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additional extremal condition. We show that degenerate interpo-

lation problems play an important role in the theory of extremal

interpolation problems. At the end of the paper we accomplish a

comparison of our approach with former known approaches.
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0. Introduction

In this paper, we consider a particular matrix extremal interpolation problem. More precisely, we

try to find amongst the solutionsw(z) of the corresponding interpolation problem the solution which

satisfies the additional extremal condition

w∗(z)w(z) � ρ2
min, |z| < 1, (0.1)

where ρmin is a positive Hermitian m × m matrix. What concerns the statement of the problem we

follow the book [18, Chapter 7]. Degenerate interpolation problems play an important role in the

theory of extremal interpolation problems. In the monograph [18, Chapter 5] of the third author the

solution of a degenerate interpolation problem was constructed. In some special cases the solution

could be expressed in a more simple form (see [12]). Using this more simple form it is proved that the

corresponding solution is optimal in some sense (see [12]).
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In thispaper, itwill be shownthat the formula for the solutionof adegenerate interpolationproblem

which was obtained in [18, Chapter 5] can be transformed into an essentially more simple and more

efficient formula. In the case of the interpolation problems named after Nevanlinna–Pick and Schur,

respectively, our formula coincides with the formulas obtained in the paper [12].

Using the obtained formula we formulate and solve the extremal interpolation problems for a

considerably broader class than studied in the paper [12]. We mention that the results of the paper

[12] had a conditional character since the conditions for the existence of the matrix ρmin were not

known at this time. In the meantime these existence conditions were found for all problems studied

in this paper (see [10]).

The scalar versions of the considered extremal problems have a long history and were studied by

several authors (see, e.g., [21,1,7,2,3,4]). Nevertheless some of our results will be even new for the

scalar case. (This concerns particularly our investigations on the situation which we call the Jordan

block case.)

At the end of this paper we accomplish a short comparison of our approach to interpolation prob-

lems with former known approaches (see [21,1,7,2,3,4]).

1. On an interpolation problem associated with an operator identity

It was shown in the monograph [18, Chapters 1 and 2] that an operator identity generates in a

natural way a corresponding interpolation problem. In this paper, we will concentrate on operator

identities which produce interpolation problems for bounded holomorphic matrix functions.

Let m and n be positive integers. We consider complex n × n matrices A and S and complex n × m

matrices �1 and �2 which are connected by the operator identity

S − ASA∗ = �j�∗
, (1.1)

where

� :=(�1,�2), j :=
(−Im 0

0 Im

)
. (1.2)

Then the following interpolation problem is associated with the operator identity (1.1): Determine

all pairs [τ(ϕ),α] consisting of a monotonically increasing m × m matrix-valued function τ(ϕ) and a

Hermitianm × m matrix α such that the integral representations:

S = 1

2

∫ π

−π

(In − eiϕA)−1(�1 − �2)[dτ(ϕ)] · (�∗
1 − �∗

2)(In − e−iϕA∗)−1 (1.3)

and

�1 + �2 =
∫ π

−π

(In − eiϕA)−1(−�1 + �2)dτ(ϕ)

+ [−�1 + �2]
[
iα − 1

2

∫ π

−π

dτ(ϕ)

]
(1.4)

are satisfied.

With each pair [τ(ϕ),α] satisfying (1.3) and (1.4) we associate the function

F(ζ ) := − iα + 1

2

∫ π

−π

eiϕ − ζ

eiϕ + ζ
dτ(ϕ), |ζ | < 1. (1.5)

The pairs [τ(ϕ),α] satisfying (1.3) and (1.4) are closely related to somematrix inequality associated

with the operator identity (1.1). This will be explained now. Let

L̃(ζ ) :=
(

S B̃(ζ )

B̃∗(ζ ) C̃(ζ )

)
, |ζ | < 1, (1.6)

B̃(ζ ) = (In + ζA)−1(�2 − �1w(ζ )) (1.7)
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and

C̃(ζ ) := Im − w∗(ζ )w(ζ )

1 − ζ̄ ζ
. (1.8)

Then it has beenproved in [9, Section 6.2] that a holomorphicm × mmatrix-valued functionw(ζ ), |ζ | <

1, satisfies the matrix inequality

L̃(ζ ) � 0, |ζ | < 1 (1.9)

if and only if there exists a pair [τ(ϕ),α] satisfying (1.3) and (1.4) such that the function F(ζ ) defined in

(1.5) fulfills

w(ζ ) = (F(ζ ) + Im)(F(ζ ) − Im)−1, |ζ | < 1. (1.10)

We note that inequality (1.9) is an abstract form of Potapov’s fundamental matrix inequality [16].

Now we are going to express the holomorphic m × m matrix functions w(ζ ) satisfying (1.9) in

terms of a particular operatorial calculus which was developed in [9, Chapter 11, 19]. Outgoing from

the function F(ζ ) given by (1.5) we set

G(ζ ) := [F(−ζ̄ )]∗, |ζ | < 1. (1.11)

From (1.5) and (1.11) we conclude

G(ζ ) = iα + 1

2

∫ π

−π

1 + eiϕζ

1 − eiϕζ
dτ(ϕ). (1.12)

We define now for each complex n × n matrix A without spectrum on the unit circle an operator

G(A) mapping the set of complex n × m matrices � into itself by the formula

G(A)� := i�α + 1

2

∫ π

−π

(In + eiϕA)(In − eiϕA)−1�dτ(ϕ). (1.13)

Let A be a complex n × nmatrix without spectrum on the unit circle which satisfies

In − AA∗ � 0. (1.14)

Then from [9, Proposition 11.2.3] it follows that the operator I + G(A) is invertible. Thus, the operator

(I + G(A))−1(G(A) − I) is well defined. This operator turns out to be closely related to them × mmatrix

function w̃(ζ ) defined by

w̃(ζ ) :=(Im + G(ζ ))−1(G(ζ ) − Im), |ζ | < 1. (1.15)

Namely, if

w̃(ζ ) =
∞∑
k=0

ζ kbk , |ζ | < 1, (1.16)

denotes the Taylor series of w̃(ζ ) and � is a complex n × mmatrix, then

(I + G(A))−1(G(A) − I)� =
∞∑
k=0

Ak�bk. (1.17)

In view of (1.14)–(1.16) we define

w̃(A) :=(I + G(A))−1(G(A) − I). (1.18)

If the function w(ζ ) is defined by (1.10) then from (1.11) and (1.15) we conclude

w̃(ζ ) = [w(−ζ̄ )]∗, |ζ | < 1. (1.19)

From [18, Section 6.2], we obtain now the following result.

