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Abstract

We discuss the production of two hadrongire~ annihilation within the framework of perturbative QCD. The cross section
for this process is calculated to next-to-leading order accuracy with a selection of variables that allows the consideration of
events where the two hadrons are detected in the same jet. In this configuration we contemplate the possibility that the hadrons
come from a double fragmentation of a single parton. The double-fragmentation functions required to describe the transition of a
parton to two hadrons, are also necessary to completely factorize all collinear singularities. We explicitly show that factorization
applies to ordew;, in the case of two-hadron production.
0 2003 Elsevier B.V.Open access under CC BY license.

1. Introduction

The production of one hadron it e~ annihilation has been studied in much detail in perturbative QCD [1].
The corresponding cross section for the proedss — y*(Q) — H(P) + X is usually expressed as a function
of the variable

2P-Q
= Q2
representing the energy fraction carried by the hadron. In this case the cross section can be written as a convolution

of the (perturbative computable) partonic cross sectibrand the (non-perturbative) fragmentation functions
Dl.H (x) giving the probability of finding a hadron in the parton with momentum fractioas
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The cross section has been computed to next-to-leading order (NLO) accuracy in [1] and to next-to-next-to-
leading order (NNLO) accuracy in [2]. Furthermore, several analyses of the available data have been performed
in the last years and, as a result, fragmentation functions for several hadrons have been extracted with very good
precision.

Higher order QCD corrections (NLO) to the cross section for the production of two hadrehsirannihilation
have been computed in [1] in the particular case when the two hadfprand H2 are selected from different
parton jets. While a symmetric extension of the one-hadron case to two hadrons would correspond to expressing
the differential cross section in terms of the momentum fractions of each hadron defined by

2P;-Q 2P;-Q
the authors in [1] introduced a different set of variables
2P - Py - P,
_ 12q’ g @
0 P1-Q

While z in Eq. (4) coincides withy1, the momentum fraction of hadrdf, the second variable depends on
both the momentum fraction of hadr@f» and the anglé12 between the hadrons observed from the center of mass
system as

1
u= ZZE(l — C0%912), (5)

such that: is approximately zero when the angle between the hadrons is small. Therefore, configurations where
both hadrons are in the same parton jet correspondsi®. Consequently, by considering events werndu

are not too small one can ensure that the two hadrons are produced from the hadronization of different partons and
the cross section can be reduced to the product of the fragmentation furﬁﬁoassociated to each hadron [1].

In this way, the possibility of a double fragmentation from a single parton is excluded and the expression for the
cross section gets simplified.

In this work we are interested in extending the calculation for the two-hadron cross section in the full phase
space, including the configurations were both hadrons are produced collinearly. In order to be able to consider
those events we will express the cross section in terms of the momentum fractions in Eqg. (3).

With the use of these variables it is possible to contemplate simultaneously two extreme configurations: the first
one corresponds to the case when the two hadrons are produced in opposite directions (or at least with a clear
angular separation) and therefore belonging to different jets (Fig. 1(a)). Hadrons in this configuration can only be
originated from the fragmentation of different partons. The second one corresponds to the case of both hadrons
produced in the same direction, such that they are detected in the same jet (Fig. 1(b)). In the last case, hadrons
could be originated from the fragmentation of two collinear partons or by the double fragmentation of the single

/H] /

=

(a) (b)

Fig. 1. (a) Represents hadrons in the first kinematical configuration. (b) Represents hadrons in the second configuration, belonging to the same
jet.
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parton. The price one has to pay to fully account for the second configuration is the introduction of a new set of
non-perturbative phenomenological functions [3-5] to describe the possibility of the transition from a single parton
to two hadrons.

One needs to introduce, thetie double-fragmentation functions DD,Ilez(xl,xz),l as the probability that
a partonp fragments into the hadrond, and H2 with energy fractionsc; and x2. The cross section for the
production of two hadrons iat e~ annihilation can therefore be written in the following schematic way

doH1H2
dzidzo

=Y od"@D"® D2+ o @ DD/, (6)
ij i

wherec/ is the partonic cross section for the production of parioasd j ando’ the cross section for partan
The cross section is separated in two terms corresponding to the contribution of the mechanisms responsible for
two-hadron production: single fragmentation of two partons, and double fragmentation of a single parton.

