
Verifying a UMTS Protocol Using

Spin and EASN

Matti Luukkainen1

Department of Computer Science, P.O.Box 26, 00014, University of Helsinki, Finland

Vivek K. Shanbhag2

Sun Microsystems, Divyasree Chambers, Bangalore 560025

K. Gopinath3

CSA Dept., Indian Institute of Science, Bangalore 560012

Abstract

Next generation mobile protocols have become very complex and it is becoming increasingly difficult
for standards bodies to be sure of the correctness of protocols during the standardization process.
A convenient notation for specifying protocols and a means to analyze their behavior at a certain
level of abstraction could be quite useful. Model-checking has turned out to be an efficient and
relatively easy-to-use technique in the verification of formally described behaviors. However, there
are two major drawbacks in using model-checking: one is state explosion (the behavior models of
real-life programs tend to be extremely large); the other factor limiting industrial applicability of
model checkers is their restricted input language. For instance, in the field of telecommunications,
the standards define the data model of the protocols using the ASN.1 notation and it would be
simpler if the verification models could directly be built using this ’native’ data definition language
of telecommunication industry.
In this paper, we consider model checking the RLC protocol in the UMTS system that is seeing
ongoing development as a third generation mobile communication system. We briefly describe
EASN, a model checker wherein the behavior can be formally specified through a language based
upon Promela for control structures but with data models from ASN.1. We discuss the verification
problem for RLC and then discuss the results of using EASN on the verification problem and
compare with Spin which also is the basis for the EASN realization.
As a side-effect of realizing EASN, we have been able to locate some intricate performance bugs
in the Spin implementation. We believe that this type of “n-version” programming is necessary to
increase confidence in model checkers.

Keywords: Model Checking, Spin, Promela, ASN.1, Telecommunication protocols, RLC, UMTS

Electronic Notes in Theoretical Computer Science 118 (2005) 71–85

1571-0661 © 2005 Elsevier B.V. 

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.11.007
Open access under CC BY-NC-ND license. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82079514?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/


1 Introduction

Testing and debugging concurrent and reactive programs, such as communica-
tion protocols, is a tedious task, partly due to the nondeterminism caused by
the computation environment. If a program is described in a formal language,
then its behavior can be analysed by means of mathematical structures, such
as a reachability graph, which describes all the possible computation sequences
of the program.

If the correctness requirements of such a formally defined program are also
specified using a mathematical notation, such as temporal logic [12], [1] or
state automaton [10], an algorithm called model-checker [2] can be used to
check whether the program honors its correctness requirements. The model-
checker goes through every possible computation sequence of the program,
thus it is said to be an exhaustive verification technique. Since all the possi-
ble execution sequences are covered, model-checking gives total confidence of
program correctness.

Model-checking has turned out to be an efficient and easy-to-use tech-
nique in program verification. However, there is one major drawback in using
exhaustive model-checking: behavior graphs of real-life programs, telecom-
munication protocols for example, tend to be extremely large. In literature
this problem is often referred to as state explosion. To alleviate this problem,
many progressive steps have been taken during the past decade and efficient
implementations of model checkers are already available. Spin is one such
verification system [4].

Next generation protocols for mobile devices have become very complex
and it is becoming increasingly difficult for standards bodies to be sure of the
correctness of protocols during the standardization process. Thus it would
be extremely beneficial if such techniques as model checking could be used in
ensuring the correctness of the standards.

Typically the input languages, such as Promela (used with the model
checker Spin), have a limited set of data structuring constructs. This can
be a limiting factor in the larger scale industrial usage of such tools. ASN.1
(Abstract Syntax Notation One) [5] is a widely used data definition language
in telecommunication protocol specification. It would be helpful for the stan-
dardization process if a model checker could be augmented with ASN.1 data
modeling capabilities to check correctness of interim versions of a protocol be-
fore establishing a standard. Verification engineers in the telecommunication

1 Email: mluukkai@cs.helsinki.fi
2 Email: vivek.shanbhag@sun.com
3 Email: gopi@csa.iisc.ernet.in

M. Luukkainen et al. / Electronic Notes in Theoretical Computer Science 118 (2005) 71–8572

mailto:mluukkai@cs.helsinki.fi
mailto:vivek.shanbhag@sun.com
mailto:gopi@csa.iisc.ernet.in


industry would benefit from this ability to use ASN.1 data models directly in
their verification efforts.