Proposition 1.1. Let the relations (1.1) and (1.2) be fulfilled and let A be a complex n × n matrix without

spectrum on the unit circle which satisfies (1.14). Let w(ζ ) be a holomorphic m × mmatrix function in the

unit disc |ζ | < 1 and let the matrix L̃(ζ ), |ζ | < 1, be defined by formulas (1.6)–(1.9). Then
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L̃(ζ ) � 0, |ζ | < 1,

if and only if

�1 = w̃(A)�2, (1.20)

where

w̃(ζ ) = [w(−ζ̄ )]∗, |ζ | < 1.

Some interrelations of formula (1.20) with well-known results due to Sarason [20] are described in

the book [18, Section 11.3] and in the paper [19].

2. On the degenerate case of an interpolation problem associated with an operator identity: the

form of the solution

In this section, we will study the interpolation problem associated with the operator identity (1.1)

in the degenerate situation. This will be explained now in more detail.

Let the positive integers m and n satisfy the inequality n > m and let N :=n − m. We suppose that

the matrix S is nonnegative Hermitian and satisfies

rank S = N. (2.1)

We partition S into blocks via

S =
(
S11
S21

S12
S22

)
}N
}m

︸︷︷︸
N

︸︷︷︸
m

(2.2)

and suppose that the matrix S11 is positive Hermitian, i.e.

S11 > 0. (2.3)

Moreover, we suppose that the matrix A has the lower block triangular form

A =
(
A11

A21

0

A22

)
}N
}m .

︸︷︷︸
N

︸︷︷︸
m

(2.4)

From condition (2.3) and (2.4) it follows that

S

(−X

Im

)
= 0, (2.5)

where the N × m matrix X is defined by

X :=S−1
11

S12. (2.6)

We introduce them × m matrices

M1 :=[−X∗, Im](In + ζ0A)−1�1 (2.7)

and

M2 :=[−X∗, Im](In + ζ0A)−1�2, (2.8)

where ζ0 is a fixed complex number satisfying |ζ0| = 1 and det(In + ζ0A) /= 0. Following the book [18,

p. 84] we introduce the matrix

Ã(ζ ) := I2m + (ζ0 − ζ )�̃
∗
(ζ IN + Ã∗)−1S−1

11
(IN + ζ0Ã)−1�̃j, (2.9)
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where

�̃ :=[�̃1, �̃2], (2.10)

�̃k :=[IN , 0N×m]�k , k ∈ {1, 2} (2.11)

and

Ã = A11. (2.12)

We note that the matrices �̃k , k ∈ {1, 2}, have the size N × m. In the sequel we will use the block

partition

Ũ(ζ ) =
(
ã(ζ )

c̃(ζ )

b̃(ζ )

d̃(ζ )

)
}m
}m .

︸︷︷︸
m

︸︷︷︸
m

(2.13)

As it was shown in [18, Section 5.3] the degenerate interpolation problem associatedwith the operator

identity (1.1) has a unique solution F̃(ζ ) which is given by the formula

F̃(ζ ) = [ã(ζ )M∗
1 + b̃(ζ )M∗

2][c̃(ζ )M∗
1 + b̃(ζ )M∗

2]−1. (2.14)

Remark 2.1. The degenerate interpolation problem under consideration is defined by the relations

(2.1)–(2.4). The connection between the function F̃(ζ ) and the interpolation problemwill be explained

later (see Sections 3–5).

Our aim is to reduce formula (2.14) to a simpler form. This is the content of the following result

which is crucial for our further considerations.

Lemma 2.2. The solution F̃(ζ ) can be written as

F̃(ζ ) = �∗
1

(−(ζ IN + Ã∗)−1[X + A∗
21

(ζ Im + A∗
22

)−1]
(ζ Im + A∗

22
)−1

)

×
[
�∗

2

(−(ζ IN + Ã∗)−1[X + A∗
21

(ζ Im + A∗
22

)−1]
(ζ Im + A∗

22
)−1

)]−1

.

Before proving Lemma 2.2 we present its main application.

Hereby we consider the case that n = km with some k ∈ {2, 3, . . .}. Let the m × m matrices Y1,Y2,

. . . ,Yk−1 be defined by the block partition

− X = col (Y1, . . . ,Yk−1). (2.15)

(Hereby, the symbol col(Y1, . . . ,Yk−1) stands for the block columnwiths blocks Y1, . . . ,Yk−1.)Moreover,

let

Yk := Im (2.16)

and

Y :=col(Y1, . . . ,Yk). (2.17)

Then the combination of (2.5), (2.15)–(2.17) yields

SY = 0. (2.18)

In view of (2.4) and (2.9) we have

(ζ In + A∗)−1 =
(

(ζ IN + Ã∗)−1 −(ζ IN + Ã∗)−1A∗
21

(ζ Im + A∗
22

)−1

0 (ζ Im + A∗
22

)−1

)
. (2.19)

Taking into account formulas (2.15)–(2.19) the application of Lemma 2.2 leads us to our main result.
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Theorem 2.3. Let n = km with some k ∈ {2, 3, . . .} and let Y be defined by (2.15)–(2.17). Then the solution

F̃(ζ ) has the form

F̃(ζ ) = [�∗
1(ζ In + A∗)−1Y ][�∗

2(ζ In + A∗)−1Y ]−1. (2.20)

Proof of Lemma 2.2. Successively applying (2.13), (2.9), (2.7) and (2.8) we obtain(
ã(ζ ) b̃(ζ )

c̃(ζ ) d̃(ζ )

)(
M∗

1
M∗

2

)
=
{
I2m + (ζ0 − ζ )�̃

∗
(ζ IN + Ã∗)−1S−1

11
(IN + ζ0Ã)−1�̃j

}
×
(
�∗

1

�∗
2

)
(In + ζ0A

∗)−1

(−X

Im

)
. (2.21)

In view of (2.10), (2.11), and (1.2) we get

�̃ = (IN , 0N×m)(�1,�2) = (IN , 0N×m)�. (2.22)

