, N) = holimy ~ gr Emb(V, N).

Observe that the inclusion Erfib, N) — Imm(V, N) is a homotopy equivalence whahis dif-
feomorphic to an open ball. So replacing Ef#fibN) with Imm(V, N) above, it remains to see that

7 1lmm(M, N) is homotopy equivalent to Im@/, N). This fact is a reformulation of the Smale-Hirsch
theorem. We say then that the first degree Taylor approximation to the space of embeddings is the space of
immersions.

This Taylor approximation improves &gets large, provided that the codimension m > 2. In fact,
Goodwillie and Klein7] prove that the map Enibs, N) — 7, Emb(M, N)is (k(n —m —2) + 1 —m)-
connected. Taking = 1 and our note above abo#t;, we see that this says the map Eihh N) —
Imm(M, N) is (n — 2m — 1)-connected, an improved version of Whitney’s Theorem, which we stated
as Theorem 1. From this setup we can also deduce Dax’s improvement of Haefliger's Theorem. If we
takek = 2, then the map Em1, N) — 72 is (2n — 3m — 3)-connected. Goodwillie—Klein—Wei$9]
show that7 .Emb(M, N) is equivalent to Haefliger's approximation (the space of isovariant maps, see
Theorem 3) to the space of embeddings, which is of most interest whe®®+ 3. Sowhen 2 >3m +3,
the problem of turning an immersion into an embedding is equivalent to studying the existence of liftings
of elements of7 1 to 7 2, liftings of immersions to isovariant maps. The next natural thing to consider is
the case& = 3, and the map Emb> 73, which can produce embeddings when>34m + 5 according
to these connectivity estimates. Our Theorem 6 concerns liftings #foro 7 3.

Before we state our Theorem 6, it will be useful to reformulate Dax’s improvement (Theorem 4)
of Haefliger's Theorem 3 in terms of cubical diagrams and cobordism spaces (see Section 2 for more
information about cubical diagrams and Section 3 for more details about cobordism spaces). Dax himself
uses cobordism groups [8].

Haefliger's theorem, our Theorem 3, tells us when the elimination of the double point obstruction is
enough to produce an embedding. Given an immergiolM™ — N”, considerg x g : M x M —

N x N.We may assume that x g is transverse taly, and thus(g x g)~1(4y)\4u is a compact
(2m — n)-dimensional submanifold o x M\ 4,,. The equivariant homotopy betwegnx g and the
isovariant magF gives rise to a null-cobordism of the double point set, becaus&4y)\4y = @.
Theorem 3 says that whem 2 3m + 3, a null-cobordism of the double point set is enough to produce
an embedding in the regular homotopy clasg.olVe are now ready recast Dax’s Theorem 4 in terms of
cobordism.

There is a simplicial saf>(M™) which is a cobordism space, in the sense that the homotopy groups of
its realization are cobordism groups, in which the double point obstruction lies. In thisigaSgM )| =~

M
Q;‘Z_Zfri )(’;’) (see Section 3 for information about this notatiof’,j’.) denotes the quotient by thg,

action of M*\ 4, whered is the fat diagonal). The map from the space of immersioaEmb(M™, R")
to C2(M) is defined by sending an immersion to its double point set, and thexmapC> (M) maps to
the empty manifold.
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Theorem 5. The following square i§2n — 3m — 3)-cartesian
Emb(M™, R")

*

ZiEmb(M™ R") Co(M™)

In particular, if 22 >3m + 3, then the map
Emb(M", R") — holim (7 1Emb(M™, R") — Cao(M™) « x)

is onto g, and hence an immersion together with a cobordism to the empty manifold are enough to
produce an embedding.

To constructembeddings 8 in R” inthe range 8 > 4m +5, itis enough to produce an elementod
to produce an embedding. We focus on lifting from to .7 3, and use Theorem 3 to interpret an element
of 7oasanisovariantmap : M x M — R". The map< from 7 2Emb(M™, R") to a cobordism space
C3(M) is the map which associates to each isovariant fapd triple of points(x1, x, x3) € M3\4
the submanifold of/3\ 4 where the three vectoS(xo, x3), F(x3, x1) and F(x1, x2) point in the same
direction (compargl]). This definition is less intuitive than that of the obstruction defindd &), where
the construction of the obstruction class is obtained by following Haefliger's proof of Theorem 3, and we
hope to have this written up soon. The obstruction given in this paper has the advantage of being easier to
define, and the computations of Section 4.2.2 show that these two are equivalent in the sense that the twc
classes are cobordant. In fact, the way we discovered the definition of the obstruction presented here was
to follow our work in[18] and guess manifolds of the right dimension until we found one that worked.

Theorem 6. The following square i§3n — 4m — 5)-cartesian
Emb(M™ R™)

*

F>Emb(M™ R") —-— Cy(M™)

If the mapF is a lift of an immersiory, then ifZ is null-cobordant, there is an embedding in the regular
homotopy class af.. There is no such embedding if and only if every liftggio 7 .Emb(M™, R™) gives
a nontrivial element of this group. An induction argument inspired by the proof of Theorem [R24]in
reduces Theorem 6 to the case whigreonsists of exactly three points. The bulk of the proof is spent
proving this special case, where we have to make some explicit calculations with the. hhag an
instructive exercise to carry out a proof of Theorem 5 in the same manner as we prove our Theorem 6.
Theorems 5 and 6 give rise to explicit cobordism obstructions to homotoping immersions and isovariant
maps, respectively, into embeddings. The obstruction which arises from Theorem 5 is originally due to
Dax[3]. The obstruction which arises from our Theorem 6 is established in Corollary 31. The obstruction
7 defined in[19] for immersions of a 2-sphere in a 4-manifold is the same as our obstruttidren
the 4-manifold in question iR*. A generalization of our Theorem 6 to embeddings in manifolds should
make the connection between these two complete.
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1.1. Conventions

We write QX for Q*° x> X whereX is a based space. We wrilg*\ 4 for the complement of the fat
diagonal inM*. When we say a map is @quivalencewe mean itis a weak equivalence, unless otherwise
noted. For a vector bundleover a space, we denote by (¢) its Thom space. We write Spaces for the
category of fibrant simplicial sets, and we work in this category unless otherwise noted. Th(g ENb
is the simplicial set whosk-simplices are the fiber-preserving embeddingdfok 4 — N x A*. By
fiber-preserving we mean that jf, is a k-simplex of EmM, N) and py : N x 45 — 4* is the
projection, then the compositiqny o fi = pam, Wherepy, : M x A — A¥ is the projection. A-simplex
ofivmap*2(M x M, N x N) is anisovarianfy : M x M x A* — N x N x A* which is fiber-preserving,
and for which the action of, on 4* is trivial. Other mapping spaces are translated to the category of
simplicial sets in a similar manner.

2. Preliminary material

Our discussion of cubical diagrams is based on material fEdnand our discussion of the calculus of
functors and spaces of embeddings is based on material from Sections 0, 1, andZ4{tdrhe reader
should look to these references for more details.

2.1. Cubical diagrams

Cubical diagrams play a central role in the calculus of functors. We give the basic definitions and a
brief discussion of their meaning.

Definition 7. An n-cube of spaces is a functérfrom the category?, of subsets ofl, ..., n} to the
category of spaces. We denote the valuX at an objecSof 2, by X5.