In this article we report on the application of the EASN model checker
to the Radio Link Control protocol [9] of the UMTS, a standard of the third
generation mobile communication systems [11].

This article is structured as follows: Section 2 describes briefly the Spin
and EASN tools, and their relationship. In section 3 the RLC protocol is
described. Section 4 explains how the protocol and its user environment are
modeled, and discusses the results of the verification. Conclusions are drawn
in section 5.

2 Spin, EASN and their Relationship

Spin [4] is an effective model checking tool for asynchronous systems, espe-
cially designed for communication protocols. The input language of Spin is
called Promela (“Process Meta Language”). A protocol is modeled as a set
of Promela processes which communicate with each other with channels or
shared variables. The design of control constructs of Promela has been based
upon those in SDL, a language that has been used to specify communication
protocols since ’70s. Nondeterminism and guarded commands in Promela
make it convenient to express behavior of communicating protocol entities.

The model checker Spin has many capabilities like deadlock detection,
validating assertions, system invariants, detection of non-progress cycles and
livelocks, and specifying Linear Temporal Logic (LTL in short) properties for
model checking. Algorithms that effect substantial space and time savings,
like bit-state hashing, on-the-fly model-checking and partial-order reduction
have been incorporated into Spin. Hence, modifying the Spin system to handle
ASN.1 has been the design goal of the EASN Project [8].

Spin has a simulator that randomly checks only a portion of the state
space and also a (generated) validator that can attempt to exhaustively check
the state space of the system or can use techniques like bit-state hashing
to check a substantial portion of the state space with a fairly high level of
assurance. The EASN system also has these components, and most of the
reduction strategies in Spin, such as partial order reduction and bit-state
hashing, are already supported by the current version of EASN.

Similar to Promela in Spin, the EASN Language is the input language for
the EASN tool. The EASN language is designed as a convenient marriage
of the ASN.1 notation for data-typing and control constructs of Promela. In
case of conflicting features, the decisions were motivated from both ease and
convenience of implementation & elegance of language design.

M. Luukkainen et al. / Electronic Notes in Theoretical Computer Science 118 (2005) 71–85 73



ASN.1 can be used to define the data-types and constant values in an
application. Promela, however, is a complete language with a set of basic data
types and typedef construct to help users compose data-types, and a set of
control constructs that can be used to define the behavior of protocol entities.
The EASN Language replaces all the data-typing capabilities of Promela
with ASN.1. Hence, none of the data types of Promela are retained in EASN,
except the chan construct. As ASN.1 has far more richer and expressive data
types compared to Promela, EASN needs to overload the semantics of many
of the operators of Promela, so as to support a natural set of operations on
data. In addition, the EASN language also augments the set of operators as
necessary. In brief,

EASN = Promela - {mtype, typedef, bit, byte, bool, short, int} + ASN.1
+ appropriately overloaded semantics of the existing operators + few new
operators.

In addition, due to the presence of the sub-typing mechanism in ASN.1,
which allows users to define data types such as integers having just a limited
set of possible values, model checking can be more effective since the amount
of memory used in storing the system sates can be reduced and this naturally
helps in fighting the state explosion.

Spin represents state quite efficiently but, for reasons of alignment, etc,
allows padding and other extraneous matter in the state vector. Since EASN
uses ASN.1 data models, it requires that all variables be as constrained as
possible in the space of values that they can take through the use of sub-
typing. For example, if an integer variable takes values from 8..15 only, it
can be represented using 3 bits. Further, if there are two variables that are
constrained to be between, say, 5..7 and 3..7, there are only 15 possibilities
and both can be represented in only 4 bits instead of either 2+3 (5 bits) or
worse 3+3 (6 bits). EASN, therefore, has a critical facility called the state
compaction infrastructure that guarantees that the minimal number of bits is
used in storing each system state.