The combination of (2.21), (2.22) and (1.2) yields(
ã(ζ ) b̃(ζ )

c̃(ζ ) d̃(ζ )

)(
M∗

1
M∗

2

)
= �∗

(In + ζ0A
∗)−1

(−X

Im

)
+ (ζ0 − ζ )�∗

(
IN

0m×N

)
(ζ IN + Ã∗)−1S−1

11
(IN + ζ0Ã)−1

× (IN , 0N×m)�j�∗
(In + ζ0A

∗)−1

(−X

Im

)
. (2.23)

Now we consider some part of the second term at the right-hand side of (2.23). Using (1.1) we obtain

�j�∗
(In + ζ0A

∗)−1

(−X

Im

)
= (S − ASA∗)(In + ζ0A

∗)−1

(−X

Im

)
= (

S − ζ0AS[(ζ0A∗ + In) − In]
)
(In + ζ0A

∗)−1

(−X

Im

)
.

According to (2.5) the relations

�j�∗
(In + ζ0A

∗)−1

(−X

Im

)
= [S(In + ζ0A

∗)−1 − ζ0AS + ζ0AS(In + ζ0A
∗)−1]

(−X

Im

)
= (In + ζ0A)S(In + ζ0A

∗)−1

(−X

Im

)
(2.24)

are true. Taking into account successively (2.4), (2.2), (2.12), and (2.6) we get

S−1
11

(IN + ζ0Ã)−1(IN , 0N×m)(In + ζ0A)S = S−1
11

(S11, S12) = (IN ,X). (2.25)

Because of (2.24) and (2.25) we infer

(ζ0 − ζ )�∗
(

IN
0m×N

)
(ζ IN + Ã∗)−1S−1

11
(In + ζ0Ã)−1

· (In, 0N×m)�j�∗
(In + ζ0A

∗)
(−X

Im

)
= (ζ0 − ζ )�∗

(
IN

0m×N

)
(ζ In + Ã∗)−1(IN ,X) · (In + ζ0A

∗)−1

(−X

Im

)
. (2.26)

The combination of (2.23), (2.26) and (1.2) provides



768 B. Fritzsche et al. / Linear Algebra and its Applications 430 (2009) 762–781

(
ã(ζ ) b̃(ζ )

c̃(ζ ) d̃(ζ )

)(
M∗

1
M∗

2

)
=
(
�∗

1

�∗
2

)
R(ζ )(In + ζ0A

∗)−1

(−X

Im

)
, (2.27)

where

R(ζ ) :=
(
IN 0

0 Im

)
+ (ζ0 − ζ )

(
IN

0m×N

)
(ζ IN + Ã∗)−1(IN ,X). (2.28)

Our next aim is to compute the matrix

R(ζ )(In + ζ0A
∗)−1

(−X

Im

)
.

In view of (2.24) we have

R(ζ ) =
(
IN + (ζ0 − ζ )(ζ IN + Ã∗)−1 (ζ0 − ζ )(ζ IN + Ã∗)−1X

0 Im

)
. (2.29)

Taking into account (2.4), (2.12) and (2.29) we infer

(
In + ζ0A

∗)−1 =
(

(IN + ζ0Ã
∗)−1 −ζ0(IN + ζ0Ã

∗)−1A∗
21

(Im + ζ0A
∗
22

)−1

0 (Im + ζ0A
∗
22

)−1

)
. (2.30)

Using (2.29) and (2.30) we obtain

R(ζ )(In + ζ0A
∗)−1 =

(
q11(ζ ) q12(ζ )

0 (Im + ζ0A
∗
22

)−1

)
, (2.31)

where

q11(ζ ) =
[
IN + (ζ0 − ζ )(ζ IN + Ã∗)−1

]
(IN + ζ0Ã

∗)−1

= (ζ0IN + Ã∗)(ζ IN + Ã∗)−1(IN + ζ0Ã
∗)−1

= ζ0(ζ IN + Ã∗)−1

and

q12(ζ ) =
{
−[IN + (ζ0 − ζ )(ζ IN + Ã∗)−1]ζ0(IN + ζ0Ã

∗)−1A∗
21

+ (ζ0 − ζ )(ζ IN + Ã∗)−1X
}

(Im + ζ0A
∗
22)

−1

=
{
−(ζ IN + Ã∗)−1[(ζ IN + Ã∗) + (ζ0 − ζ )IN ]

× ζ0(IN + ζ0Ã
∗)−1A∗

21 + (ζ0 − ζ )(ζ IN + Ã∗)−1X
}

(Im + ζ0A
∗
22)

−1.

Let us simplify the expression for q12(ζ ) in the following form:

q12(ζ ) =
{
−(ζ IN + Ã∗)−1ζ0(IN + ζ0Ã

∗)ζ0(IN + ζ0Ã
∗)−1A∗

21

+ (ζ0 − ζ )(ζ IN + Ã∗)−1X
}

(Im + ζ0A
∗
22)

−1

=
{
−(ζ IN + Ã∗)−1A∗

21 + (ζ0 − ζ )(ζ IN + Ã∗)−1X
}

(Im + ζ0A
∗
22)

−1

= (ζ IN + Ã∗)−1[−A∗
21 + (ζ0 − ζ )X](Im + ζ0A

∗
22)

−1.

Thus, we deduced the following formulas:

q11(ζ ) = ζ0(ζ IN + Ã∗)−1 (2.32)

and

q12(ζ ) = (ζ IN + Ã∗)−1[−A∗
21 + (ζ0 − ζ )X](Im + ζ0A

∗
22)

−1. (2.33)
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In view of (2.31) we have

R(ζ )(In + ζ0A
∗)−1

(−X

Im

)
=
(−q11(ζ )X + q12(ζ )

(Im + ζ0A
∗
22

)−1

)
. (2.34)

Using (2.32) and (2.33) we infer

−q11(ζ )X + q12(ζ )

= −ζ0(ζ In + Ã∗)−1X + (ζ IN + Ã∗)−1[−A∗
21 + (ζ0 − ζ )X] · (Im + ζ0A

∗
22)

−1

= (ζ IN + Ã∗)−1[−ζ0X(Im + ζ0A
∗
22) − A∗

21 + (ζ0 − ζ )X](Im + ζ0A
∗
22)

−1.