Thus a 0-cube is a space, a 1-cube is a map of spaces, and a 2-cube is a commutative square diagram

Definition 8 (1.3 of Goodwillie[5]). The n-cubeX is homotopy cartesian if the mapgX) : Xy —
holimsy X5 is a weak equivalence. We say the cubk-cartesian if the map(X) is k-connected map.

Definition 9 (1.1b of Goodwillig5]). If Xis ann-cube of based spaces, we define the total homotopy
fiber of X ashofibera (X)), and denote this space Hiper(X).

An immediate consequence of these last two definitions is that a cubical didgiskacartesian if
and only if tfibe  X) is (k — 1)-connected. One can also think of the total homotopy fiber as an inductive
homotopy fiber. That is, view an-cubeX as a map ofrn — 1)-cubesY — Z, and define tfibgX) as
hofibertfiber(Y) — tfiber(Z)). For a 0-cube, define tfibeX) = X. See the beginning of Section 1 of
[5] for more details.
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For example, Theorem 3 states that the 2-cube

Emb(M™, R")

*

T,Emb(M™ R™) Co(M™)

is (2n — 3m — 3)-cartesian. This means the map
Emb(M™, R") — holim(T:Emb(M™, R") — Ca(M™) <« %)

is (2n — 3m — 3)-connected. Recall that a point in holita — Z <« Y) is a point inX, a point in

Y, and a path between their imagesZnif 2n>3m + 3, the above map is onto fap, and to produce

an embedding it is enough to produce an immersion—an elemenE&mhb(M"™, R")—whose double

point manifold is null-cobordant. Equivalently we can interpret this theorem as saying that there is a
(2n — 3m — 3)-connected map

hofibeEmb(M™, R") — THEmb(M™, R") — hofiberx — Co(M™))).

Since hofibefx — Co(M™)) ~ QCo(M™), this is another way of saying that the difference between
embeddings and immersions in the range=3m + 3 is a double point obstruction.

2.2. Calculus of functors and spaces of embeddings

Let M be a smooth manifold, and Iét : ¢(M) — Spaces be a contravariant functor (which we refer
to as acofuncto).

Definition 10. Let V4 and V> be smooth manifolds with boundary. A codimension zero embedding
i1 : V1 — Va2 is called anisotopy equivalenc there is a codimension zero embedding Vo — V3
such thaty o i1 andiy o i are isotopic to igh, and idy, respectively.

Definition 11. A cofunctorF : ¢(M) — Spaces is called good if (a) it takes isotopy equivalences to
homotopy equivalences, and (b)Vif ¢ V;.1 is a sequence of objects théliu; V;) — holim; F(V;) is
a homotopy equivalence.

Proposition 1.4 of24] says both Emg-, N) and Imm(—, N) are good cofunctors. Part (b) in the
definition of good guarantees that the value$@&fre completely determined by its values on compact
codimension zero handlebodies, because we may write anywogea union oV; such thatV; c V1,

V; is the interior of a compact codimension zero handlebody, @il = V. For the purposes of this

paper, however, we are not interested in values of functors on generic open sets, but only on those open
sets which are the interiors of smooth compact handlebodies. Therefore we will define the value of a
cofunctorF satisfying (a) on a generic open 3€by F (V) = holim; F(V;), whereV; C V;11, V; is the

interior of a compact codimension zero handlebody,arid = V. Hence we will only check part (a) in

the future.
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Definition 12. For a good cofunctoF we define thekth Taylor approximation td-, denoted7  F :
O(M) — Spaces, by
TrFWU) = hoIimVE@k(U)F(V).

Here(, (U) is the subcategory @f(U) consisting of those open séfsc U which are diffeomorphic to
at mostk open balls.

Definition 13. We say thatF is polynomial of degree<k if given pairwise disjoint closed subsets
Ao, A1, ..., Ay of U € O(M), the(k + 1)-cube

S+ F (U\ U A,-)
ieS
is homotopy cartesian, wheBranges through subsets{& 1, ..., k}.

The next two theorems state that the functarsF are polynomial and that they are essentially deter-
mined by their values on special open sets.

Theorem 14(Weisg24], Theorem 6.1 The cofunctot7 ; F is polynomial of degree k.

Theorem 15(Weiss[24], Theorem 5.1 Suppose that : F1 — F» is a morphism of good cofunctors
and thatF; is polynomial of degree k far=1, 2. Then ify : F1(V) — F2(V) is a homotopy equivalence
forall V e 0y (M), then it is a homotopy equivalence for 8le O(M).

From its definition we see that the values®f F are completely determined by its values@iM),
so Theorem 15 is not too surprising. The proof of this theorem inspired that of Theorem 6.

2.3. Amodel fotz7 Emb(M, R")

In [9], the authors show that the homotopy pullback of
ivmap2(M x M, N x N)

J

mapM,N) ——-  mapg2(M x M,N x N)
frxf

is homotopy equivalent tg 2 Emb(M, N). In the caseV = R”, the bottom two spaces are contractible,
and thus

TEmb(M, R") ~ ivmap2(M x M,R" x R").

We go further and replace ivm&iM x M, R" x R") by the homotopy equivalent space ivmia@V x

M, R"), where theX, action onR” is given by the antipodal map. The homotopy equivalence is given by
the map( f1, f2) — f1 — f2, with homotopy inversg’ — (f/2, — f/2) (a straight line homotopy will
suffice here). The map fromi» to .71 is the map which restricts an isovariant map M x M — R”"
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to the diagonal and records the induced map of normal bundles, which we may intefpxéaad 7 R”
respectively. By the Smale—Hirsch theorem, this gives an element of

3. Cobordism spaces

Since we have opted for a cobordism description of our obstruction, it will be useful to consider a
cofunctorC : O(M) — Spaces, which gives us a cobordism space (defined below): a simplicial set
whose realization has as its homotopy groups the cobordism groups that arise in defining our obstruction.
Cobordism groups arise naturally because our obstruction is a manifold with easily identifiable normal
bundle. LetX be a space, anflandy vector bundles oiX such that/ = dim() — dim(¢). An element of
the cobordism grouQ,f‘”(X) is represented by a tripl@V*, f, ) (sometimes denoted by jus) where
W is ak-dimensional smooth manifold embeddediff, f : W — X is continuous and proper, ard
is a stable isomorphistiW & f*¢=~ f*5. The equivalence relation for representatives is the usual one
defined by(k + 1)-dimensional manifolds with boundary.

We will make a simplicial modal?f_"(X) fora space?f,_”(X) whose realization has as its homotopy

groups the cobordism groups mentioned ab@yk(;’f;_”(X) | =Q§:L7< (X). Itisrelated to the Thom space of
avirtual bundle; see the remark following Proposition 17. Although this notation expresses the dependence
ond, &, nandX, itis rather cumbersome, so we will usually omit it and just name the relevant parameters.