3 The RLC-protocol

Universal Mobile Telecommunication System (UMTS) is a third generation
mobile telecommunication system using WCDMA (Wideband Code Division
Multiple Access) radio access technique. The new radio access technique re-
quires major changes in the radio access network that consists of network
elements and protocols participating in the data transmission using the radio
interface. RLC (Radio Link Control) protocol is one of the new UMTS proto-
cols. It is a layer 2 protocol, according to the OSI reference model, providing

M. Luukkainen et al. / Electronic Notes in Theoretical Computer Science 118 (2005) 71–8574



Iub
transmission Iub

transmission

UE Node B RNC

L2

L1

RRC / IP+ApplicationRRC / IP+ApplicationL3

PDCPPDCP

RLC

MAC

RLC

MAC

WCDMA L1 WCDMA L1
WCDMA L1

Fig. 1. The UMTS protocol layers

reliable data transmission service to the upper layers over the unreliable radio
interface. It uses the unreliable data transmission service provided by a lower
layer, the MAC (Medium Access Control) protocol (see Figure 1).

RLC protocol was standardized in March 2000 by 3GPP, an international
standardization forum consisting of manufacturers, operators, authorities etc.
interested in regulation and development of the third generation systems. The
specification [9] defines several services, functions and procedures for the pro-
tocol.

RLC provides to the upper layers several services related to data trans-
fer. According to the specification [9], the protocol performs RLC connection
establishment and release, transmits data in transparent, unacknowledged or
acknowledged mode, allows setting of QoS (Quality of Service) dynamically
during data transfer and notifies the upper layer of unrecoverable protocol
errors. In this paper, we concentrate on the verification of the reliable data
transfer service in acknowledged mode. The acknowledged data transfer ser-
vice transmits upper layer PDUs (Protocol Data Unit) and guarantees delivery
to the peer entity.

The acknowledged data transfer mode has the following characteristics [9]:

• Error-free delivery: The receiving RLC entity delivers only error-free SDUs
(Service Data Unit, upper layer PDUs) to the upper layer.

• Unique delivery: RLC delivers each SDU only once to the receiving upper
layer by detecting duplicates.

• In-sequence delivery: RLC provides support for in-order delivery of SDUs,
i.e., RLC delivers SDUs to the receiving upper layer entity in the same order
as the transmitting upper layer entity submits them to RLC.

• Out-of-sequence delivery: Alternatively to the in-sequence delivery, it is
possible to let the receiving RLC entity deliver SDUs to the upper layer in
a different order than delivered to it on the transmitting side.

• Ciphering: This service is not yet defined in the specification.

M. Luukkainen et al. / Electronic Notes in Theoretical Computer Science 118 (2005) 71–85 75



• SDUs that do not fit in a RLC-layer PDU should be segmented and again
reassembled at the other end of the protocol.

There are several alternative ARQ (Automatic Repeat reQuest) schemes
to choose from. We study stop-and-wait, perhaps the simplest one, for our
verification model. Each SDU of the RRC layer above (which shall from this
on be alternatively called the user) has to be acknowledged before a new one
is accepted from the user, and in case RLC is unable to deliver the SDU
according to the requirements, it notifies the transmitting upper layer entity.

For simplicity, we leave out the segmentation and re-assembly procedures.
The size of the user data, i.e. the size of a RLC SDU (Service Data Unit),
is assumed to be exactly the same as the size of the data field in a RLC
PDU. Along with segmentation, concatenation and padding functionalities
can also be left out for simplicity. Since ciphering is not precisely defined in
the standard, we have also left it out from our model.

The specification defines some parameters for the configuration message
used by the upper layer to establish and release a RLC connection. Parameters
are used to configure the RLC protocol entity to the appropriate mode and to
define parameter values used in ciphering and segmentation. Because we have
only one functional mode in our model and no ciphering or segmentation at
all, the parameters are left out from configuration messages.

Connection establishment phase in RLC consists of receiving only a single
configuration request message from the upper layer. After initialization, the
protocol is ready for the data transmission phase. We assume that the con-
nection is established (i.e. the corresponding message is received) at the same
time at both ends of the protocol. This is how the protocol is specified, since
at first, the MAC and RRC protocols (see Figure 1) establish the physical
link and after that the RRC-layer sets up the RLC-connection. Thus, this
protocol is structured quite differently compared to the protocols in the OSI-
stack, where typically the layer n−1 connection needs to be set up before the
connection at level n can be established.