The right-hand side of the last equality can be transformed in the following way:

− q11(ζ )X + q12(ζ ) = −(ζ IN + Ã∗)−1[X + A∗
21(ζ Im + A22)

−1](ζ Im + A22)

× (Im + ζ0A
∗
22)

−1. (2.35)

The combination of (2.14) and (2.35) shows that the solution F̃(z) can be written in the form:

F̃(ζ ) = �∗
1

(−(ζ IN + Ã∗)−1[X + A∗
21

(ζ Im + A∗
22

)−1]
(ζ Im + A∗

22
)−1

)

×
[
�∗

2

(−(ζ IN + Ã∗)−1[X + A∗
21

(ζ Im + A∗
22

)−1]
(ζ Im + A∗

22
)−1

)]−1

.

The proof is complete. �

3. On extremal matrix interpolation problems

In this section, we state some basic facts on extremal matrix interpolation problems. Most of the

material is taken from the monograph [18, Chapter 7] and the authors’ paper [10].

Let the matrices A, Sk and �k , k = 1, 2, have the sizes mL × mL and mL × m, respectively, where Sk
is nonnegative Hermitian. We suppose that these matrices are connected by the relations

Sk − ASkA
∗ = �k�

∗
k , k = 1, 2. (3.1)

Setting

S :=S2 − S1. (3.2)

We deduce from (3.1) and (3.2) the equality

S − ASA∗ = �2�
∗
2 − �1�

∗
1. (3.3)

We introduce the block-diagonal matrix

R :=diag (ρ, . . . , ρ)︸ ︷︷ ︸
L

,

where ρ is a positive Hermitian matrix of size m × m. In addition we shall assume the equality

AR = RA. (3.4)

This is justified, since it was shown in [12] that condition (3.4) is true in a number of concrete

examples.

From Eqs. (3.1) and (3.4) it follows that

Sρ − ASρA
∗ = �2�

∗
2 − �1,ρ�

∗
1,ρ , (3.5)

where

Sρ :=S2 − R−1S1R
−1, (3.6)

�1,ρ :=R−1�1. (3.7)
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Thus we have constructed a set of operator identities (3.6), where the positive Hermitian matrix ρ

plays the role of a parameter. A set of interpolation problems, see [18, Chapter 6] corresponds to this

set of operator identities. A necessary condition for the solvability of these problems is the inequality

RS2R − S1 � 0. (3.8)

Now we turn to extremal interpolation.

Definition 3.1. We shall call the matrix ρ = ρmin > 0 a minimal solution of inequality (3.8) if the fol-

lowing two requirements are fulfilled:

1. The inequality

RminS2Rmin − S1 � 0 (3.9)

holds where

Rmin = diag (ρmin, . . . , ρmin)︸ ︷︷ ︸
L

is valid.

2. If ρ > 0 satisfies inequality (3.8), then

rank(RminS2Rmin − S1) � rank(RS2R − S1). (3.10)

(In other words, Rmin minimizes the rank of RS2R − S1 � 0.)

Remark 3.2. The existence of ρmin follows directly from Definition 3.1.

We shall write the nonnegative Hermitian matrices S1, S2 and R in the following block forms:

Sk =
(
S

(k)
11

S
(k)
12

S
(k)
21

S
(k)
22

)
, k = 1, 2, (3.11)

R =
(
R1 0

0 ρ

)
, R1 = diag (ρ, . . . , ρ)︸ ︷︷ ︸

L−1

, (3.12)

where S
(k)
22

are blocks of sizem × m, S
(k)
11

has the size (L − 1)m × (L − 1)m and S
(k)
12

has the size (L − 1)m ×
m. The following result is proved in [18, Proposition 7.1.1].

Proposition 3.3. Suppose that for all ρ > 0 satisfying inequality (3.8) the upper diagonal block is positive

Hermitian, i.e., that

R1S
(2)

11
R1 − S

(1)

11
> 0

holds. If ρ = q > 0 satisfies inequality (3.8) and the relation

qS
(2)

22
q = S

(1)

22
+ C∗

1(Q1S
(2)

11
Q1 − S

(1)

11
)−1C1, (3.13)

where

Q1 :=diag (q, q, . . . , q)︸ ︷︷ ︸
L−1

, C1 :=Q1S
(2)

12
q − S

(1)

12
, (3.14)

then

ρmin = q.
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Now we investigate the question of existence of the corresponding matrix q. For this reason, we

consider the equation

qS(2)

22
q = S

(1)

22
+ S∗

12(Q1S
(2)

11
Q1 − S

(1)

11
)−1S12, (3.15)

where

S12 :=Q1S
(2)

12
q − S

(1)

12
. (3.16)

We make the following two assumptions.

Condition 1. The matrix S2 has the block structure

S2 = (Cjk)
n
j,k=1,

where allm × m blocks Cjk have the shape

Cjk = αjkIm

with some complex number αjk .

Condition 2. The matrix S2 is positive Hermitian (S2 > 0).

In view of Condition 1 we obtain

S12 = Q2
1 S

(2)

12
− S

(1)

12

= Q2
1 S

(2)

11
(S

(2)

11
)−1S

(2)

12
− S

(1)

12

= [Q2
1 S

(2)

11
− S

(1)

11
](S(2)

11
)−1S

(2)

12
+ S

(1)

11
(S

(2)

11
)−1S

(2)

12
− S

(1)

21

and

Q1S
(2)

11
Q1 = Q2

1 S
(2)

11
.

We introduce the following notations:

E :=Q2
1 S

(2)

11
− S

(1)

11
, B :=(S

(2)

11
)−1S

(2)

12
(3.17)

and

C :=S
(1)

11
(S

(2)

11
)−1S

(2)

12
− S

(1)

12
. (3.18)

Then obviously E∗ = E and Eq. (3.15) can be written in the form:

αnnq
2 = S

(1)

22
+ (B∗E + C∗)E−1(EB + C)

or

αnnq
2 = S

(1)

22
+ B∗EB + B∗C + C∗B + C∗E−1C. (3.19)

Using (3.17) and (3.19) we infer

q2T = U + C∗E−1C, (3.20)

where

T :=αnnIm − (S
(2)

12
)∗(S(2)

11
)−1S

(2)

12
(3.21)

and

U :=B∗C + C∗B − B∗S(1)

11
B + S

(1)

22

= (S
(2)

12
)∗
(
S

(2)

11

)−1
S

(1)

11
(S

(2)

11
)−1S

(2)

12
− (S

(2)

12
)∗(S(2)

11
)−1S

(1)

12

−(S
(1)

12
)∗(S(2)

11
)−1S

(2)

12
+ S

(1)

22
. (3.22)
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In view of Condition 2 the relation

T > 0 (3.23)

is true.

