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Abstract

Unconventional machining processes are used only when no other traditional machining process can meet the
necessary requirements efficiently and economically. Abrasive Waterjet Machining (AWIM) is one of the most
recently developed mechanical type unconventional hybrid manufacturing technologies. It is superior to many other
cutting techniques in processing various materials, particularly in processing difficult to cut materials. This
technology is being increase used in various industries. Therefore, optimum choice of the process parameters is
essential for the economic, efficient, and effective utilization of these processes. Process parameters of AWIM are
generally selected either based on the experience, and expertise of the operator or from the propriety machining
handbooks. In most of the cases, selected parameters are conservative and far from the optimum. This hinders
optimum utilization of the process capabilities. Selecting optimum values of process parameters without optimization
requires elaborate experimentation which is costly, time consuming, and tedious. Process parameters optimization of
AWIJM essential for exploiting their potentials and capabilities to the fullest extent economically. This paper presents
a Fuzzy Logic (FL) - based modeling of AWIM process and optimization of its rule base, data base and consequent
part utilizing a Genetic Algorithm (GA). A binary coded GA has been used for the said purpose. While modeling
with FL, the output parameters, namely Material Removal Rate (MRR) and Surface Finish (Ra) have been predicted
for different combinations of process parameters, such as water jet pressure at the nozzle exit diameter of abrasive-
water jet nozzle traverse or feed rate of the nozzle mass flow rate of water and mass flow rate of abrasives between
nozzle and the work piece.

© 2012 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of Noorul Islam
Centre for Higher Education Open access under CC BY-NC-ND license.
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1. Introduction

The best of AJM and WJM processes have been combined to create a process known as AWIM. AWIM technology
was first commercialized in the late 1980's as a pioneering breakthrough in the area of non-traditional processing
technologies. It is used to cut the target materials with a fine high pressure water abrasive slurry jet. AWIM is
superior to many other cutting techniques in processing various materials. Such as no thermal distortion on the work
piece, omni-directional cutting capability, high machining versatility to cut virtually any material and small cutting
forces. This technology has found extensive applications in industry, particularly in contouring or profile cutting and
in processing difficult to cut materials such as ceramics and marbles, and layered composites.

This process relies on erosive action of abrasive laden water jet for applications of cutting, drilling, cleaning, and de-
scaling of thick sections of very soft to very hard materials at higher rates. A stream of small abrasive particles is
introduced and en trained in the water jet in such a manner that water jet’s moment um is partly transferred to the
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abrasive particles. Role of carrier fluid (water) is primarily to accelerate large quantities of abrasive particles to a high
velocity and to produce a highly coherent jet [1]. Import ant process parameters of AWJM can be categorized as
hydraulic parameters: water pressure, and water flow rate (or waterjet nozzle diameter); abrasive parameters: type,
size, shape, an d flow rate of abrasive particles; cutting parameters: traverse rate, SOD, number of passes, angle of
attack, and target material; and mixing parameters: mixing method (forced or suction), abrasive condition (dry or
slurry) and mixing chamber dimensions. Variety o f materials that can be machined by AWJM include copper and its
alloys, aluminum, lead, steel, tungsten carbide, titanium, ceramics, composites, acrylc, concrete, rocks, graphite,
silica glass, etc. Most promising application includes machining of sandwiched honeycomb structural materials
frequently used in aerospace industries. Visual examination of the cutting process in AWJM suggests two dominant
modes of material removal. First is erosion by cutting wear due to particle impact at shallow angles on the top surface
of the kerf. Second is deformation wear due to excessive plastic deformation caused by particle impact at large
angles, deeper into the kerf [1 and 2].