The data transfer procedure is initiated when an SDU is received from the
upper layer. For each SDU, the RLC protocol entity creates a corresponding
PDU. The SDU is placed into the data field of the PDU with the appropriate
sequence number in the PDU header. A timer for the PDU transmission is
set right after sending the PDU to the MAC layer that takes care of accessing
the radio interface. No further requests are accepted from the user before the
data transfer procedure for the previous one is completed. The data transfer
procedure terminates either when the transmitting side receives an acknowl-
edgment for the PDU or, in an abnormal case, after sending a notification of
a protocol error to the user. In the normal case, the transmitter receives the

M. Luukkainen et al. / Electronic Notes in Theoretical Computer Science 118 (2005) 71–8576



acknowledgment for the PDU before the maximum count of retransmissions.
A retransmission is triggered, usually, by the PDU transmission timer expi-
ration. The PDU transmission timer is reset when the acknowledgment with
the appropriate sequence number is received. Acknowledgments with other
sequence numbers are ignored.

After receiving a PDU, the RLC protocol entity in the receiving side re-
moves the header and delivers the SDU to the upper layer. After sending the
corresponding acknowledgment to the MAC, it updates the sequence num-
ber. The transmitting side updates the sequence number after receiving the
acknowledgment.

In the abnormal case where the sender’s PDU transmission timer expires,
and the predefined maximum count of retransmissions for the PDU has already
been reached, the reset procedure is executed. Its purpose is to resynchronize
data transfer and bring the protocol back into a consistent state. The trans-
mitting side sends the reset message and sets a timer. The receiving side
acknowledges the message and updates the sequence number to a predefined
initial value. In the transmitting side the sequence number is updated to the
same initial value right after receiving the acknowledgment for the reset mes-
sage. A maximum count of retransmissions is defined for the reset messages
also. In case of a reset, the user entity is notified. If the reset procedure is
successful, a recoverable error is reported; otherwise, an unrecoverable error
is reported. It is then up to the user to decide how to continue. Disconnec-
tion phase, which is always initiated by the user entity consists of receiving
a disconnect message from the upper layer. For the same reason as for the
connection establishment, the disconnection also takes place approximately
simultaneously on both the transmitting and receiving sides. Both per con-
nection protocol entities terminate on receiving disconnection request, and
new entities will be generated for the next connection.

4 Formal Modeling and Verification

Having informally described the RLC protocol, we now present the principles
of modeling of the protocol and its environment. In order to compare the
capabilities of the EASN system, we did the modeling and verification for
both EASN and Spin.

The MAC-layer below the RLC-protocol provides an unreliable transfer
for delivery of RLC-level PDUs. Hence, we modeled MAC as two unreliable
FIFO-queues, one in each direction. When giving a PDU to MAC, it makes
a nondeterministic decision whether to deliver the message further (putting
it on the queue) or dropping it. However, we assumed that the MAC does

M. Luukkainen et al. / Electronic Notes in Theoretical Computer Science 118 (2005) 71–85 77



not duplicate or corrupt the packets. Actually the corruption of a packet
is similar with respect to RLC as the dropping of a packet since the error
correction procedures below the RLC layer detect and reject the corrupted
messages.

For a new RLC-connection, a fresh logical channel is allocated for it in the
MAC-layer. In our model, when the the RRC-layer sets up a RLC-connection,
it first dynamically creates a MAC-connection and then the two RLC entities
at both ends of the protocol, one of which is the sender entity and the other
is the receiver entity. So, in our model the RRC layer is modeled as two static
entities that then dynamically create the layers below.

As described in the previous section, the connection establishment takes
place at both ends of RLC at about the same time. In our model, this is
handled by the use of an ’oracle’ that commands both RRC entities to open a
RLC connection. Actually, it is the oracle that creates the underlying MAC-
layer, passing its handle to the RRC-entities. RRC-entities then create the
RLC-entities and pass them the MAC-handle which they use for connection.

The oracle is also used to model the fact that the RRC entities could decide
to terminate the RLC-connection at any point of time. If the sending RRC is
terminating the RLC-connection, this information is delivered to the receiving
RRC through the oracle.

In the real UMTS stack, the actual communication between the RRC-
entities happens through a separate MAC connection. We use the direct
synchronization of using an oracle as an intermediary in order to simplify the
model. So, the oracle has a dual role in our model: it is the means of control
communication between the RRC-layers, and incorporates control from the
upper level application protocol to decide when an RLC connection should be
created or terminated.