According to Condition 1 and (3.21) the matrix T has scalar type, i.e.

T = βIm. (3.24)

From (3.23) and (3.24) it follows that

β > 0.

Hence Eq. (3.20) takes the form

q2 = 1

β
(U + C∗E−1C). (3.25)

If we compare Eqs. (3.15) and (3.25) we see that S12 depends on q, but C does not depend on q. Taking

into account this fact we can apply Theorem 3.3 of the paper [17] to Eq. (3.25). Moreover, we observe

that the matrix E can be represented in the form

E = DQ2
1D − S

(1)

11
,

where

D :=
√
S

(2)

11
> 0.

Now we rewrite Eq. (3.25) in the form

q2 = 1

β
[U + C∗

1(Q2
1 − D−1S

(1)

11
D−1)C1], (3.26)

where

C1 :=D−1C.

We introduce the notation

Ũ :=diag (U,U, . . . ,U)︸ ︷︷ ︸
L−1

.

Definition 3.4. We call an interpolation problem regular if the condition

1

β
Ũ > D−1S

(1)

11
D−1

is satisfied.

In the paper [10], we obtained the following result.

Theorem 3.5. Let the Conditions1 and2 be fulfilled and let the interpolation problembe regular. If S(1)

11
� 0

then Eq. (3.15) has a unique solution q such that q > 0 and Q1S
(2)

11
Q1 > S

(1)

11
.

Corollary 3.6. Under the assumptions of Theorem 3.5 the relation ρ2
min

= q2 holds.

Remark 3.7. Under the assumption that ρmin is known an explicit representation of the solution of the

corresponding extremal interpolation problem is given in monograph [18, Chapter 7]. In the special

case of the extremal interpolation problems named after Schur andNevanlinna–Pick, respectively, this

solution is written in a simpler form in the paper [12]. In the general case the solution was written in

a simpler form in Section 2 of this paper.
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We have shown that there is one and only one positive Hermitian solution of Eq. (3.15) which

satisfies condition (3.8). In the case L = 2 in [9] it was proved that Eq. (3.15) has one and only one

positive Hermitian solution.

4. On extremal interpolation for bounded holomorphic matrix functions

First we assume that the matrix S is defined by (3.2) where the matrices S1 and S2 satisfy the

operator identities (3.1).

Let the conditions of Theorem 2.3 be fulfilled. Then the matrix function wmin(ζ ) := F̃(−ζ ) can be

written in the form (see (2.20))

wmin(ζ ) = P1(ζ )[P2(ζ )]−1, (4.1)

where

Ps(ζ ) = �∗
s (−ζ ImL + A∗)−1Y , s ∈ {1, 2} (4.2)

and

Y = col(Y1, . . . ,YL). (4.3)

Now we can formulate the first result of this section.

Theorem 4.1. Let the m × m matrix function w(ζ ) be holomorphic in the unit disk |ζ | < 1 and satisfy the

following conditions:

1. The m × mmatrix function

ϕ(ζ ) :=w(ζ )P2(ζ ) (4.4)

can be represented in the form

ϕ(ζ ) = P1(ζ ) + Q (ζ ), (4.5)

where

Q (ζ ) = c0 + c1ζ + c2ζ
2 + · · ·

is holomorphic matrix function in the disk |ζ | < 1.

2. The inequality

w∗(ζ )w(ζ ) � ρ2
1 , |ζ | < 1 (4.6)

is fulfilled where ρ1 is some positive Hermitian m × mmatrix.

Let T be a complex mL × mL matrix which is a lower block triangular matrix with m × m blocks and

satisfies

T∗T = S2. (4.7)

Then we have the inequality

Y∗T∗TY � Y∗T∗R2ρ1TY , (4.8)

where

Rρ1 = diag(ρ1, . . . , ρ1︸ ︷︷ ︸
L

). (4.9)
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Moreover, if ρ1 /= Im then there exists some vector h ∈ Cm
such that

h∗Y∗T∗TYh < h∗Y∗T∗R2ρ1TYh. (4.10)

Proof. Let the number r0 ∈ (0, 1) be chosen such that each point α belonging to the spectrum of the

matrix A satisfies the inequality |α| < r0. From (4.4) and (4.6) we obtain then

1

2π

∫ 2π

0
ϕ∗(r0eiθ )ϕ(r0e

iθ )dθ � 1

2π

∫ 2π

0
P∗
2(r0e

iθ )ρ2
1P2(r0e

iθ )dθ. (4.11)

From (4.11) and (4.2) we deduce

1

2π

∫ 2π

0
ϕ∗(r0eiθ )ϕ(r0e

iθ )dθ � Y∗
⎛⎝ ∞∑

j=0

Aj�2ρ
2
1�

∗
2(A

j)∗r−(2j+2)

0

⎞⎠Y . (4.12)

Since them × m blocks of �2 and A commute with ρ1 the identity

∞∑
j=0

Aj�2ρ
2
1�

∗
2(Aj)

∗ = Rρ1

⎛⎝ ∞∑
j=0

Aj�2�
∗
2(A

j)∗
⎞⎠Rρ1 (4.13)

is true. In view of (3.1) we infer from [6, Theorem A3.4, part (a)] the identity

∞∑
j=0

Aj�l�
∗
l (A

j)∗ = Sl , l ∈ {1, 2}. (4.14)

Combining (4.12)–(4.14) we get

lim
r0→1−0

1

2π

∫ 2π

0
ϕ∗(r0eiθ )ϕ(r0e

iθ )dθ � Y∗Rρ1S2Rρ1Y . (4.15)

In view of (4.2) and (4.5) the equality

1

2π

∫ 2π

0
ϕ∗(r0eiθ )ϕ(r0e

iθ )dθ = Y∗
⎛⎝ ∞∑

j=0

Aj�1�
∗
1(A

j)∗r−(2j+2)

0

⎞⎠Y

+
∞∑
j=0

c∗
j cjr

2j
0

(4.16)

is valid. From (4.16) and (4.14) it follows

lim
r0→1−0

1

2π

∫ 2π

0
ϕ∗(r0eiθ )ϕ(r0e

iθ )dθ � Y∗
⎛⎝ ∞∑

j=0

Aj�1�
∗
1(A

j)∗
⎞⎠Y = Y∗S1Y ,

whereas inequality (4.15) implies

lim
r0→1−0

1

2π

∫ 2π

0
ϕ∗(r0eiθ )ϕ(r0e

iθ )dθ � Y∗Rρ1S2Rρ1Y .