At leading order, the first term only contributes to the first configuration, since the two partons that undergo
hadronization are produced back-to-back. At next to leading order there is one extra parton which could be emitted
collinearly to one of the others, giving also origin to hadrons in the second configuration. Therefore, af artkér
beyond, hadrons in the second configuration could be originated from any of the two fragmentation mechanisms,
being not possible to separate the contribution of each term in Eq. (6), unless an additional (unphysical) scale is
introduced. Only the sum of both contributions has physical sense.

The presence of collinear partons at ordgigives origin to collinear singularities in the cross section, which
are manifested in the form of polesén= (4 — N)/2 when dimensional regularization is used. By means of the
usual redefinition of theD functions, singularities due to collinear partons that give origin to hadrons in the
first configuration can be absorbed. However, there appear singularities corresponding to hadrons belonging to the
second configuration, originated from collinear partons emitted in the same direction. Since at lowest dbgﬂ"er the
functions only participate in processes associated with the first configuration, such singularities cannot be absorbed
in the single fragmentation term. We will show that with the redefinition oflmeiHle functions in the double

fragmentation term all singularities are factorized. In this sense, the role played D;IIHEHZ functions ine™e™
annihilation is similar to the one dfacture functions in DIS processes [7—11]. For a formal point of view, it is
possible to interpret the double-fragmentation functions as the time-like version of fracture functions.

Double-fragmentation functionleDiHle fulfill sum rules in analogy to the sum rules for the usual
fragmentation functions [1]. Momentum conservation requires

d0H1H2 1 do 2
Z/ 1 4P dP, dp = (0" P)dP (")

being QO the initial total momentum, where the right-hand side is proportional to the total free momentum available
for the production of hadrof/,. In particular, energy conservation implies [4,5]

1-2o

> f dz12aDD{""2 (21, 22) = (1 - 22) D[ (z2), ®)
H

relating the second moment of the double-fragmentation function to the single one.

1 We have slightly modified the original notation introduced in [3,4] for the double-fragmentation functions to make more noticeable the
difference with the usual ones



142 D. de Florian, L. Vanni / Physics Letters B 578 (2004) 139-149
2. Two-hadron production in ete™

In order to formalize the convolution products in Eq. (6) we define the partonic energy fractions associated
to each fragmentation mechanism. For the single fragmentation term two partons fragment independently with a
fraction of the parent parton energy given by

_2pi-Q
Xi = Q2
with p; the momentum of the partan= 1, 2. At leading order both variables are fixed to one since no extra gluon
radiation is allowed.

The convolution product in the single fragmentation term of Eq. (6) is expressed in terms of a double integral

in x1 andxz with integration intervals determined by the kinematical region allowed for the partonic process. This
implies

: ©)

0<x1<1 and 3z <xy, 1-x1<x2<1 and 2 < xo. (20)

The integration zone for the single fragmentation term has to be divided into the two rdgéantsB indicated
in Fig. 2.

In the case of the double fragmentation term only one parton fragments. We define the partonic variable as usual
by

2p-Q

QZ
with p being the momenta of the fragmenting parton. With this, it is possible to write the second term of Eq. (6) as
a single convolution product with integration limits coming from the requgst + z2/x < 1.

X =

: (11)

Z 1z, 1

x2=1—x1

Fig. 2. Integration regions for the variables andx» in the single fragmentation term.
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Using those conditions we can express Eq. (6) as

1
doitz f dx1 dxp da'l pt (A prz( 22
dZ1dZ2 x2 dxidxo s 0 \x1) 7 \x
15x,
d d do'l ; dx d
Xl ax2 o Hyf 21 H 22 xdo HiH, [ %1 22
+ D;t 2 + f——DDlZ—,—,
Z / x2 dx1dx2p ! (xl) ( ) Z ! X X
1-2o i 2142
(12)
where to NLO accuracy
do'! _ doi(o) o doi(l) do'l . daij(o) o doi-/(l) (13)
dx ~ dx 27 dx dxidxo g dxidxag = 2m dxidxag’

andK = A, B indicating the integration zone in the single fragmentation term. In Eq. (12) we have considered the
case when % z, > z1. This implieszi + z2 < 1, which corresponds to the kinematical region where the double
fragmentation mechanism can also contribute; H- z> > 1 the cross section is reduced only to the second term
of Eq. (12).