Definition 16 (Simplicial Model for a Cobordism SpaceThe simplicial seth*”(X) has as its
0-simplicesthe s&fo={(W¥<, f, ¢)}, whereWis embeddediR>, f : W — X isacontinuous and proper
map, andp is a stable isomorphisgh: TW @ f*(&) — f*(). The 1-simplices ar€1={(W*L, £, ¢)}
whereW is embedded irR>® x A1, W is transverse t&R>® x 041, f : W — X is continuous and
proper, andp : TW & f*(&) — f*(n) is a stable isomorphism. In general, theimplices are the set
Cr = {(WTk | £, ¢)} whereWis embedded ilR>® x 4¥, Wis transverse tR> x aSAk for all nonempty
subsetss ¢ {0, 1,...,k}, f : W — X is continuous and proper, ad: TW & f*(¢) — f*(n) is a
stable isomorphism.

The reason we requireto be a proper map instead of requiring théis compact is that we want
a cofunctor of¢(X), and the inverse image of an open subseKad$ not necessarily a compact set
in W (see Proposition 20). We will also make use of a relative version of this construction for a pair
(X, Y).Ak-simplex ofo*”(X, Y) is a(k 4+ d)-dimensional manifol#Vwith boundaryoW embedded in
R> x A¥ such thawandoWw are transverse ﬁDSAk forallnonemptyS c {1, ..., k}. Moreover, thereis a
continuous proper map of paifs: (W, oW) — (X, Y), and stable isomorphisi@sW & f*(&) — f*(n)
andToW f*(&) — f*() which are compatible in the sense thatthere is a commutative diagram relating
the bundle isomorphisms aandoW. Now ak-simplexW has boundargW, and the boundary defines
a(k — 1)-simplex of Co(Y). In the casd = @, Co (X, Y) = Co(X) (which forcesoW = ¢).

Moreover, the manifold&V?+* c 4% x R* should beconditioned To be conditioned means that if
we denokte by, the part oMW that sits over e 4%, thenW, should be independent biih a neighborhood
of U;0; 4%,

The face and degeneracy maps are induced by thoge. dheith face mapi; : C, — Cy_1 is just
the intersection of¥ 4% with theith face of4*. Theith degeneracy magp : C;y — Cj1 takesWto the
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fiber productw’

W/'—=R® x Akt

.

W——=R> x A*

wheres; is theith degeneracy fon®. That it satisfies the axioms for a simplicial set is straightforward,
because we are building on the usual simplicial structurg‘on

There is an equivariant version of these spaces and groups, which we pause to mention because we
use it in the proof of Theorem 6. Léf _be a space with a fre action for some groufs, and letX
denote the quotient by th&t action. Let? andy be vector bundles oR with a G action, and let andy
be the quotient bundles o6 Suppose we are given a smooth closed manWﬁiﬁwnh free G action, a
continuousG-map f : W — X, and a stabl&-isomorphism® : TW & f* & — f*(7). The manifold
W/G is a zero simplex mL’fl T(X). More generally suppose thidtis a subgroup o6, and thawVis as
above, only nowV has freeH action,fis anH-map, andp is a stabléH-isomorphism. ThelG x y W)/ G
represents a zero simplex 0‘5_’7(X). We identify G x g W with |G|/|H| disjoint copies of the same
manifold, now made into &-space, witfG-maps induced by the giveth-maps. We are going to construct
a cobordism class wity = >3 andH as one of the three copies bj.

Proposition 17. C5~"(X) is a Kan complex

Proof. Recall that a simplicial sef, satisfies the Kan extension condition if for every collectiok ¢f1
k-simplicesxo, x1, ..., Xn—1, Xn41, . . ., Xk+1 Satisfyingd; x; =0;_qx; fori < j, i, j # n, there exists a
(k + 1)-simplexx such thad,x = x; for all i # n. Let A**! be embedded iR*** in the standard way,
and denote b5 the union of all but theith faced, 4¥*1 of A**+1, Letr : A+1 — 945 be defined
by r(x) = y if xis on the line perpendicular &,4**! passing througl. It is well-defined because the
restriction p; to 945 of the orthogonal projectiop onto thek-plane containing, 44+* is one-to-one.
LetWo, W1, ..., W,—_1, Wy11, ..., Wia1 be a collection ofk + 1) k simplices satisfying the hypotheses
of the Kan extension condition. Define

7 k+1
w= () Wi cR®xas™
ainzaj_lwi

The manlfoIdW defines ak-simplex itself if one |dent|f|e$4|’“r1 with o, A**1 using ps. The map
f W — X is made by gluing together thg : W; — X accordlng to; W] =0,_qW:.The mapf is

proper because thg are. The stable bundle |somorph|§mv &) f (&) — f*(n) |s made in exactly the
same way. DefingV by the fiber product

W——=R> x gkt!

T

W—=R> x 945

ThenW defines ak + 1)-simplex. O
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Remark 18. This space is equivalent t07 (¢ — ). For details on how to make sense of the Thom
space of a virtual bundle, s¢®]. To see this equivalence, consider the subcomplex of the total singular
complex ofQ T (¢ — i) consisting of thosk-simplicesc : 4 — Q"™ (T (¢ — 1)) that correspond to maps

K2 2M(A%) — (T (¢ — i) which are transverse to the zero sectiof'¢f — ). This sub-complex is
equivalent to the full complex and the map—~> ;c/_l(O) to the cobordism model is an equivalence. See
[4] for a similar construction.

ThatC, is a Kan complex ensures that the homotopy groups of its realization will be the cobordism
groups we want. It is also used to prove two of the next three propositions.

Proposition 19. There is an equivalence
CIX) = Q' CyT(X).

Proof. We prove this in the cage=1, iterating to obtain the general case. We need the relative version of
C mentioned after Definition 16. There isa m@p X, Y) — C,_1(Y) given by taking the boundary, and

this map is a Kan fibration. One can adapt the proof of Proposition 17 to the relative setting to check this,
as a simplicial set is a Kan complex if and only if the map of it to a one-point complex is a Kan fibration.
SinceC,_1(Y) is a Kan complex by Proposition 17, so the€igX, Y) a Kan complex, and its homotopy
groups are the relative bordism groups. The fiber of this m&p(X), because this is precisely what maps

to the basepoint i,_1(Y). Furthermore, since this map is a Kan fibratiGi(X) is also equivalent to

the homotopy fiber. If we specialize to the c&se Y, we haveC, (X) =hofiberC, (X, X) — C._1(X)).

Finally, observe thaf, (X, X) is contractible. O

Now let us consider the special case whers a smooth manifold of dimensida In this case we
developC as a cofuncto€ : O(X) — Spaces.

Proposition 20. C : ¢(X) — Spaces is a good cofunctor

Proof. We need to check that, given open sEts U, € 0(X), with Uy C U», we get a ma (Uz) —
C(Uy). Suppose then that we have a smooth manitfdwith a continuous proper map : M — U»
with bundle data. We may assume thatsmooth and transversetlh ¢ U,. Then f~1(U1) is a smooth
manifold of dimensiork, f : f~1(U1) — Uy is proper andf ~1(U1) has the right kind of bundle data
too, since the bundle data it receives is thavigpulled back tof ~1(U3).

To check part (a) of goodness, one can use exactly the reasoning Weiss uses for Proposition 1.4 in
[24] applied to the functoC, and we refer the reader to the discussion following Definition 11 for
part (b). O

Proposition 21. LetU € ¢(X) be a tubular neighborhood of a compact submanif®ld X, so that U
is a k-disk bundle over S. Then there is an equivaléng®’) — C,_(S), where we replace the bundle
£*(&) by f*(¢®v(S C U)) in the definition olC,_; (S).