Thus, we have

Y∗S1Y � Y∗Rρ1S2Rρ1Y . (4.17)

In view of (3.2), (4.3) and (2.18) we get

(S2 − S1)Y = SY = 0.

Hence



B. Fritzsche et al. / Linear Algebra and its Applications 430 (2009) 762–781 775

Y∗S2Y = Y∗S1Y . (4.18)

From (4.18) and (4.17) we infer

Y∗S2Y � Y∗Rρ1S2Rρ1Y . (4.19)

From Condition 1 and the shape of the matrix Rρ1 it follows

S2Rρ1 = Rρ1S2.

From this and the choice of T it follows

TRρ1 = Rρ1T .

Hence, inequality (4.19) implies inequality (4.8). The inequality (4.10) follows from (4.5) and (4.16) and

the fact that the function Q (ζ ) does not identically vanish. The theorem is proved. �

Remark 4.2. From Theorem 2.3 and the construction of the function F̃(ζ ) it is clear that

F̃∗(ζ )̃F(ζ ) � Im, |ζ | < 1.

Hence, we have

w∗
min(ζ )wmin(ζ ) � Im, |ζ | < 1. (4.20)

Now we consider the case that the matrices S1 and S2 satisfy the operator identities (3.1) and,

additionally, the condition

rank(RminS2Rmin − S1) = (m − 1)L. (4.21)

We set

S̃2 :=RminS2Rmin, �̃1 :=�1, �̃2 :=Rmin�2. (4.22)

In view of (4.22) and (3.1) we obtain the operator identity

S̃2 − ÃS2A
∗ = �̃2�̃

∗
2. (4.23)

Setting

S := S̃2 − S1 (4.24)

and taking into account (4.21)–(4.23)we can reduce our problem to the previous case. The correspond-

ing Lm × mmatrix Ỹ satisfies now the equation

Ỹ∗ (̃S2 − S1)Ỹ = 0. (4.25)

The corresponding matrix function w̃min(ζ ) can be written in the form

w̃min(ζ ) = P̃1(ζ ) · [̃P2(ζ )]−1, (4.26)

where

P̃s(ζ ) = �̃
∗
s (−ζ IN + A∗)−1Ỹ , s ∈ {1, 2}. (4.27)

Using the identity

�∗
2Rρmin

= ρmin�
∗
2,

we obtain

P̃2(ζ ) = ρmin�
∗
2(−ζ IN + A∗)−1Ỹ . (4.28)

From (4.26)–(4.28) we infer

w̃min(ζ ) = �∗
1(−ζ IN + A∗)−1Ỹ · [�∗

2(−ζ IN + A∗)−1Ỹ ]−1 · (ρmin)−1. (4.29)

In view of Remark 4.2 we have
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[w̃min(ζ )]∗w̃min(ζ ) � Im, |ζ | < 1. (4.30)

Nowwe consider anm × mmatrix function w̃(ζ ) which is holomorphic in the unit disk |ζ | < 1 and

satisfies the following conditions:

1. Them × mmatrix function w̃(ζ )̃P2(ζ ) − P̃1(ζ ) is holomorphic in the unit disk |ζ | < 1.

2. The inequality

w̃∗(ζ )w̃(ζ ) � ρ̃2
1 , |ζ | < 1

is fulfilled where ρ̃1 is some positive Hermitian m × mmatrix.

Let the matrix T be chosen as in Theorem 4.1 and let

T̃ :=TRmin. (4.31)

Then T̃ is a complex mL × mL matrix which is a lower block triangular matrix with m × m blocks and

taking into account (4.31), (4.7), and (4.22) we obtain

T̃∗T̃ = RminT
∗TRmin = RminS2Rmin = S̃2.

Then from Theorem 4.1 we obtain

Ỹ T̃∗T̃ Ỹ � Ỹ∗T̃∗R2ρ̃1 T̃ Ỹ (4.32)

and the existence of some vector h̃ ∈ Cm
such that

h̃∗Ỹ∗T̃∗T̃ Ỹ h̃ < h̃∗Ỹ∗T̃∗R2ρ̃1 T̃ Ỹ h̃. (4.33)

Thus setting

ρ1 :=
√

ρminρ̃2
1
ρmin, (4.34)

we see that ρ1 is a positiveHermitianm × mmatrix and the formulas (4.32) and (4.33) can be rewritten

as

Ỹ∗T∗R2minTỸ � Ỹ∗T∗R2ρ1TỸ (4.35)

and

h̃Ỹ∗T∗R2minTỸ h̃ < hỸT∗R2ρ1TỸ h̃. (4.36)

Let

Wmin(ζ ) :=w̃min(ζ ) · ρmin (4.37)

and

Qs(ζ ) :=�∗
s (−ζ ImL + A∗)−1Ỹ , s ∈ {1, 2}. (4.38)

From (4.37), (4.29), and (4.38) we obtain the representation

Wmin(ζ ) = Q1(ζ )[Q2(ζ )]−1. (4.39)

From (4.37) and (4.30) we infer

[Wmin(ζ )]∗Wmin(ζ ) � ρ2
min. (4.40)

From (4.22), (4.27), and (4.38) it follows

P̃1(ζ ) = Q1(ζ ), (4.41)

whereas formulas (4.28) and (4.38) imply

P̃2(ζ ) = ρminQ2(ζ ). (4.42)
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Now we are able to formulate the main result of this section.