Some of the partonic cross sections obey symmetry relations that allow to reduce the number of independent
guantities to be computed. Due to invariance under charge conjugation

do'd dod do?t do?

= i = ) (14)
dx1dx2>  dx1dx> dx1dx2> dx1dx2

To NLO accuracy it is necessary to obtain only three different partonic cross seditfydxidxz,
do98 /dx1dx2 anddo 89 /dx1dxo.
At leading order the only non-vanishing termsZre

— =efopé(l—x),
dx q dx1dxo g

= 5008 (1— x1)8(1— x2), (15)

A Otsz

whereog = 300

The partonic cross section at ordegris obtained by evaluating the real and virtual diagrams indicated in Fig. 3
and integrating over the phase space of the final partons expressed in taimgpsuch thatic’/ = dog +doy .
We compute the metric and longitudinal contributions to the partonic cross section obtained, as usual, by replacing
the sum over the polarization states of the virtual photon by the corresponding projectors

P;Ellt/[) - _g/MN (16)
0
;EIJ) = (p2- Q)Z‘P2up2v~ (17)

The longitudinal contribution has been calculated projecting in the direction of h&tydn the following, we
will present in detail the results for the metric contribution, since at NLO singularities of interest occur only on that
projection of the cross section. Using dimensional regularization [12,13] we obtain for the real part

2\ € 2\ —€
M) 2 Qs 4 1 1-z 2 -2
dog " =¢ “OTTCF< 0? ) r(z—e)< 1) 1P xo)dxad, (18)

2 |n this work we restrict the analysis to the case of puteexchange. The extension Bboson production can be easily performed.
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2
#
q q q g q q g q
dGV | Y* | dGR | /{ | I
e+ e— e+ e— et e e+ e—
Fig. 3. Virtual and real diagrams contributing to order
with
2 2
X7 +x (2—2x1 — 2x2 + x1x2)
F(x1, x2) = [(1 —eP—L "2 21— 19
1-xD1—x2) 1-xD1—-x2) (19)

andu being the dimensional regularization scale. The result for the virtual contribution is
o

s drp®\‘TA+er?1—ef 3 2 )
2nCF< 02 ) F(1—20) |:———6—2—8+n i|6(1—x1)6(1—x2)dx1dx2. (20)

€
In the previous equations we have labeled the quark as parton 1 and the anti-quark as parton 2. The virtual
part does not exhibit singularities beyond those already regularized in the form of pelelnithe real part the
divergences appear when the denominators of the funétion, x2) vanish. These infrared divergences can be
regularized by means of the usuglprescription, which can be easily implement by multiplying and dividing by
(1 — x;)¥*€, and considering this expression as a distributioxy in

doy = egao

1 1 log(1—x;
A—x) = —28(1 —xi)+ A=)+ 04 —€ (791(— . ))HO,l] + (’)(62)’ (21)
whereF (x)1(q,p) is defined as usual by
b b
/ dx f(X)F () +{a,b) = f dx [f(x) = f(B)]F (x).

The range of integration is indicated as a subscript; furthermore, the subtraction point is underlined.

Fordoqé(l)/dxl dx> the singularities of the functiofi(x1, x2) occur atxo = 1 in zoneA, and atx; =1 and
x2 =1 in zoneB. Applying the+ prescription as indicated, the following expression is reached

) 2 2

= 0065 |:qu (x1) |Og(%)8(l —x2) + Pyy(x2) |Og(%>8(l —x1)

daqg(l)

dxi1dxo g
+ Equ (x1)8 (1 —x2) + Equ (x2)8(1 —x1) + qu[((xl, x2) |, (22)

where ¥Yé = —1/e(4n)T'(1—¢)/T'(1—2¢) = (—1/e +yp —log4n) + O(e), P;; (x) are the usual Altarelli-Parisi
splitting kernels [14] and the functiory%VK are presented in Appendix A.