Proof. Consider the sub-simplicial s€f,(U) c C,(U) for which the mapW9tk — U is transverse
to S This subcomplexC,(U) is equivalent toC,(U) (see Hypothesis 3.18 d#]). There is a map
i : CL(U) — Co_k(S) given by intersection witls A (d + k)-simplexW € C,(U) gives ad-simplex
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W NS € Coi(S) because the intersection is transverse. Moreover, there is a mép — S given

by identifyingU as a tubular neighborhood &fand sendings, v) € U tos € S. This induces a map
C(S) — C(U) in the other direction. We claim that they are homotopy inverses. First, the composition
roi:S— U — Sistheidentity. Given @-simplex ofM of S consider the fiber produdt x sU. The
mappingr : U — S is smooth, and we may assume the miép— S is smooth and transverse tpso
that M x sU is a manifold with proper map to. Since the composition above is the identity, the fiber
productM x sU) xy S is equivalent tdM, again with transversality assumptions. This process leaves the
bundle data oM alone in the sense that jify denotes the canonical map from a pullbatk y Z to X,
thenpjy py . gu 1S @n isomorphism.

Now consider the compositiano r : U — § — U. We have(i o r)(s, v) = (s, 0), and there is a
homotopyh : U x I — U fromi o r to id given by fiberwise retraction to the origin. Giverka+ d)-
simplexM of C(U), the fiber producM x ;S is ad-simplex ofC (S) whose map t&is proper, and again
pulling back we get @& + d)-simplexM’ = (M x ¢ S) x sU, again with proper map td. The homotopy
will provide us with a cobordism betwedwh andM’, as follows. Consider the fiber product

W—mM

P

Ux I—5—=U

Again transversality assumptions enswe a manifold. Since the ma@ — U is proper, so is the map

W — U x I. If we denote byW, the submanifold o¥V that sits ovelU x {r}, thenW s a cobordism
betweenWy = M’ andW1 = M. The bundle data is pulled back in each step, and it is straightforward to
check that this is the right bundle data in each case.

Let X be a smooth manifold, and consider the spﬁ§é”(§). Recall thal(’s‘) is the quotient by's of
X3\ 4. We can also view this as a cofuncr. ¢(X) — Spaces, using the magXx) — 0(()3{)), although
it is a bit awkward with this notation. Using our shorthand, fbe ¢(X), we writeC3(U) = Cf,_”(g).

Proposition 22. The cofunctorC : ¢(X) — Spaceglefined byC3(U) = ij”(g) is a polynomial of
degree<3.

Proof. By abuse of notation use the lett€g also for the realization of the simplicial set, and for
brevity we abbreviat€s = C. We need to prove for alll € ¢(X) and for all pairwise disjoint subsets
Ao, A1, Ao, A3 of U that the 4-cube§ — C(U\U;csA4;) is homotopy cartesian, whesec {0, 1, 2, 3}.
Observe that§) = U; (Y}, because the sett are four in number. For every subset {0, 1, 2, 3},
let Vs = (V\Vigs Ay,

Our goal is to show that' (V) — holimg..4C (Vs) is a homotopy equivalence. if; andU» are open
sets, then

C(U] U U2) 4>C(U1)

|

Cly) ——=C(UiNy) 1)
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is homotopy cartesian. This is a restatement of the fact that this cobordism cofunctor satisfies the excision
axiom.

We view the 4-cub& — C(Vs) as a map of 3-cubes. If we I&trange through subsets @, 1, 2},
then the map of 3-cubes we have in mind is

(T = C(Vr)) = (T U{3} = C(Vru@))-

By proposition 1.6 of5], it is enough to show that each of these 3-cubes is homotopy cartesian to show
that the entire 4-cube is. The argument for both is exactly the same, so let us only indicate why this is
true forT — C (V7). SinceT is ranging though subsets {1, 1, 2}, we represent the 3-cube by

C(Va) (W)
c(V1) J{ C(Var)
C(Va) C(Vor)
\ \
C(Vi2) C(Vowo) (2)

Also consider the related diagram

C (Vo) C(VouWy) C(Vo)
c(W) l C(Vin)
C(Va) —C((VoU Vi) N Va) C(Voa)
\ \

C(Vig) C(Vor2) (3)

We wish to show that (2) is homotopy cartesian. Since4hare pairwise disjointy;; = V; N V;, and

hence each of these square faces of the cubical part of (3) are homotopy cartesian, as they are specic
cases of (1). Using Proposition 1.6[8f, this proves that the cubical part of (3) is homotopy cartesian.
Notice that the square part of (3) is homotopy cartesian because it is of the same form as (1). Since both
the cubical and square parts of (3) are homotopy cartesian, it follows again from Propositiorj5].6 of

that (2) is homotopy cartesian]

3.1. Counting O-dimensional cobordism classes

In Section 5 we need to identify the groﬂé‘”(X). Suppose thalis path-connected and let 1 (X).
For a vector bundle over X, leti = {ox|x € X, ando, is an orientation of. atx} be the orientation
cover (see Section 3.3 {if5]). Let g € = be represented by a map I — X. This gives rise to a map
7.+ I — wby regardingX as the zero section of Letx € X be the basepoint of, and letx, denote
the fiber ofu atx. If we choose an orientation @f, then this determines a lift of, (0) to % and hence
7, has a unique lif§, : I — 7. Define a homomorphismw : = — {+1, —1}, wherew(u)(g) = +1 if
72D = 7,0 and-1if 7,(1) # 7,(0). This is well-defined since any two representativesd;’ of g
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are homotopic, and hengg andy;, are homotopic, and so their liff§ andyz are homotopic as well. To
check that it is a homomorphism one needs the observation that there are only two possible values for
7.(1) since the orientation cover is a two-sheeted covering space.

Proposition 23. The groupQg_”(X) is isomorphic withZ if w(&) = w(y), andZ /2 if w(&) # w(y).

Proof. An element ong*”(X) is represented by a finite s&tmapped toX together with a stable
isomorphismé =~ ;5 overS A single point with necessarrily trivial bundle data generates this group, and
we may assume that this point maps to the basepomtX. Both ¢ andy become trivial over a point,

and there are, up to homotopy, two possible stable isomorphisms between them, classified by the sign of
their determinants. Denote the two possible cobordism classes of a peiat Bgd —x with respective
representativeé, f, ¢, ) and(x, f, ¢_), wheref is the inclusion of the basepoirtin X. Both+x and

—Xx represent generators Qg*”(X), and the proposition will follow when we show that and—x are
cobordant if and only ifw (&) # w(y).