2. Literature Survey

Different researchers have carried out process parameters optimization of different types of AMPs from time to time
using different optimization models and solution techniques. Table 1 present s the summary of such past studies
highlighting the decision variables, objective functions, constraints, variable bounds, remarks, and their limitations.
Chakravarthy and Babu [3] used combination of Simple Genetic Algorithms (SGA) and fuzzy logic for optimal
selection of three AWIM parameters namely waterjet pressure, jet traverse rate, and abrasive flow rate. SG A was
used to generate a set of strings of input parameters. A fuzzy rule base was used to predict depth of cut using these
parameters as input. Those parametric combinations, for which predicted depth of cut was equal to the desired depth
of cut within a specified error amount, were identified as feasible combination s. The feasible parametric
combinations were used for optimization to minimize total cost of production. Kovacevic and Fang [4] have applied
fuzzy set theory for selecting (though not the optimum values) four AWJM process parameters namely water jet
pressure, jet traverse rate, abrasive flow rate, and inside diameter of AWJM nozzle to achieve the desired depth of
cut. Universes of discourse for AWJM process parameters were discretized into 17 levels with 5 linguistic terms and
triangular member ship function was used for each parameter. Five fuzzy rules were employed for each of the four
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3. Experimental Set Up

The experiments were conducted with a commercial abrasive waterjet apparatus illustrated schematically in Figure 1.
Details of the machine and process settings are listed in Table 2. In this research work, To establish input-output
relationships of AWIM process, five process parameters, namely, water jet pressure at the nozzle exit diameter of
abrasive-water jet nozzle traverse or feed rate of the nozzle mass flow rate of water and mass flow rate of abrasives
and two responses, such as Material Removal Rate (MRR) and Surface Finish (Ra) of the process have been
considered in the present study. Aluminum silicon carbide is used as the work piece for experimentation and

interested readers can read reference [5] for more details of the experimental description.
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Figure 1: A Schematic Illustration of the Experimental Set-Up

Table 2: Literature Survey and Selection of the Variable Bounds for AWJM process

References Selected
ucM Decision Bound
Variable [10] [110] [12] [13] [14] [15] [16] [17] | Variables
(Unit)
Waterjet
Pressure at
Not 50- Up to 137- 50-
tl;(if?;zl’e Mentioned 400 400 741 69-350 150-350 | 150-280 50-400 400(MPa)
(MPa)
Diameter of
Abrasive 055
Waterjet o o o 43 o 0.8-1.1 | 08-24 o ()
Nozzle
v o
1.67- 0.33- 02-
Feed Rate o 2.5 3-10 0.2-25 3.33-25
‘£ (mm/s) 13.33 6.67 25(mm/s)
Mass Flow Up to Waterj ot Waterjet | Waterjet
Rate of Diameter . . 0.01-0.2
g s 0.2 Diamete | Diamete
Water ‘M, — Kes — 0.127 - £03mm | 103mm — (Kg/s)
(Kg/s) g 0.635mm ' ‘
Mass Flow 0.007 | 000167 | o 133 | 00005~ | 00075 | 0.0033- | *9%%3 | 00003 -
Abrasives — 5 -0.0833 0.025 0.013 0.0125 00033 0.08(Kg/s)
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M, (Kg's) | | | | | | | | |

4. Modeling OF AWJM Process

Following optimization model was developed using analysis of Hashish [1] for predicting depth of cut due to cutting
and de formation wear and assuming width of cut equal to diameter of the abrasive waterjet. In this model, variation
in the velocity of abrasive waterjet (which is true for shallow depth of cut), and its effects on the kerf wall drag have
been neglected for both cutting wear and deformation wear zones. Also, threshold velocity concept has not been
considered for the depth of cu t due to cutting wear.

Decision Variables: Five, namely Water Jet Pressure at the Nozzle Exit ‘P’ (MPa); Diameter of Abrasive-Waterjet
Nozzle ‘d,y," (mm); Traverse or Feed Rate of the Nozzle ‘f” (mm/s); Mass flow Rate of Water ‘M,,” (kg/s) and Mass
Flow Rate of Abrasives ‘M, (kg/s).
Objective Functions:

Maximize MRR:

Max dyynfn (het hg) mm/s
Where indentation depth due to cutting wear ‘h.’ and indentation depth due to deformation wear ‘hy’ is calculated
using the formula.