Thegg partonic cross sectiofic?¢Y /dx1 dx, can be obtained from thgg one relabeling the parton indexes
by axs — 2 — x1 — x2 substitution in the matrix elements. In this caBéx1, x2) — F(x1,2 — x1 — x2) which
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develops singularities a = 1 in zoneA, and atx; + x2 = 1 in zoneB. Proceeding like in the previous case and
ignoring terms containing distributions without support in the analyzed zones, we obtain

doas® M)

0? 0?
=Ooe[ q(x1)|09( )8(x1+x2 D+ P q(XZ)IOg(M )5(1 x1)

dxi1dxo g

1. 1.
+ Equq(xl)S(xl +x2—1)+ ngqq(xz)S(l x1) + f, gK(XL xz)} (23)

where the functions?j’.‘l. are the real LO Altarelli-Parisi kernels, with the indelabeling the third particle in the
vertexi — jk.

In the gg partonic cross sectiodio 87V /dxq dx, x1 is assigned to the gluon and to the quark. Performing
the substitutionr, <> x1 in the matrix element used o 98V /dx1 dxo, F(x1,2 — x1 — x2) — F(x2, 2 — X1 — x2)
which develops singularities ab = 1 andx; + x2 = 1 in zoneA, and atx; = 1 in zoneB. The singularities in
zoneA will give origin to two different distributions, one associated to the singularifypat 1 and another to the
singularity atx; = 1 — x». The result can be expressed as

doga@ M)

2 0? 0?
=eqoo[ gq(xl)log<ﬂ )3(1—xz)+ q(xz)log( )8(x1+xz—l)

dxi1dxo g
N l
P, (x1)8(1— x2) +3 Pl (x2)8(x14+x2— 1) + f( (x1, xz)} (24)

This result completes the presentation of the partonic cross sections that participate in the single fragmentation
term.

For the double fragmentation term, the cross sections for the production of a singlegirtan are required.
These are exactly the same as the ones appearing in one-hadron production [1]. As a cross-check of our calculation
we have re-obtained those coefficients by applying the momentum conservation relation in Eq. (7) resulting in

do @M 4G D

2
=€§oo[ qq<x)log<Q )+ qu<x>+f<M><x)]

dx T dx
g(1) (M) 2
d(:,x = 2@500[ Pgq(x) |og<Q ) + 3 P () + f, M>(x>], (25)

with fi(M) given in Appendix A.
As indicated above, the longitudinal part does not contribute to the singular structure of the cross section to

NLO accuracy. The corresponding NLO corrections to the sigfg‘ré and doublefi(” fragmentation mechanism
are shown in Appendix A.

3. Factorized fragmentation functions

The factorization of the bare fragmentation functid@)@ at NLO is done in thé/S factorization scheme in the
standard way [1]. The expression for the bare functions in terms of the factorized ones at thié¢%isale

1
2
DY (z) = / d;“[m 08+ 2 [Iog(“ ) 1}1’,,( )] ’“NLO’(M,MZ), (26)

where the factorized distributions are labeled by the upper index (NLO).
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It is easy to notice that not all the singularities in the partonic cross-section are canceled after the factorization
of the fragmentation functions is performed. Singularities belongindot®* ¥ /dx1dx, and do8® /dx1dx»
in zoneA still remain. They correspond to terms witlielpoles proportional té (x1 + x2 — 1), arising from the
hadronization of a gluon being emitted collinear to a quark (or anti-quark) that also undergoes hadronization, giving
as a final product two hadrons in the same jet. Those singularities clearly cannot be absorbed the factorization of
the D functions, since a configuration with two collinear hadrons is not allowed in the single fragmentation term
at the lowest order. However, this is exactly the configuration corresponding to the double fragmentation term,
indicating that these singularities could be absorbed by the appropriate factorizr:xtiorilit)fﬁlé’2 functions.

The expression for the bare double-fragmentation func'ri.mglh'2 (x, y) in terms of the NLO factorized ones
DD,.HlHZ(NLO)(x, y, M?) can be obtained by requiring that all remaining collinear singularities in the partonic
cross section are absorbed into the factorized distributions. The expressiorMi$ tfaetorization scheme, valid
to O(ay), is

1
d u? 1
DDz (x ) = / = [5(1 )8 + - [Iog( ) ]P,,(u)}DD”l”“NLo) (f, 2 M2>
u u

u
x+y

2 ‘2
oy noy o1 du Ak Hi( X\ pHo Y
i CORHE e LLARES Cenl| @

<1

The factorization relation in Eq. (27) contains two terms with different origins. The first one just relates the
factorized and bare double-fragmentation functions, and corresponds to the standard factorization procedure for
the emission of collinear partons in the double fragmentation part of the cross section, exactly as it occurs for
one-hadron production. The second ‘inhomogeneous’ term relates the single and double-fragmentation functions
and is needed to absorb the remaining singularities discussed above.