Let (I, F, ®) be a cobordism betweepx and—x. Thatis,F : I — X satisfiesF(0) = F(1) = x,
and@ is a stable |somorph|sm TI ® F*¢ — F*in. We regardd as a homotopy, ovelr betweengzs+
and¢_. Choose IlftsF (0) andF (0) such that the orientations 6}2 andy, given bng(O) andF,,(O)
make¢_, an orientation preserving isomorphism. ThEgt) andF, ,(t) are uniquely determined for all
t, and in particular for = 1. Since¢_ is an orientation reversing isomorphism, this means that one of
the orientations of, or 5, must change: eitheF:(0) # F:(1)or F,(0) # F,(1), but not both. Hence
w(&) # w(n). Conversely, suppose(é) # w(y) and letg € = satisfyw(£)(g) # w(n)(g). Choose a
representative : I — X for g, wherey(0) = (1) = x. Theny gives rise to a cobordism between and
—x as follows. Again, choose lifts gf:(0) andyf?(O) and a stable isomorphisth: ¢ — 5 such that the
orientation ofy, given byy, (0) is compatible with the orientation @f. given by;:(0) in the sense that
¢ is an orientation preserving isomorphism. Thusis represented bg0, y|o, ¢). The pullback bundles
y*(&) andy* () overlare trivial, and using such a trivialization we may extentd an isomorphisna ()
by ¢(t) = ¢. Sincew(¢)(g) # w(n)(g), $(1) must be an orientation reversing isomorphism, and hence
(1, 7|1, (1)) represents-x, and(1, y, ¢(¢)) is a cobordism fromtx to —x. O

3.2. The plane bundle P and the cobordism space

We now describe the specific cobordism space which arises in the statement of Theorem 6. Consider
the trivial bundle(M3\ 4) x R? over M3\ 4 with fibersR2. Let ey, e2, e3 be nonzero vectors iR? such
thates + e + e3 = 0. Let 23 act linearly onR? by permuting these vectors. The quotient of this product
by the X3 action is the bundI®, which is a bundle ove(r’g). Denote bykP the k-fold direct sum ofP.

We let P denote the triviaR?2 bundle. The line bundlk over(M) mentioned in the introduction is made
in an analogous way from the trivial rank 1 bundle dnx M\A by letting 2> act by—1 on the fibers.
In Section 3 we described a simplicial siéj T(X) such thatnk|Cd (X)) = fl+k(X) WhenXis a
smooth manifold, Proposition 20 tells us that we may regard this space as one value of a good cofunctor
C: 0(X) — Spaces.

Definition 24. Let M™ be a smooth manifold. We define a cofunot@r: ¢(M) — Spaces by the rule

(=1 P-T(4)
Ut Capgni ° ((3)).
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3.3. The map : 72Emb(M™, R") — C3(M™)

Recall that7 ,Emb(M™, R") ~ ivmap*2(M x M, R"). One feature of an elemeRte ivmap*2(M x
M,R") is that for each pair of distinct points iNM it gives a nonzero vector ifR”. The map
Kk . T2Emb(M™, R") — C3(M) associates to each triple of distinct pointshinthe submanifold of
(’g) where the three nonzero vectors determiRgmbint the same direction.

We begin by describing the mafior O-simplices. Consider the standard actioagbn the sefl, 2, 3}.

Denote byZ’zf by the subgroup which switchéandj for i # ;.

Definition 25. Let R, denote the open octant & where all three coordinates are positive. Denote
points in this space by tripld$a2s, as1, a12)} with the 23-action induced by its action on indices, where
ajj =dji.

First consider the map’ : (M3\4) x R2, — R" x R" defined by
F'(x1, x2, x3, a12, az1) = (F (x2, x3) — az1F (x3, x1), F(x2, x3) — a12F (x1, x2)).

The zeros of this function occur when thgx;, x ;) all point the same way since thg are all positive.
To make the symmetric group action easier to analyze, we modify this map slightly.

Definition 26. DefineF = (f + g, f — g), where we leF’ = (f, g) be the map above.

The mapF is 233-equivariant, where3® acts onR” x R" by —1 on the first factor and trivially on
the second factor, and we may assume it is transversetd @ R” x R" because the action a&on
(M3\4) x R2is free.

Definition 27. DefineZ; = F~1(0 x 0).
By transversalityZ; is a 3n — 2n + 2-dimensional submanifold @73\ 4) x R?,.

Lemma 28. Z; is a compactclosed3m — 2n + 2-dimensional manifold witit2® action and ax2>-
equivariant map p taM3\4. Moreover there is ax33-equivariant isomorphisnt'Z; @ p*nP —
P*(T(M3\4) @ P).

Proof. The comments in the paragraph above give everything we need to save compactness, that it is
closed, and the bundle isomorphism. That it is closed follows from compactness since it is a submanifold,
defined by transversality, of a manifold without boundary. To prove compactness, we must shay that
has no limit points where the; come together or the;; tend to zero or infinity. It is easy to eliminate

the possibility that the; come together by the equivarianceFofasF (x;, x¢) = — F (x, xj) means that

the three vectors given [y cannot all point the same way if two of the are the same. The; cannot

go to infinity since the image of : M x M\4 — R" is bounded by compactnessMf Thea;; cannot

go to zero becaudegives a nonzero vector for each pair of distinct pointslirand since we have ruled

out the possibility that the; come together (which is the only wa&ycan be zero), the image &fis
bounded away from zero outside a neighborhood af M x M. This shows tha¥1 is compact. The
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bundle isomorphism is given to us by transversality:
TZ1®F*(R" x R =T (M3\4) & T(R%).

The isomorphisnT(Rzo) ~Pis given by theinapja, b) +— ae2 + bes, and the isomorphisi*(R" x

>
R™)=~nP is induced by the maR x R — P given by (a, b) — ae1 + b(e2 — e3). Both of these
isomorphisms arég?’-equivariant. Hence we haveZ§3-equivariant isomorphism

TZ1® p*nP — p*T(M3\A) & p*P. O (4)
Definition 29. DefineZ = (23x5,Z1)/23.

To definex for k-simplices is straightforward. A-simplex of ivmap2(M x M, R") is an isovariant
Fi : M x M x A4 — R" x 4*, and the relevant manifold is tli&mn — 2n + 2+ k)-dimensional submanifold
Zig =F 10 x 4F ¢ (M3\4) x R? x 4*. As before,Z1 ; is compact, has a3-equivariant proper
map toM3\4, and is transverse t@/3\4) x R?, x 934 for all S Moreover, there is an isomorphism

TZ1 ® p*nP=p*T(M3\4) & p*P & T A*. We then sefZ; = (Z3x 323Z14)/ %3
This proves

Lemma 30. There is a well-defined map: 7 Emb(M™, R") — C3(M™) given byx(F) = Z, where
Z = (X3x;zF (0 x 0))/23.

4. Proof of Theorem 6
We now restate the main theorem for convenience and proceed to prove it.

Theorem 6. The following square i$3n — 4m — 5)-cartesian

Emb(M™ R")

*

THEmb(M™, R") £ Cy(M™)
The mapx — C3(M) assigns to the point the empty manifold. An immediate corollary is

Corollary 31. Given an isovariant map’ € 7 Emb(M™, R™), the class
mn-npP-1(%) (M
[Z] € ‘QS,:n—Zn+2 ’ ( 3 )

represented by the manifold F) = Z represents the obstruction to lifting F ta sEmb(M™, R™). If
3n — 4m — 520, then if Z is null-cobordant there exists an embedding of RR'in
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oD! dD*

Fig. 1. TheD; and theA; for a 1-handleD® x D1 attached alongD! x D1. TheD; c D1, andA; = D; x D1 c D1 x DL.
Note that removing > 1 of the A; leaves a manifold witlik — 1) extra 0-handles, but one fewer 1-handle.