The structure of the model is depicted in the Figure 2, where the static
entities are drawn with solid line and the dynamic ones with dashed line. The
oracle and its signals are drawn with dotted line.

Each separate protocol entity is modeled as a EASN-process. The behavior
of RLC sender and RLC receiver processes are sketched in extended state
automaton form in the Figure 3 and 4. In both the processes, a reception of the
disconnecting message from the above layer causes an immediate termination,
that is left out from the automata descriptions. In the figures, transitions are
specified in guarded command fashion, e.g., fromrc?CR ⇒ ab := 1 means
that when receiving a CR message from user, the value of ab is set to 1. MAC
layer is specified with two separate unreliable FIFO-buffers, one from sending
RLC entity to receiving entity and one for the other direction.

Full specification in both EASN and Promela format can be located at

M. Luukkainen et al. / Electronic Notes in Theoretical Computer Science 118 (2005) 71–8578



RLC−sender

connect /
disconnect

RNC_RRC

RLC−reciever

Oracle

creation

connect /
disconnect

UE_RRC

mac layer

Fig. 2. Structure of the specification

num==ab
−>ab++

num!=ab
−>cnt++

cnt==MAX
−>cnt=0

−>to_rrc!statusUE; ab=1
to&&cnt==MAX

ab=1

from_rrc?DT(sdu)

cnt=0

to_mac!data(sdu,ab)

−>cnt++
to && cnt<MAX

to_mac!reset

to&&cnt==MAX
−>cnt=0

−>cnt++
to && cnt<MAX

from_mac?ack(num)

−>to_rrc!statusRE; ab=1
from_mac?resetack

sending

idle

reset

ready
from_rrc?CR

Fig. 3. RLC sender

idle

from_rrc?CR
−> exp=1

num==exp
−> exp++

ready
from_mac?reset

−> to_mac!ack(num)
from_mac?data(sdu,num)num!=exp

to_mac!resetAck
−> exp =1

Fig. 4. RLC receiver

http://www.cs.helsinki.fi/u/mluukkai/easn/ .

One specific interesting point in the modeling has been the usage of dy-
namic process creation and passing channel identifiers of the dynamically cre-

M. Luukkainen et al. / Electronic Notes in Theoretical Computer Science 118 (2005) 71–85 79

http://www.cs.helsinki.fi/u/mluukkai/easn/


ated processes; these two features are supported by both Spin and EASN. In
this aspect this model differs from the previous two reported in [6], [3] that
used labeled transition system specifications and a static structure where the
same RLC and MAC components are reused for the subsequent connections.
The model of the RLC-protocol here follows the one defined in the standard
closely, since in reality different MAC-connections do not share logical chan-
nels.

The actual way of modeling the dynamic aspects is the following:

(i) At the start, three processes are created: the oracle, sending user and the
receiving user.

(ii) Before starting a RLC-connection, the oracle creates a MAC-entity.

(iii) The MAC entity defines four local communication channels, two for both
of the peer RLCs, and passes the channel identifiers to the oracle.

(iv) The oracle then passes the channel identifiers to the RRC entities which
then start a RLC-connection setup.

(v) Both the RRC entities then create RLC-entities, passing the correspond-
ing MAC-channel identifiers to the created processes.

(vi) At the time of disconnection, both the RLC-entities and the MAC en-
tity terminate. During the termination, the channels between MAC and
RLCs also vanish, since those were locally defined in the process that
modeled MAC.

(vii) For the next RLC-connection, oracle starts all over again.

The above modeling is possible due to the capability of the Promela or
EASN modeling languages to dynamically create processes and pass channel
identifiers between the processes. From the verification point of view, it is
also important that the terminated protocol instances do not have any effect
on the current state components of the systems. That is actually the case
if termination happens as in our model, where it is ensured that old entities
have terminated before new ones are generated.

Properties to be Proved and Verification Technique

have any effect on the behavior of the protocol, a deadlock possibility
should exist after sending a list of n SDUs, each consisting of just a number
0. So, if we are able to show that the protocol does not deadlock for any
possible list of sent SDUs containing zeros, the protocol is free of deadlocks in
a general case where SDUs of any content are sent.