Rewriting the bare distributions in terms of the factorized ones in Eq. (12), and fixfhg 02, we obtain the
final NLO expression for the factorized cross section for the production of two hadrons as

d HyH> (M)
dz1dz2
1-z22 1
dxq dxo
= 30’0 P JR—
X1 X2
21 1—x1

x) e { f;[};/Q(XLXZ)
q

o |:D(I]'-11(NLO)<Z_1’ QZ)D{‘Iz(NLO)<Z_2’ Qz) +DH2(NLO)< 0 ) H1(NLO)< 0 )]
X1 q X2

+ —f(/,w)(xl, x2) DHl(NLO) Q + DH1(NLO) H2(NLO)
o JagA x1

Z
a0 (2, 2) 4 8 (2 )} (3 )}
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Us (M
xy e§{ [6(1 — X8 x2) + 5> fyg (11, xz)}

q
% D(II'-Il(NLO) Z_l’Qz pH2(NLO) Z_Z’Qz 4 pH2(NLO) Z_Z’Qz pHi(NLO) Z_l’Qz
q X2 q X2 q

X1 X1

o <1 <1 <2
+ 5 fyen (1 xz>[DH1<NL°> (—, Q2> + DjANLO) (—, Q)}D’,"Z(NLO) (—, Q2>
2 798 1 X1 1 ’

X1 X2

Xs (M) H>(NLO) [ 22 42 Hy(NLO) [ 22 12 Hi(NLO) [ %1 2
+§fgq3<x1,xz>[0q2< >(x—2,Q)+D; (X—Z,Q)}Dg“ >(—,Q)}

X1

1
dx Oy
+ 300 f = Zeg{ [3(1 —x)+ qu(M)(x)]

z1+22 q

1 < i1 T
y [DD51H2<NLO><_1,_2,Q2) +DD{11H2<NLO>(_1’_2’ Qz)]
X x 4 x x

4225 ¢ (M) () p pHiH2(NLO) (Z_l, 2 QZ) } (28)
27 8 x X

The longitudinal contribution is obtained by replacifig”) — f&) and omitting the corresponding LO terms
proportional tas (1 — x1)3(1 — x2) and§(1 — x).

While the dependence on the momentum fractions of the double-fragmentation functions cannot be computed
within perturbative QCD, the factorization scale dependence is driven by the evolution equations. As for the
ordinary fragmentation functions, these equations can be obtained by requiring that the bare fmﬁ%ﬁ% do
not depend on the factorization scale

d

7dlogM2DDlHlH2(x,y) =0. (29)

ReplacingDDl.Hle(x, y) from Eq. (27) we obtain

Hy Hy(NLO)

dlogz DD ey M)

1 2
o du HIH;(NLO) (X Y . o s / du Ak X\ Hf Y
= — —Pji(u)DD: - =M — —— | P5:(u)D | — | D .
2 f u? ji () J u u +2JT u(l—u) i () F\u) 7k \1-u

x+y 21
(30)

The first term in the right-hand side corresponds to the usual homogeneous evolution of the fragmentation
functionsDiH. It indicates that the probability of obtaining the hadrdihsand H, from the parton is affected
by the possibility of the emission of a partgrwith momentum fractiom, which can produce two hadrons by a
double fragmentation. The second term, on the other hand, is inhomogeneous and it is not present in the evolution
equations of theDi” functions. It corresponds to the case of a paitdhat evolves emitting the partorjsand
k with fractionsu and 1— u respectively, which can also give origin to two hadrons, but now by means of the
mechanism of single fragmentation form each one of them. Both terms are represented symbolically in the Fig. 4.
These equations fully agree with the ones originally proposed in [4,6].