It follows from our Theorem 6 that our manifoltlrepresents the only obstruction to lifting frofhe
T Emb(M, R™) to 7 3Emb(M, R™), because there is(@: — 4m — 5)-connected map Enib/, R") —
T 3Emb(M, R™).

In Section 4.1 we reduce Theorem 6 to the case wiilecentains exactly three points by an induction
argument inspired by the proof of Theorem 5.124], as we have already mentioned. Then in Section
4.2 we prove Lemma 32, which proves our theorem wiilecpnsists of exactly three points.

4.1. The handle induction

Proof of Theorem 6. We consider all spaces as images of corresponding cofunctorsd(am to
Spaces. We will induct on the handle dimensloof open setd/ € ¢(M) which are the interior of
smooth compact codimension zero handlebodies, and finally specialize-t . Recall that a manifold
has handle dimensiokif it admits a handle decomposition with handles of at most inkléi/e will
prove that ifU can be made from handles of index at mikgghen the square

Emb(U,R™)

*

T,Emb(U, R") C(U,R")

is (3n — 4k — 5)-cartesian. We will omit the second variatité from our notation. The base cake- 0,
whenU is a tubular neighborhood of a finite set, will established in Lemma 32 belowk 63 and
assume the result fér< k. LetL be a smooth compact codimension zero submanifoM,afith interior
U, and lets > 0 be the number of handles of indexLete; : D"* x D* — L denote each of the

k-handles forj = 1 tos. Assume thatej‘l(aL) =0D"* x DK for all j. Sincek > 0, we may choose, for
eachj, closed pairwise disjoint diskBg, D1, D>, D3 in the interior of DX, and set

Al =e;(D"*x D)NU

for eachi (seeFig. 1). ThenA{ is closed inU and if we setd; = UjA{, thenU — A; is the interior
of a smooth compact codimension zero manifold which admits a handle decomposition with no handles
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of index greater than or equal ko The same is true fol/s = N;csU — A; for each nonempty subset
S c {0, 1, 2, 3}. By induction, for eacty # ¢ the square

Emb(Us)

*

T,Emb(Us) C(Us)
is (3n — 4(k — 1) — 5)-cartesian. Hence for each nonemfyhe map
Emb(Us) — hofiber 7 2Emb(Us) — C(Uy))
is (3n — 4(k — 1) — 5)-connected. Now consider the square diagram
Emb(Us) hofiber(Z;Emb(Us) — C(Us))

holim g_.gEmb(Us)

holimgghofiber(Z2Emb(Us) — C(Us))

We want to show that the upper horizontal magds — 4k — 5)-connected for alf, including S = ¢.
SinceZ 2Emb(—, R") is polynomial of degree< 2, C3(—) is polynomial of degree<3, and the setd;
are four in number, the rightmost vertical mapoisconnected. By Goodwillie-Kleifi7], the leftmost
vertical map iS(3n — 4k — 5)-connected. By induction and Proposition 1.225]f the lower horizontal
map is(3n — 4k — 4)-connected. It follows that the upper horizontal mag3s — 4k — 5)-connected.
Specializing ta/ = M gives the desired result.0]

4.2. Proof of the theorem when M is three points

Now we prove the theorem in the cake-= 0, which is whenJ is an open tubular neighborhood of
a finite set of points. Sinc€s is a polynomial of degree3, we can, using the same handle induction
argument as above, reduce to the case whés a tubular neighborhood of at most three points. By
Proposition 21, we may replace the tubular neighborhdedth its zero sectior®. If Shas less than three
points, thenC(S) is contractible, and Eml§) — 7 2Emb(S) is an equivalence. We are thus reduced to
proving this theorem in the case where- {x1, x2, x3} consists of exactly three points. For the remainder
of this section, Em{s) will denote Emig{x1, x2, x3}) andC3(S) will denote C3({x1, x2, x3}).

Lemma 32. The square

Emb(S) ———— ==

FHEmb(S) C3(9)

is (3n — 5)-cartesian whereS = {x1, x2, x3}.
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This lemma says that the homotopy groups of the homotopy fiber of the left vertical map are isomorphic
with the homotopy groups of the right vertical map through a range. The spaa&kisithe configuration
space of three points iR”, which has been extensively studied. We will identifgEmb(S) in the next
section. The proof of this lemma is broken up into two main steps. In Section 4.2.1, we explicitly identify
hofiber(Emh(S) — 7 2EmN(S)), and establish that there i3z — 5)-connected map

$§2"=3 _ hofiber(Emb(S) — 72Emh(S)).

We then identifyQC3(S) with 2052'~2, and it follows that if the composed ma#" 3 — QC3(S)
induces an isomorphism aty, 3, then it is in fact(4n — 5)-connected. Finally, in Section 4.2.2, we
establish the isomorphism between _shofiber(Emb(S) — 7 2Emb(S)) andry, _3Q2C3(S) onny,_3.

4.2.1. The homotopy fiber Bmh(S) — 7 2Emb(S) and the identification o2C3(S)

Lemma 33. For S = {x1, x2, x3}, there is an equivalence

hofibeEmb(S) — 7 2EmI(S)) ~ hofibers” 1 v §"~1 — s7~1 x 71,

Proof. Since Emlg{x1, x2}) ~ §"~1, there is a fibration
Emb({z1, z9, 23})

Snfl V, Snfl

Sn—l

Note thatZ ,Emb({x1, x2, x3}) =~ §"~1 x §7~1 x §"~1, Recalling our model fog ,Emb(M™, R"), we
see thaF only needs to specify a nonzero vectoRdffor each two element subsetNdfin an equivariant
way. Hence we also have a trivial fibration

gn=1 5 gl ——~ FoEmb({zy, xa, 23})

S'n,fl

The map EmbS) — 7 2Emh(S) induces a map of fibrations

Sw,—l Vi Sn—l Sn—l X Sn—l

Emb(S) —————=Z,Emb(95)

Sn—l %STL—I
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and hence an equivalence
hofibe Emh(S) — 7 Emh(S)) ~ hofibers" v s"~1 — s~ x g7~ O

There is a homotopy equivalence hofig®#r1 v §7~1 — §7-1 x §7=1) ~ zs"~1 A @s" 1.
One can see this by first identifying the homotopy fiber witsi' 1 « @5"~1, wherex denotes the join
construction, which in turn maps B(Q5" 1 A @5”~1) by a homotopy equivalence. For details, [28].

The (2n — 3)-skeleton for the James model fas™—1 is $”~2, and hence th€3n — 5)-skeleton of
2(QS" 1 AQ85" 1) is §21-3 Hence we have @n — 5)-connected mag?*—3 — hofiber(s”~1v s*-1 -
s7=1 x §7~1) given by the inclusion of this skeleton.

Lemma 34. There is an equivalend@Cs(S) ~ Q52" 2.

Proof. Observe that fos = {x1, x2, x3}, (g) = % and by Remark 182C3(S) ~ Q0 5% ~? because the
tangent bundle to the configuration space is the zero bundle and the lgundl®) P is trivial of rank
2n—2. O

By a computation involving the obstructi@we show that the composed msfi —3 — QC3(S) (still
to be defined) induces an isomorphismmyp_3. But the homology groups of both spaces vanish up to
dimension 4 — 5, so using the Hurewicz theorem, the map is actu@y— 5)-connected.