Detection of message duplication Let us assume that it is possible
that protocol duplicates the i:th SDU when sending a list s1, s2, . . . , sn of

M. Luukkainen et al. / Electronic Notes in Theoretical Computer Science 118 (2005) 71–8580



torlc!DataReq(sdu)
torlc!DataReq(sdu)

fromrlc?DataAck fromrlc?DataAck

fromrlc?DataAcksdu = 0

sdu = 1

Fig. 5. RRC sender entity for verification of in-sequence delivery

SDUs. So, the receiving user would be given SDUs s1, . . . , si, si, . . . sn. The
contents of the SDUs do not have any effect on the behavior of the protocol.
Thus in case of sending the list of SDUs 0i−110n−i (first 0 repeatedly i − 1
times, then 1 and finally n − i times 1), the SDU consisting of the value 1
would be delivered to the receiving user twice. So, if we are able to show that
the protocol delivers exactly one SDU having content of 1 for any possible
list of SDUs sent of the form 0i10j, the protocol in general does not duplicate
SDUs when SDUs of any content are being sent.

In-sequence delivery of messages Let us assume that it is possible
that the protocol could change the order in which i:th and i + 1:th SDUs are
delivered when sending a list s1, s2, . . . , sn of SDUs. So, the receiving user
would be given SDUs s1, . . . , si+1, si, . . . sn. Since the contents of the SDUs do
not have any effect on the behavior of the protocol, in case of sending the list
of SDUs 0i1n−i, the first SDU consisting of 1 would be delivered before the
last one consisting of 0. So, if we are able to show that the protocol delivers
all the SDUs consisting of 0 before any consisting of 1 for all possible lists of
sent SDUs of the form 0i1j , the SDUs are received in the same order in which
they were sent for a general case where SDUs of any content are being sent.

The verification itself was conducted by modeling the RRC sender entity
in such a way that it sends the required type of SDUs, and in the RRC
receiver we then checked that the received SDU stream is of right type. As an
example, a fraction of the RRC sender for the in-sequence delivery verification
is shown in the Figure 5. So, first it sends SDUs with 0 as content and then,
nondeterministically at some point of time, it begins sending SDUs with 1
as content. In this way, the reachability graph will contain executions where
every list of SDUs of the type 0i1j is considered.

Results of Verification

We verified successfully all the properties of interest with several different
values for the maximum number of retransmissions. The tables below summa-
rizes some of the performance measures of the verification both for EASN and
for Spin when verifying an equivalent model of RLC protocol. The measure-
ments listed are depth of the DFS-search, size of the state vector (in bytes),
number of states and transitions, usage of memory (in Mega-Bytes), and time.
The results are reported separately for the various verification options which

M. Luukkainen et al. / Electronic Notes in Theoretical Computer Science 118 (2005) 71–85 81



are (see [4] for a more specific description for the various options):

• Noreduce, meaning that the default optimizations in the size of the stored
state vector are turned off,

• Bitstate, Holzmann’s bit-state hashing method for approximating the set
of reached states, and

• Collapse, Wolper’s hash compact method for approximating the set of
reached states.

Table 1
The deadlock detection

Options depth State States States Transi Total Time Tool

Vec Stored Matched tions Mem. (real)

size (MB) (m:s)

NoReduce 3307 52 116042 193407 309449 8.515 0:6.666 Easn

3307 152 116042 193407 309449 10.870 0:2.065 Spin

1646 52 54928 38812 93740 5.215 0:2.115 Easn

1646 152 54928 38812 93740 6.239 0:0.663 Spin

NoReduce 3307 0 115601 192508 308109 1.129 0:4.383 Easn

BitState 3311 152 115747 192800 308547 1.129 0:1.420 Spin

BitState 1638 0 54805 38703 93508 1.813 0:1.446 Easn

1538 152 54709 38555 93264 1.813 0:0.476 Spin

Collapse 1646 28 54928 38812 93740 4.703 1:54.781 Easn

1684 152 55195 38876 94071 5.318 0:0.920 Spin

NoReduce 3307 28 116042 193407 309449 7.695 7:34.387 Easn

Collapse 3345 152 116327 193517 309844 9.129 0:2.917 Spin

As can be seen from the tables, EASN uses at most the same amount
memory that Spin uses, but as the sizes of the verification models grow, EASN
performs increasingly better than Spin, on memory-usage. We have noticed
upward of 20% better memory performance from EASN, over Spin. The price
it has to pay is the increased run-times.