Theorem 4.3. Let the m × mmatrix function W(ζ ) be holomorphic in the unit disk |ζ | < 1 and satisfy the

following conditions:

1. The m × mmatrix function W(ζ )Q2(ζ ) − Q1(ζ ) is holomorphic in the unit disk |ζ | < 1.

2. The inequality

W∗(ζ )W(ζ ) � ρ2
1 , |ζ | < 1

is fulfilled where ρ1 is some positive Hermitian m × mmatrix.

Let T be a complex mL × mL matrix which is a lower block triangular matrix with m × m blocks and

satisfies

T∗T = S2.

Then we have the inequality

Ỹ∗T∗R2minTỸ � ỸT∗R2ρ1TỸ .

Moreover, if ρ1 /= ρmin there exists some vector h̃ ∈ Cm
such that

h̃∗Ỹ∗T∗R2minTỸ h̃ < h̃∗Ỹ∗T∗R2ρ1TỸ h̃.

Proof. Let

w̃(ζ ) :=w(ζ ) · ρ−1
min

. (4.43)

From (4.34) and the choice ofw(ζ )we see that w̃(ζ ) is anm × mmatrix functionwhich is holomorphic

in the unit disk |ζ | < 1. In view of (4.41)–(4.43) we have

w̃(ζ )̃P2(ζ ) − P̃1(ζ ) = W(ζ )Q2(ζ ) − Q1(ζ ).

Thus, the function w̃(ζ )̃P2(ζ ) − P̃1(ζ ) is holomorphic in the disk |ζ | < 1. Let

ρ̃1 :=
√

(ρmin)−1ρ2
1
(ρmin)−1. (4.44)

Then ρ̃1 is a positive Hermitian m × m matrix satisfying

ρ2
1 =

√
ρmin ρ̃2

1
ρmin. (4.45)

From (4.43) and (4.44) and the choice of w(ζ ) we obtain

w̃∗(ζ )w̃(ζ ) � ρ̃2
1 , |ζ | < 1.

Hence from (4.34)–(4.36) and (4.45) we obtain all assertions. The theorem is proved. �

Corollary 4.4. The regularity Condition 1 in Theorem 4.3 cannot be fulfilled if ρ2
1

� ρ2
min

and ρ2
1

/= ρ2
min

.

Remark 4.5. Theorem 4.3, Corollary 4.4 and the examples below show that the matrix ρmin has a

minimality property which is different from the property of having minimal rank.

Taking into account Theorem 4.3 and Corollary 4.4we call them-dimensional subspace spanned by

the vectors TỸ subspace of minimality. We think that in applied problems the subspace of minimality

can have a physical sense.

Example 4.6. In the Schur problemwe have S2 = I. Thus, T = I and the space of minimality is spanned

by Ỹ .
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5. Regularity and interpolation problems

In this section, we show that in a broad class of cases the regularity condition is equivalent to the

corresponding interpolation conditions. According to Proposition 1.1 the interpolation problem can be

formulated as follows. Determine all bounded m × m matrix functions W(ζ ) which are holomorphic

in the unit disk |ζ | < 1 and satisfy the condition:

V(A)�2 = �1, (5.1)

where

V(ζ ) :=[W(−ζ̄ )]∗. (5.2)

The matrix V(A) can be computed by transforming the matrix A to Jordan block form. Let U be a

nonsingular matrix which transforms the matrix A to its Jordan block normal form AJ i.e.

A = UAJU
−1,

where

AJ = diag(A1, . . . ,Ap)

andwhere for s ∈ {1, . . . , p} thematrix As has the size (ps + 1)m × (ps + 1)mwith some ps ∈ {0, 1, 2, . . .}
and has the m × m block partition

As =

⎛⎜⎜⎜⎜⎜⎜⎝
zsIm 0 0 · · · 0 0

Im zsIm 0 · · · 0 0

0 Im zsIm · · · 0 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 0 0 · · · Im zsIm

⎞⎟⎟⎟⎟⎟⎟⎠ .

If f (ζ ) is a holomorphic function in the unit disk then using awell-known formula (see, e.g., [11, Section

5.1]) we obtain

f (As) =

⎛⎜⎜⎜⎜⎜⎝
f (zs)Im 0 · · · 0
f ′(zs)
1! Im f (zs)Im · · · 0

.

.

.
.
.
.

.

.

.
f (ps)(zs)

ps! Im
f (ps−1)(zs)
(ps−1)! Im · · · f (zs)Im

⎞⎟⎟⎟⎟⎟⎠ , s ∈ {1, . . . , p}. (5.3)

Setting

�̃1 :=U−1�1, �̃2 :=U−1�2,

we obtain

V(AJ)�̃2 = �̃1.

Then

V (j)(zs) = V
(j)
min

(zs), s ∈ {1, . . . , p}, j ∈ {0, . . . , ps}.
This implies that the function W(ζ ) satisfies the regularity Condition 1 in Theorem 4.3.

Using the function Wmin(ζ ) defined in (4.37) we introduce

Vmin(ζ ) :=[Wmin(−ζ )]∗. (5.4)

From (1.20) and (5.4) it follows that

Vmin(A)�2 = �1. (5.5)

Example 5.1 (Nevanlinna–Pick problem). Let the complexm × mmatrices η1, η2, . . . , ηk and the pairwise

different points z1, z2, . . . , zk belonging to the open unit disk |ζ | < 1 be given. Then the corresponding
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Nevanlinna–Pick problem is to determine all bounded holomorphic m × m matrix-valued functions

w(ζ ), |ζ | < 1, which satisfy the conditions

w(−z̄s) = η∗
s , s ∈ {1, . . . , k}.

As it was shown in [18, Section 7.3] in this case the km × m matrices �1 and �2 and the km × km

matrix A are given by

�1 :=

⎛⎜⎜⎝
η1
.
.
.

ηk

⎞⎟⎟⎠ , �2 :=

⎛⎜⎜⎝
Im
.
.
.

Im

⎞⎟⎟⎠ , A :=

⎛⎜⎜⎜⎝
z1Im 0 · · · 0

0 z2Im · · · 0
.
.
.

.

.

.
. . .

.

.

.

0 0 · · · zkIm

⎞⎟⎟⎟⎠ . (5.6)

Proposition 5.2. Let the matrices�1,�2 and A be given as in (5.6). LetW(ζ ) be a boundedm × mmatrix

function which is holomorphic in the unit disk |ζ | < 1. Then W(ζ ) satisfies the regularity Condition 1 from

Theorem 4.3 if and only if the relations (5.1) and (5.2) are true.