Surface Roughness Constraint:

1.0-18.26/ (Ra) max (pa/cfw) 3 I'm Va>0.0
Where mass flow rate of abrasive particles ‘M’ (kg/s); mean radius of abrasive particles ‘r,,’” (mm); and velocity of
abrasive particles ‘v,” (mm/s).
Variable Bounds: Based upon the survey of range of values of decision variables presented in the Table 2, following
variable bounds were formulated:
50.0 < P,<400.0 (MPa); 05 dyyn< 5.0 (mm);
002 <M< 02 (kg/ s); and 0.0003 <M, <0.08 (kg/s)

02 < £,<250 (mm/s);

5. Forward Modeling of AWJM Process Using FL-GA

In the present approach, five variables, such as water jet pressure at the nozzle exit ‘P’ (MPa); diameter of abrasive-
waterjet nozzle ‘d,,,” (mm); traverse or feed rate of the nozzle ‘f” (mm/s); mass flow rate of water ‘M,,” (kg/s) and
mass flow rate of abrasives ‘M,’ (kg/s) are considered as inputs to the Mamdani approach of Fuzzy Logic Controller
(FLC) [6], and there are two outputs (that is, MRR and Ra) that can be predicted from the controller. It is important to
note that, the performance of the FLC purely depends on its Knowledge Base (KB), which consists of both the data
base (that is, membership function distribution of the variables) as well as its rule base. For simplicity, triangular
membership function distributions have been assumed for both the input and output variables. Moreover, both the
input and output variables are considered to have three linguistic terms (L — Low, M — Medium and H - High). Figure
2 shows the membership function distributions of the input and output variables.
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Figure 2: Manually Constructed Membership Function Distribution of the Input-Output Variables
As there are three linguistic terms for each input variable, there is a maximum of 3° = 243 rules possible. One such
rule of the FLC may look like the following:

IFAisMANDBis L AND Cis HAND D is M AND E is H, THEN MRR is L, Ra is M.

However, the KB (That is, data base and rule base) of the manually constructed FLC, which is based on the
designer’s knowledge and experience of the process, may not be optimal in most of the cases. Thus, an attempt has
been made to evolve the optimal FLC, off-line using GA. GA are computerized search and optimization algorithms
belonging to the class of EA and work with a set or population of solutions a s opposed to traditional optimization
technique and evolve the set of optimum solutions clustered around the global optimum solution using the principles
of natural genetics and natural selection [7]. Operation of GA begins with generation of a set of random solutions
(known as population). Each solution is evaluated to find its fitness value. Higher fitness value indicates goodness of
the solution. The generated population is then operated by the reproduction, crossover, and mutation operators to
create the ne w population which is evaluated and tested for the termination criterion. One cycle of three GA
operations and the subsequent evaluation constitute a generation in the GA terminology. Reproduction or selection
operator selects good solutions from the current generation in proportionate to their fitness value to form a mating
pool. Crossover operator creates new and hope fully better solutions by crossing over the solution s selected from the
mating pool according to the crossover probability. Mutation operator alters a good solution locally to hope fully
create a better solution and helps in maintaining the diversity in the population. This procedure of GA operations is
continued until the termination criterion is met or for a specified number of generations. GA are naturally suit able for
solving maximization problems. But, minimization problems can be easily transformed into maximization problems
using some suitable transformation; therefore GA can also solve minimization problems in an equally effective
manner. The schematic diagram showing the operating principle of GA-FLC system is shown in Figure 3.

The 'a’ values indicate the base widths of right-angle triangles and half-base widths of isosceles triangles. The
responsibility of searching a good KB of FLC is given to the GA. The rule base of this FLC contains 243 rules. One
bit will be used to represent the presence or absence of each rule (1 is for presence and 0 is for absence). Moreover,
there are seven real variables, such as a;, a,,....... , a7 (refer to Figure 2), which represent the half base widths of the
triangular membership functions of the variables, and 10 bits are used to represent each variable. For this FLC, there
are two outputs — MRR and Ra, and each of the output is indicated using three linguistic terms (that is, L, M and H).
Each linguistic term is represented by two bits (00 for Low, 01 and 10 for Medium and 11 for High). Thus, there are
five bits representing the two outputs for each rule of the FLC. The total number of rules of this FLC is 243 and five
bits are used to represent the output of each rule. Hence, the total number of bits required to represent the consequent
part of the FLC is coming to be equal to 243x 5 = 1215-bits. Thus, the GA-string will be 70 + 1215 = 1285 bits long,
which will look as follows:
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Figure 3: Working Principle of GA-FLC System
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Thus, populations of GA-strings represent a number of candidate FLCs knowledge base (whose number equals the
population size). As a batch mode of training is adopted in the present work, the whole training data consist of one
thousand training set is passed through the FLC, represented by a GA-string. The fitness (f) of a GA-string (that is,
average RMS deviation in prediction) is determined using the expression given below:

W r

l |
=N ;\j m s

I [ o

Where T, is the target output, O, represents the predicted output, m denotes the number of responses and N is the
number of training scenarios. The operations like reproduction, crossover and mutation are then applied to modify the
population of solutions. It is important to note that the mating pool is formed with the good strings being selected
from the population based on their fitness values using reproduction. In this study, the mating pairs which will
participate in crossover are selected with a uniform crossover of fixed probability (p. = 0.5) and exchange properties
between the two parents to form the children solutions. The local minima (if any) can be avoided with mutation,
which brings a local change to the solution. During optimization, the half base-widths of different triangles
representing membership function distributions of the inputs and outputs, A, B, C, D, E, MRR and Ra are considered
as the real variables, whose ranges of variation are kept fixed to (15.0, 40.0), (4.0, 8.0), (0.5, 2.0), (0.01, 0.2), (0.05,
0.1), (0.005, 0.097), and (1.0, 2.35), respectively.

6. Result Analysis and Discussion

As the performance of GA depends on its parameters, a thorough study is carried out to determine the optimal
parameters. In this study, uniform crossover and bit-wise mutation have been adopted. In order to identify the best
parameters of GA, a study has been conducted by varying one parameter at a time. The following GA parameters are
found to yield best result:

Crossover Probability, p. = 0.00083

Mutation Probability p,, = 0.5

Population Size = 125

Maximum Number of Generations = 180

The optimized membership function distributions obtained for the input and output variables of the FLC are seen to
be similar to the Figure 2. However, the optimal values of seven real variables, such as a;, a,, a3 a;, a4 as a¢, and a;
are found to be equal to 33.744, 8.000, 0.688, 0.189, 0.121, 0.97 and 2.265, respectively. Thirty eight one rules are
found to be present in the optimal rule base of the FLC. Once the optimal FLC is evolved, it is tested for its
effectiveness in prediction of the two responses, namely surface roughness and material removal rate. The percentage
deviations in prediction of the two outputs for ten test cases are shown in Figure. 4.
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Figure 4: Percent Deviation in Prediction of Ra and MRR Using GA-FLC Approach

It has been observed that the values of percentage deviation are found to lie in the ranges of (0.14, 0.61) and (0.12,
0.75) for the outputs Ra and MRR, respectively. Moreover, the average absolute percentage deviation in prediction of
Ra and MRR are found to be equal to 0.6031 and 1.712, respectively. Thus the GA-trained FLC is found to
successfully model and predicted the outputs in a near optimal sense with good accuracy for the AWJM process. It is
important to note that the approach proposed in [8] uses a statistical approach that was carried out response wise and
it may not be able to capture the dynamics of the entire process. In the present paper, a GA tuned FLC has based
proposed to model the AWJM process after considering both the responses and obtained reasonable prediction
accuracy.

7. Conclusion

In this work, the optimal machining parameters for aluminum silicon carbide material for the multi performance
characteristic in AWJM machining were determined by Fuzzy-Genetic approach. The formulated optimization
models are multi- variable non-linearly constrained single and multi-objective optimization problems. For AWIJM
processes, the formulated objective functions and constraints are very complicated and implicit functions of the
decision variables. An attempt has been made to carry out the forward modeling of the AWIM process by using an
FLC. A batch mode of training is adopted which requires a large amount of data. The training data has been
generated artificially (at random) by using the response equations obtained through response surface methodology.
The optimal FLC is evolved with the help of a genetic algorithm. The accuracy in prediction of the responses is tested
for ten different test cases and found a reasonably good prediction for both the outputs. The optimization results were
confirmed graphically with the help of the graphs showing dependence of the objective function and constraint on the
decision variables. Only single objective optimization was done to check the suit ability and validity of the material
removal models, on the basis of which optimization models were formulated. Hence by properly adjusting the control
factors, work efficiency and product quality can be increased.
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