In crafting EASN from Spin, certain portions of the Spin source that have
to do with encoding of state and its management have been completely re-
written for EASN, thereby making it possible to see improvements in its mem-
ory performance. This approach was consciously chosen, rather than simply
translate ASN.1 types to appropriate Promela-types. The fact that this new
code-component in EASN has not evolved as well, or for as long as the code
from Spin that it replaces into EASN, shows (rather clearly) in its run-times.

EASN employs Integer-Arithmetic for its computation of the hash-value
corresponding to its representation of the reached-state of the system, through
the use of the GNU Multi-Precision Arithmetic Package. Spin, on the other

M. Luukkainen et al. / Electronic Notes in Theoretical Computer Science 118 (2005) 71–8582



Table 2
Detection of message duplication

Options depth State States States Transi Total Time Tool

Vec Stored Matched tions Mem. (real)

size (MB) (m:s)

NoReduce 1231 52 301314 649312 950626 19.677 0:16.673 Easn

1231 156 301314 649312 950626 26.742 0:5.849 Spin

673 52 61164 36835 97999 5.522 0:2.225 Easn

673 156 61164 36835 97999 6.956 0:0.736 Spin

NoReduce 1231 0 299023 644079 943102 1.129 0:10.693 Easn

BitState 1231 156 298021 642265 940286 1.129 0:3.777 Spin

BitState 673 0 61136 36828 97964 1.813 0:1.517 Easn

673 156 61002 36731 97733 1.813 0:0.492 Spin

Collapse 673 28 61164 36835 97999 4.908 2:7.880 Easn

673 156 62380 37016 99396 5.830 0:0.956 Spin

NoReduce 1231 28 301314 649312 950626 17.424 61:2.117 Easn

Collapse 1231 156 302530 649493 952023 22.441 0:8.552 Spin

Table 3
In-sequence delivery of messages

Options depth State States States Transi Total Time Tool

Vec Stored Matched tions Mem. (real)

size (MB) (m:s)

NoReduce 1232 52 242596 529114 771710 16.092 0:13.773 Easn

1232 156 242596 529114 771710 21.929 0:4.648 Spin

674 52 48022 28983 77005 4.703 0:1.741 Easn

674 156 48022 28983 77005 5.830 0:0.536 Spin

NoReduce 1258 0 241163 525797 766960 1.129 0:8.868 Easn

BitState 1232 156 236052 515455 751507 1.129 0:2.985 Spin

BitState 674 0 48005 28975 76980 1.813 0:1.208 Easn

674 156 47969 28955 76924 1.813 0:0.395 Spin

Collapse 674 28 48022 28983 77005 4.294 1:19.238 Easn

674 156 48918 29117 78035 4.908 0:0.759 Spin

NoReduce 1232 28 242596 529114 771710 14.352 36:56.357 Easn

Collapse 1232 156 243492 529248 772740 18.345 0:6.868 Spin

hand, employs Polynomial-Arithmetic for the same purpose. While Polyno-
mial arithmetic can be faster than multi-precision integer arithmetic, the lat-
ter allows EASN to compute hash-values incrementally. In the accompanying
tables, notice that EASN reports a state-vector size of 0 bytes, for the Bit-
State runs as against non-zero values reported by Spin. For these runs, Spin
firstly represents the reached-state of the system in a contiguous byte-array,
and then computes two integer indexes based upon that, into a bit-array, and

M. Luukkainen et al. / Electronic Notes in Theoretical Computer Science 118 (2005) 71–85 83



sets the bits at the two indexes per reached state. EASN, through its use
of incremental computation for the two indexes (from those corresponding to
the state that the system was in prior to evolving into its current state), does
not require to represent the reached-state explicitly. Refer [7] for a complete
discussion of the various design decisions, and their rationale, as well as the
related implementation aspects of EASN.

Even though this RLC case-study is not a large one, we have observed that
EASN simplifies the formal specification of large telecommunication protocols
or systems, since it involves one (manual translation) step less (as against
when using Spin), of having to model the ASN.1 data through the use of
Promela types.