4.2.2. A generator fot,_3

Here we will give a generator oy, _shofibefEmh(S) — 7 2Emh(S)) and show that the composed
map tony, 3Q2C3(S) generates this group as well. A single point with, of necessity, trivial bundle data
will represent a generator of this latter group.

Write R* =R"1 x R, and letp, = (0, 1/2) andp, = (0, —1/2) be points inR" in these coordinates.
Lemma 33 gives an equivalence of paisé—1v §7~1, §"~1x §7~1) — (Emh(S), 7 2EmK(S)). Itfactors
through the inclusions” 1 v §71, §7=1 x §7=1) — (R™\{p1, p2}, R"\{p1} x R"\{p2}), where the
wedge point is the origin and the spheres are centered appuandd p».

Consider the following commutative diagram.

§2n—3 = R\ {p1,p2} *

Emb(S)

L (e1,62)

T,Emb(S) - C5(9)

D2 o RO\ i} X R\ {po}
Here: is the inclusions?'—2 — D=2, and;; is the inclusion oR"\{p1, p2} in R"\{p;} for j =1, 2.

Definition 35. The mapx : §2'~3 — R"\{p1, p2} is given by
(v, w) = (2w + [wl?v, [of? — Jw]?),
where(x, y) € R*“1xR denotes apointiR”, ands?*~3is the unitspher|2+|w|?=1inR" 1 xR" 1,

There are three obvious ways to extend this map over @3f 2. One is just to extend it by the same
formula, which we will also calk. The other two make use of the fact thel + |w|2 = 1 on the sphere,
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so that we may write the restriction @to the sphere in two equivalent ways there, and extend them over
the whole disk in the obvious way. These maps are denatedndo_1 /2, and are given by

w1/2(v, w) = (w + (v — w), 1= 2[w|?)
and
w-12(v, w) = (v + [P (w — ), 2v]* = 1).
The following lemma verifies these maps have the target we claim they do.

Lemma 36. The restriction ofx to the sphere missgs, = (0, 1/2) and p> = (0, —1/2), and the map
x«1/2 on the whole disk misses the poit 1/2), and likewise for_1,> and the poini0, —1/2).

Proof. For the first fact, note that there are only two ways in whigBw + |w|?v can be zero: one of
the coordinates or wis zero, ofjv| = |w|. In the first case, the other coordinate must have length one, in
which casév|? — |w|? is +1, and in the secondly|? — |w|? = 0. For the second fact, the argument is the
same for both 2 ando_y,2, S0 we will argue only that, misses(0, 1/2). If ay/2(v, w) = (0, 1/2),

then we must havaw|? = 1/4. Solving forv in terms ofw we obtainv = (1 — 1/|w|?)w using the first
part of the map, and using our previous observation and taking lengths we @htair8/2, which is
impossible onv|2 + |w|?<1. O

Lemma 37. The map of pairs

(o, 002 X 0_1/2) : (§273, D?'72) — (R™\{p1, p2}, R"\{p1} x R"\{p2})

represents a generator @b, _shofibers*—1 v 71 — §7=1 x gn—1),

Proof. It is known (see, for examplg2]) that the map assigning to each smooth nfap %3 —

s7=1 v §7-1 the linking numbetdk( f~1(y1), f~1(y2)), wherey; € "1 v x andy, € x v §" 1 are

regular values of, provides an isomorphism af,_shofiber s”—1v §7~1 — §7-1 x §7=1) with Z. The
points(0, 1) and(0, —1) are regular values af The inverse images of both points &e- 2)-dimensional
spheress” ;2 = o~1(0, +£1). One easily sees that (0, 1) = {|v|> = 1} and«~ (0, —1) = {|w|? = 1}.

The linking number of these spheres is 1. This can be computed by counting intersections of one of the
spheres with a bounding disk. If we I8! = {jv|2<1}, thendD;* = 5”12, and this disk intersects

+1
s"7%only at(v, w) = (0,0). O

We now explicitly construct the manifoltifor this generator. Recall thais constructed by determining
when the three vectors determined by evaluaknon pairs of a triple(x, x2, x3) of distinct points of
M point in the same direction. We have a parametrized family of nigpparametrized by coordinates
s= (v, w) inthe diskD?'=2, The mapgF; are easy to describe, sintf= {x1, x2, x3} contains just three
points and we have explicitly described the nfaff 2 — R"\{p1} x R"\{p2}.

Lemma 38. The equations
Fy(x1, x2) = a1/2(v, w) — (0, 1/2)
Fy(x2,x3) = (0, 1)
Fy(x3, x1) = (0, =1/2) — a—1/2(v, w)
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represent the composed map”—2 — 7 ,Emb(S) and define nonzero vectors for eack: (v, w) €
D?'=2, Moreover the mapF, : R%, x D?'~2 — R" x R", a parametrized family of maps defined by
the above using DefinitioB6, is transverse t® x 0, and its only zero occurs when, w) = (0, 0).

Proof. The properties o#;,, andx_1/> noted above ensure that this defines a nonzero vector for each
(s, x;,x;) fori # j. To find the zeroes df,, that is, to compute the manifold we need to compute
when theF; (x;, x;) are positive multiples of0, 1). This is the case ifv, w) = (0, 0). We claim that this

is the only solution.

If v=0, thenjw|=1 since the first coordinate &{o, ., (x1, x2) must be zero, but in this case the second
coordinate is negative. By symmetry this rules out the possibility that there is a solution whem eitber
orw = 0. Now assume that, w # 0. Again considering that the first coordinatefQf ., (x1, x2) must
be zero, we see that there must be a linear dependence benaeelw. In particular, we must have
v=(1-1/|w|®w, andw = (1 — 1/|v|?)v. By substitution and algebra we end up seeking solutions to
2/lw|* — 3jw|? + 1 =0, which argw|? = 1 or jw|? = 1/2. When|w|? = 1, we must have = 0, which
has already been ruled out. When|? = 1/2, the second coordinate & (x1, x») is negative. Hence
v =w = 0 is the only solution.

To check thaFy is transverse to & 0 amounts to checking that the matiid¥ has rank 2.

Write Fy = ((y1, u1), (y2, u2)). Then

dyp  dn  dyn dy
dv dw dazy  daio

Oug  dug  dug  dug
dv dw daz1  daiz

dy dyz dy, dy
dv dw  daz;  daro

dup  dup  dup  dup
dv dw daz;  dai2

SinceF, andF are related by an invertible linear transformation, it is enough to checlethas rank
2n. Letting I, denote th& x k identity matrix, we find that

azrl,—1 0 0 0

p . 0 72 O
DFlo.o = 0 aiol,_1 O 0
0 0 0 12

which has rank 2, since thez;; of Definition 25 are positive. [

This completes the proof of Lemma 32, as we have shown that a generatgr ghofibers"—1 v

: -1p-T(Y . :
sn—1 5 sn=1x §7~1) goesto a generator of the cobordism grmé’ﬁ;_;fﬂﬂ 3 )(Ag) by this construction.