The presence of these two terms in the evolution equations evidences the fact that, within the precision of any
possible detector, it is physically impossible to determine which mechanism, either single or double fragmentation,
has been responsible for the production of two hadrons when they are found in the same jet. In the same way,
and beyond LO accuracy, only the sum of the two terms in Eq. (6) associated to each one of the mechanisms
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H, L H
H.H H 1
DDJ'l Z// : DIL/ H,
H, H / & H,
12 f K %«““ Dy
d DD, _ B N B S
dLogM*

Fig. 4. Graphic representation for the evolution of m@f’le. The first diagram corresponds to the first term in Eq. (30). The last one to the
inhomogeneous term.

that contributes to the cross section, has a physical meaning. In this sense, the similarity with the situation of the
fracture functions[7] in DIS appears again.

4. Conclusion

In this work, the cross section for the production of two hadronstia~ annihilation is calculated to order
ay considering events that include the possibility that both hadrons appear in the same jet. For this purpose
it is necessary to extend the fragmentation model including a new type of functions, the double-fragmentation
functions DDiﬂle, that describe the transition of a parton into two hadrons. These functions, along with the
single-fragmentation functio®/, allow an unified treatment for the description of two-hadron production in
ete™ annihilation.

While at leading order theDDiHle functions are necessary to contemplate the possibility of the double
fragmentation, at next-to-leading order and beyond, they are required to perform the factorization of divergences
that cannot be absorbed in the single-fragmentation functions. As a result, they obey the inhomogeneous evolution
equations in Eg. (30), where the two mentioned mechanisms of fragmentation are involved. We showed, for the
first time, that introducing the double-fragmentation functions the usual factorization procedure can be enlarged
consistently for the production of two hadrons to ordgrreobtaining the evolution equations originally proposed
in [4,6].

Appendix A

The NLOMS) corrections to the single fragmentation term are given by

£ (21, xp) = Xi 433 4| By log[(1 — xpa] + 21— x1) [5(1— x2)
ggA X1, X2) = 31— xD(1—x2100 qq(x1) 109 X1)x1 3 X1 Xx2),
x%+x§

4
fygs (k1 x2) = + 38— ¥Dd(L—x2) (72 - §)

31— x1)+001 — x2) 10,11

4 log(1— x1) 4 .
+ |21+ 23 =—= 4+=-1—x1)+P [ 1—
[3( xl)( 1-x1 )+[O,l] 3( W+ Fag () ngi]g( *2)

4 log(1— x2) 4 N

(1413 =——= ~(1- P | 1—
+[3( +X2)( T )+[o,1]+3( x2) + Pyy (x2) ngz]cS( x1),
X2+ (2—x1+x2)?

Q—xD(x1+x2 = Di1-x1

4 A 4
fq((g? (X1, x2) = 3 ] + [qu (xp)[log(L — x1)x7] + 3= X1)]8(X1 +x2—-1),
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xf+(2—x1—x2)2 N
(1—x1)+o 1 +x2—1)
X5+ (2—x1—x2)?

(= x2)410,11(x1 +x2 = D11, 1)

M
fq(gg)(m,xz) =

4

3

4

(M) _

fqu (-xlv XZ) - 3
. ) 4

+ | Pgg(x1)[log(1 — x1)°x1] + 3 S(x1+x2—1),

4 x§+(2—x1—x2)2 4
3(A—-x2)401x1+x2—-1)

8/x1+x2—-1
L 1+x2
chi(A/)B(XL x2) = 3 (72)

M
f;q B (1, x2) =

X2
16/1—x
(L) 2
Jaga p(¥1. X2) = §< 2 )
8/1—x
(L) 1
Jeqa (X1, x2) = :—3(—x§ )

The corresponding corrections to double fragmentation are

—X

4 logl—x 14 x? 3 1
f<M>(x)=—[1+x2 (7> +2< )Iogx——i—
g 3 ( ) 1—x +10.1] 1 2AQ-x)4poy+ 2

2n2 9
+ (T — §>3(1—x)1|,
M (x) = Pygg(x)[log(1 — x)x?],

fB @) =

>

’

)=

wloo wl b

A/
[
=
=
~—
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) 4
[qu (x2)[log(1 — x2)x2] + 5)62]3(1 —x1),

R 4
+ [qu (xp[log(l — xp)x1] + 5)61}3(1 —x2)

5 4
[qu (xp)[log(1 — x1)x1] + éxl]é(l — x2),
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