Proof. The assertion follows by a straightforward computation using the residue theorem. �

Example 5.3 (Schur problem). Let the complex m × m matrices a0, a1, . . . , ak be given. Then the cor-

responding Schur problem is to determine all bounded holomorphic m × m matrix-valued functions

w(ζ ), |ζ | < 1, which satisfy the conditions

w(j)(0)

j! = aj , j ∈ {0, . . . , k}.

As it was shown in [18, Section 7.3] in this case the (k + 1)m × m matrices �1 and �2 and the (k +
1)m × (k + 1)mmatrix A are given by

�1 :=

⎛⎜⎜⎝
a∗
0
.
.
.

a∗
k

⎞⎟⎟⎠ , �2 :=

⎛⎜⎜⎜⎝
Im
0
.
.
.

0

⎞⎟⎟⎟⎠ , A :=

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 · · · 0 0

Im 0 · · · 0 0

0 Im · · · 0 0
.
.
.

.

.

.
.
.
.

.

.

.

0 0 · · · Im 0

⎞⎟⎟⎟⎟⎟⎟⎠ . (5.7)

Then for |ζ | < 1 we have

V(ζ ) − Vmin(ζ ) = ck+1z
k+1 + ck+2ζ

k+2 + · · · . (5.8)

Taking into account (5.8) we obtain the following result:

Proposition 5.4. Let the matrices �1,�2 and A be given by (5.7). Let W(ζ ) be a bounded m × m matrix

function which is holomorphic in the unit disk |ζ | < 1. Then W(ζ ) satisfies the regularity Condition 1 from

Theorem 4.3 if and only if the relations (5.1) and (5.2) are true.

Example 5.5 (Jordan block case). Let p ∈ N and let z1, z2, . . . , zp be pairwise different points from the

open unit disk |ζ | < 1. For s ∈ {1, . . . , p} let ps ∈ N0 and a0,sa1,s, . . . , aps ,s be a sequence of complex

m × mmatrices. Thenwewant to determine all bounded holomorphicm × mmatrix-valued functions

w(ζ ), |ζ | < 1, which satisfy the conditions

w(j)(−z̄s)

j! = aj,s, s ∈ {1, . . . , p}, j ∈ {0, . . . , p}.

In this case, we have

A :=diag(A1,A2, . . . ,Ap), (5.9)

where for s ∈ {1, . . . , p} the (ps + 1)m × (ps + 1)mmatrix As is given by
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As :=

⎛⎜⎜⎜⎜⎜⎜⎝
zsIm 0 0 · · · 0 0

Im zsIm 0 · · · 0 0

0 Im zsIm · · · 0 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 0 0 · · · Im zsIm

⎞⎟⎟⎟⎟⎟⎟⎠ . (5.10)

Moreover, let

�1 :=

⎛⎜⎜⎜⎝
�11

�12

.

.

.

�1p

⎞⎟⎟⎟⎠ , �2 :=

⎛⎜⎜⎜⎝
�21

�22

.

.

.

�2p

⎞⎟⎟⎟⎠ , (5.11)

where for s ∈ {1, . . . , p} the (ps + 1)m × m matrices �1s and �2s are defined by

�1,s :=

⎛⎜⎜⎜⎜⎝
a∗
0,s

a∗
1,s
.
.
.

a∗
ps ,s

⎞⎟⎟⎟⎟⎠ , �2,s :=

⎛⎜⎜⎜⎝
Im
0
.
.
.

0

⎞⎟⎟⎟⎠ (5.12)

and where them × m matrix a0,s is nonsingular. Using (5.3), we obtain from the relations

V(A)�2 = �1 (5.13)

and

Vmin(A)�2 = �1 (5.14)

the expression

V(ζ ) − Vmin(ζ ) = cs(ζ − ζs)
ps+1 + · · · , |ζ | < 1, s ∈ {1, . . . , p}. (5.15)

From formulas (5.10)–(5.15) we see that

V(A)�2 = �1 (5.16)

if and only if for all s ∈ {1, . . . , p} and all j ∈ {0, . . . , ps} the relations

V (j)(−z̄s)

j! = a∗
j,s (5.17)

are true.

Proposition 5.6. Let thematrices�1,�2 andAbedefinedby formulas (5.9)–(5.12). LetW(ζ )beabounded

m × m matrix function which is holomorphic in the unit disk |ζ | < 1. Then W(ζ ) satisfies the regularity

Condition 1 from Theorem 4.3 if and only if the relations (5.4) and (5.5) are true.

6. Comparison of different approaches and results to the extremal interpolation problems

1. The scalar extremalproblemsnamedafter SchurandNevanlinna–Pickwere investigated inpapers

by Carathéodory and Fejér [8], Takagi [21], Akhiezer [1], Clark [7], Adamjan et al. [2,3,4] and others. The

matrix versions of these problemswere treated in the paper [12]. In all these papers the Schur problem

and the Nevanlinna–Pick problem were handled separately. The approach developed in this paper is

based on a unifying principle: The regularity of some matrix function is required (see Condition 1 in

Theorem 4.3). This allows us to consider a whole class of matricial interpolation problems with the

same method. This class contains a problem (the so-called Jordan case) which is even new for the

scalar case.
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Ourmethodof constructionof the extremal solutions is basedon results from thebook [18, Chapters

5–7 and 11], the paper [10] and Section 1 of this paper.

Themethod used to prove that the constructed solutions are extremal was prompted by Akhiezer’s

paper [1]. It should be mentioned that in the papers [1,4] even extremal problems for meromorphic

functions having a finite number of poles in the unit disk |ζ | < 1 were studied. Such types of results

have not been obtained in the matrix case up to now.

2. As itwas indicated in theAdamjan et al. paper [4] scalar versions of extremal problems are closely

related to problems of best approximation.

Openproblem: Investigate the connectionsbetweenextremalproblemsandcorrespondingapprox-

imation problems in the matrix case.

In the important paper Adamjan et al. [5] the case of a matricial (even operatorial) function w(ζ )

was considered, whereas ρ was chosen as a scalar.

3. In the paper [12] our extremal interpolation problem was compared with the superoptimal

interpolation problem (see [22,15,14]). It was proved that these two interpolation problems have quite

different answers.
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