5. Smooth knotting of spheres

As an application of our Theorem 6, we recover results due to Haeflife2]ion the knotting of smooth
spheres. We should note, however, that he used surgery theory to prove these, and it was important that
the manifolds to be embedded were spheres. Our techniques in principal work for any domain manifold,
though we have yet to carry through such computations. As an application of our Theorem 6, we will
prove
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Theorem 39(Haefliger[12], 8.14. noEmb(5%*1 R3+3) is isomorphic withZ if k is odd andZ /2 if
kis even

Dax’s Theorem 4 says that the map E#y’, R") — 7 2Emb(M™, R") is (2n — 3m — 3)-connected.
Kervaire[17] proves thato.7 2Emb(S™, R") =0 for 2n» — 3m — 1> 0, and hence all embeddings$if
in R" are isotopic if 2 — 3m — 3> 0. This will play an important role in enumerating embeddingS"sf
in R" when 21 — 3m — 3= 0. To prove Theorem 39, we also need to know ab@ut.Emb(S™, R").

Lemma 40. n;, 7 2Emb(§%+1 R¥*+3) —0fork =0, 1.

The proof of Lemma 40 will occupy most of the rest of this section. Theorem 39 follows easily from
this lemma and our Theorem 6.

Denote byI'(X, Y) the space of sections of some understood fibration #veiith fibersY. The
space7 1Emb(S™, R") is weakly equivalent ta'(S™, V,, ») by the Smale-Hirsch theorem, whevg ,
is the Stiefel manifold ofm-frames inR". The fibration in question has as its total space the space of
vector bundle monomorphisms frofi™ to TR”. Recall that the mag 2Emb(S™, R") — I'(S™, Viu.n)
restricts an isovariant mdpto the diagonal and records the induced map of normal bundle¥X duedY
be spaces with & action. Denote by EqIX, Y) the space oF»-equivariant maps frorK toY. Consider
the space Equ™ x S™\4, $"~1), whereX; acts by switching the coordinates in the first variable and
antipodally in the second. We can restrict an equivariant §fap< S”\4 — $"~! to the bundle of
(m — 1) spheres associated to a tubular neighborhood of the diagogab™ x S™. Sinced~S™, we
can view this as giving an equivariant mafi—1 — 71 for each point in the diagonal. This can be
interpreted as a section of a bundle os&rwhose fibers are Eq§” 1, s*~1). It is built in exactly the
same way the bundle of vector bundle monomorphismBSst in TR” is built from §”* andV,, ,; we
replaceV,, , with Equ(s™1, s»~1).

There is a mapZ 2Emi(S™, R") — Equ(S™ x §™\4, §"~1) given by sending an isovariant map
F=(f1, fo) : §" x §™ — R" x R" to the restriction of f1 — f2)/| f1 — f2| to the complement of the
diagonald. Likewise, there is a map(S”, V,,.,) — I'(S™, Equs™ 1, s"~1)) induced by the inclusion
Vi — Equs™~1, $"~1) which associates a linear length preserving map of ramé an equivariant
map of spheres (with antipodal actions) by restriction.

Lemma 41. The square diagram

ZHEmb(S™ R™)

Equ(Sm x gm \ A7 Snfl:

F(va Vm,n)

F(Sm’ Equ(S"“l, SlL*l))

is homotopy cartesian

Proof. By Theorem 9.2 of24], the left vertical fibers are equivalent to EG8™” x S™\4, s"—1), where
the subscript denotes the additional requirement that the sections should be given in a neighborhood of
the diagonald. By inspection, this is the right vertical fiber]
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If follows from Lemma 41 that the connectivity of the top vertical map is the same as that of the bottom
vertical map.

Lemma42(Haefliger[13], Lemmal.l Themap/, , — Equs” 1, §"~1)is(2n—2m—1)-connected
It follows from Lemma 42 that
Theorem 43(Haefliger[13], Theorem 4.2 The map
r(S™, Viun) — [(S™, Equs™ 2, 5"~ 1y)
is (2n — 3m — 1)-connected

This follows from the fact that i — B is a fibration withk-connected fiber and B@&dimensional
CW-complex, then the space of sectiongkis- d)-connected. Hence we have proven

Theorem 44. The map
TEmb(S™, R") — Equ(S™ x §™ — 4, "1
is (2n — 3m — 1)-connected
We may replace Eq™ x §™\ 4, $"~1) with Equ(S”, $"~1) because the map froff* x S”\4 — S™
which sendgx, y) — (x — y)/|x — y| is an equivariant homotopy equivalence, with homotopy inverse
x — (x, —x). By Lemma 42, we have @n — 2m — 3)-connected map,,+1, — EquS™, s"—1y and
Vint1.n itselfis (n — m — 2)-connected.
Now letm = 2k + 1, n = 3k + 3. The map
Ny EmuSZk-i-l’ R3k+3) N g——zEmuSZkﬂ-l’ R3k+3)
is 0-connected, meaning it is surjective on components, but the map
EmuSZk-i-l R3k+3) — 9—3Emu52k+l R3k+3)
is k-connected, and hence gives an isomorphismgpmnhenk >1. The map

g—zEmuSZk-Fl’ R3/<+3) — EqLKSZk_HL, S3k+2)

is 2-connectedYy 12313 — EqU(S*TL, §3+2) is (2k 4 3)-connected, and/y 2 343 is itself k-
connected. It follows that

nO:g/‘ZEmuSZk—i_l, R3k+3) — nl,TzEmtXSZk_H, R3k+3) — O

This completes the proof of Lemma 400
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Now consider the long exact sequence of homotopy groups of the fibdafies Emb — 7 Emb.
From our Theorem 6 we havekecartesian square

Emb(SQk“, R3k+3) %

%Emb(32k+l7 R3k+3) C(sZkJrl’ R:3k+3)

Hence there is &-connected map of vertical fibers; — QC. Taking np, we see thatgQC =

§2k+1
Q83k+2)P_T( 3 )( ). We now use Proposition 23 to show thatklfs odd, then this group ig,
and wherkis even itisZ/2.

We need to consider the action ﬂf(Sng) on the bundleg3k + 2) P and T(S21;+1). This group is
isomorphic withzs sinces%*1 is simply connected arid> 1. Recall that we madefrom a representation
of Z3, so the homomorphism(P) : 23 — {+1, —1} factors throughGL>(R) asX3 — GL2(R) —
{+1, —1}, where the first map is the representation in question, and the second map records the sign
of the determinant. Since the elements of order two generate the group, it is enough to understand
w(P) on such elements. Each elemenbdf order two acts by a reflection on the plane, and hence
w(P)(s) = —1. More generallyw((3k + 2)P) : X3 — {+1, —1} factors throughG Lg;+4(R), so
that for an element of order two, ifk is even, therw((3k + 2)P)(¢) = +1, and ifk is odd, then
w((3k + 2)P)(s) = —1. As for the mapu(T(SZ?l)) — {41, —1}, note thats%+1 is orientable, and
hence so ig5%+1)3\ 4. But any element € X3 of order two changes the sign of the orientation class
of (§%+1)3\ 4 because R+ 1 is odd. Henceu(T(Sng))(a) = —1 for any element of order two. It

follows thatw((3k + 2)P) = w(T (%5 ) if kis odd, andw((3k + 2)P) # w(T (5 ) if kis even,

s+l
Proposition 23 implies thatpQC = Q(()SHZ)P T s )(SZ';H) is isomorphic withZ if kis odd, andZ /2

if kis even. This completes the proof of Theorem 39.

S2k+l
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