“N-version” Programming: SPIN and EASN systems

Since the code base of EASN is derived from Spin system with changes in
the state vector representation and handling (an important and critical part
of the model checker), any discrepancy in the number of states, etc. in the two
systems can be explored to determine the underlying causes. Such an effort
has revealed the following anomalies in the Spin system when working with
the RLC model presented here.

• When using rendezvous channels, the compression mask was not completely
restored on backward moves during the search. The correctness of the search
was not affected, but the number of reached states became larger than
necessary. This has been fixed in Spin 3.4.6 (29 March 2001).

• In the s-hash function, the computed hash value would incorrectly also
examine up to 3 extraneous bytes of the state vector argument. This some-
times led to the re-exploring of some states.

5 Conclusions

In this article verification of the UMTS Radio link control protocol [9] has been
considered. This protocol implements several modes of operation. For the
verification, we selected the reliable data transfer service in the acknowledged
mode. The protocol was modeled and verified using Spin, and EASN [7], our
Spin [4] based model checker for telecommunication systems. In EASN, the
data aspects of the protocol are modeled with ASN.1 [5] while the control
structures are the same as that of Promela (Spin’s input language). In order
to compare EASN’s performance with that of Spin, we ran the verification in
both the systems. The data obtained from verification indicated that with
increase in the running time, EASN can manage with less memory than Spin.

M. Luukkainen et al. / Electronic Notes in Theoretical Computer Science 118 (2005) 71–8584



The more complex data-types, and data-structures of EASN contribute to its
increased run-times.

We have already reported verification of some aspects of the RLC protocol
in [6] where we verified the simplified version of the protocol, one where the
disconnection phase was not considered. In the earlier work we used labeled
transition system based modeling of the protocol. Within that framework,
dynamic creation of processes used here is not easy, so despite our earlier
model lacks the disconnection phase, it is slightly more complex than the
one we developed here. Furthermore, the dynamic aspect of the modeling
describes the ’reality’ more closely, so we believe it to be an extremely useful
feature of both Spin and EASN systems.

References

[1] E.M. Clarke and E.A. Emerson. Design and Synthetis of Synchronization Skeletons Using
Branching Time Temporal Logics. In Workshop on Logic on Programs, number 131 in Lecture
Notes in Computer Science. Springer-Verlag, 1981.

[2] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic Verification of Finite State Concurrent
System Using Temporal Logic Specifications. In ACM Transactions on Programming
Languages and Systems, volume 8, pages 244–263, 1986.

[3] J. Helovuo and S. Leppänen. Exploration Testing. In 1st International Conference on
Application of Concurrency to System Design, 2001.

[4] G.J. Holzmann. The Spin model checker. IEEE Transactions on Software Engineering,
23(5):279–295, 1997.

[5] ITU/ISO. Information Technology - Abstract Syntax Notation One (ASN.1), 1994.

[6] S. Leppänen and M. Luukkainen. Compositional Verification of a Third Generation Mobile
Communication Protocol. In 1st International Workshop on Distributed System Validation
and Verification, 2000.

[7] V.K. Shanbhag and K. Gopinath. A Spin based model checker for telecommunication protocols
. In The 8th International SPIN Workshop on Model Checking of Software, 2001.

[8] V.K. Shanbhag, K. Gopinath, M. Turunen, A. Ahtiainen, and M. Luukkainen. EASN:
Integrating ASN.1 and Model Checking. In Proceedings of 13th Workshop on Computer Aided
Verification, Lecture Notes in Computer Science. Springer-Verlag, 2001.

[9] Third Generation Partnership Project. RLC Protocol Specification, Technical Specification
3G TS 25.322 V3.2.0, 2000.

[10] W. Thomas. Automata on Infinita Objects. In J. van Leeuwen, editor, Handbook of Theoretical
Computer Science, Volume B, Formal Models and Semantics, pages 133–191. Elsevier, 1990.

[11] http://www.umts-forum.org , 2001.

[12] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems,
Specification. Springer-Verlag, 1991.

M. Luukkainen et al. / Electronic Notes in Theoretical Computer Science 118 (2005) 71–85 85

http://www.umts-forum.org

	Introduction
	Spin, EASN and their Relationship
	The RLC-protocol
	Formal Modeling and Verification
	Conclusions
	References

