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Abstract

Given a function f :X → R defined on the support of a ballean, we introduce the notion of slow oscillation in direction of a filter
on X. We show that there exists a filter on X responsible for the rate of slow oscillation of f at infinity. We apply this result to the
Stone–Čech compactifications of discrete groups.
© 2006 Elsevier B.V. All rights reserved.
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Let (X,d) be a metric space. A function f is called slowly oscillating if, for any ε > 0 and r > 0, there exists
a bounded subset V of X such that

diam
(
f Bd(x, r)

)
< ε

for every x ∈ X\V , where

Bd(x, r) = {
y ∈ X: d(x, y) < r

}
and diamA = sup

{|x − y|: x, y ∈ A
}
.

This notion was introduced by N. Higson (see for example [7, p. 29]) in the context of index theory. For applications
of slowly oscillating functions see [1,3,7].

In this note we study the following question: given an arbitrary function f :X → R, how far is it from being slowly
oscillating? To answer this question we introduce the notion of slow oscillation in the direction of a filter on X. For
one special case this notion appeared in [3]. We show that there exists a maximal filter so(f ) on X such that f is
slowly oscillating in the direction of so(f ). This filter can be considered as a measure of the slow oscillation of f at
infinity.

Following [2,6], we base our exposition on the concept of balleans, the asymptotic counterparts of the uniform
topological spaces.
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1. Preliminaries

A ball structure is a triplet B = (X,P,B), where X,P are nonempty sets and, for any x ∈ X and α ∈ P , B(x,α)

is a subset of X which is called a ball of radius α around x. It is supposed that x ∈ B(x,α) for all x ∈ X, α ∈ P . The
set X is called the support of B , P is called the set of radiuses.

Given any x ∈ X, A ⊆ X, α ∈ P , we put

B∗(x,α) = {
y ∈ X: x ∈ B(y,α)

}
, B(A,α) =

⋃

a∈A

B(a,α).

A ball structure B is called a ballean if

• for any α,β ∈ P , there exist α′, β ′ ∈ P such that, for every x ∈ X,

B(x,α) ⊆ B∗(x,α′), B∗(x,α) ⊆ B(x,β ′);
• for any α,β ∈ P , there exists γ ∈ P such that, for every x ∈ X,

B
(
B(x,α),β

) ⊆ B(x, γ ).

Replacing every ball B(x,α) by B(x,α) ∪ B∗(x,α), we get an equivalent ballean [6], so in what follows we
suppose that B(x,α) = B∗(x,α) for all x ∈ X, α ∈ P .

Every metric space (X,d) determines a metric ballean (X,R
+,Bd).

A ballean B is called connected if, for any x, y ∈ X, there exists α ∈ P such that y ∈ B(x,α).
A subset Y ⊆ X is called bounded if there exist x ∈ X and α ∈ P such that Y ⊆ B(x,α). We say that B is bounded

if its support is bounded. A subset Z ⊆ X is called cobounded if X \ Z is bounded.
We say that a filter ϕ on X is going to infinity if X \ V ∈ ϕ for every bounded subset V of X.
We use also a preordering � on the set P : α � β if and only if B(x,α) ⊆ B(x,β) for every x ∈ X. A subset

P ′ ⊆ P is called cofinal if, for every α ∈ P , there exists β ∈ P ′ such that α � β . The cofinality cfB is the minimal
cardinality of cofinal subsets of P .

We endow X with the discrete topology and use the Stone–Čech compactification βX of X. We take the points of
βX to be the ultrafilters on X with the points of X identified with the principal ultrafilters. For every subset A ⊆ X,
we put A = {q ∈ βG: A ∈ q}. The topology of βG can be defined by stating that the family {A: A ⊆ X} is a base for
the open sets. For every filter ϕ on X, the subset ϕ = ⋂{A: A ∈ ϕ} is clearly closed in βX, and for every nonempty
closed subset K of βX, there exists a filter ϕ on X such that K = ϕ.

Given a ballean B = (X,P,B), we denote by X# the set of all ultrafilters on X going to infinity. We say that
two ultrafilters r, q ∈ X# are parallel (and write r ‖ q) if there exists α ∈ P such that, for every R ∈ r , we have
B(R,α) ∈ q . We denote by ∼ the minimal (by inclusion) closed (in X# × X#) equivalence on X# such that ‖ ⊆ ∼.

For the equivalence ∼ and its relationship with slowly oscillating functions see [6].

2. Oscillation in direction of filter

In what follows all balleans are supposed to be connected and unbounded.
Let B = (X,P,B) be a ballean, ϕ be a filter on X going to infinity. We say that a function f :X → R is slowly

oscillating in direction of ϕ if, for any ε > 0 and α ∈ P , there exists F ∈ ϕ such that

diamf
(
B(x,α)

)
< ε

for every x ∈ F . We say that f is slowly oscillating if f is slowly oscillating in direction of the filter of cobounded
subsets of X.

We say that f is oscillating on a subset Y ⊆ X if there exist ε > 0 and α ∈ P such that

diamf
(
B(x,α)

)
� ε

for every x ∈ Y. In the case Y = X, we say that f is very oscillating.
For any ε > 0 and α ∈ P , we put

X(f, ε,α) = {
x ∈ X: diamf

(
B(x,α)

)
< ε

}
.
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Clearly, f is very oscillating if and only if there exist ε > 0 and α ∈ P such that X(f, ε,α) = ∅. Assume that
X(f, ε,α) is bounded for some ε and α. We fix an arbitrary point y /∈ X(f, ε,α) and choose β ∈ P such that
B(y,α) ⊆ B(x,β) for every x ∈ X(f, ε,α). Then X(f, ε,β) = ∅. Hence, a function f is not very oscillating if
and only if every subset X(f, ε,α) is unbounded.

In what follows we suppose that f is not very oscillating so every subset X(f, ε,α) is unbounded. If ε < ε1, ε < ε2
and α > α1, α > α2, then X(f, ε,α) ⊆ X(f, ε1, α1) ∩ X(f, ε2, α2). This means that the family

{
X(f, ε,α)\V : ε > 0, α ∈ P, V is bounded

}

forms a base of some filter so(f ) on X. In the following theorem we fix some basic properties of so(f ).

Theorem 1. The filter so(f ) has the following properties:

(i) so(f ) is going to infinity;
(ii) f is slowly oscillating in direction of so(f );

(iii) f is oscillating on every subset X \ F , F ∈ so(f ), F �= X.

If a filter ϕ on X satisfies (i), (ii), (iii), then ϕ = so(f ).

Given a ballean B = (X,P,B), we say that a filter ϕ on X is thick if

(a) ϕ is going to infinity;
(b) for any F ∈ ϕ and α ∈ P, there exists H ∈ ϕ such that B(H,α) ⊆ F ;
(c) ϕ has a base of cardinality � cfB.

The adjective “thick” in this definition is related to condition (b).

Theorem 2. The filter so(f ) is thick.

Proof. We need only to check (b). Fix an arbitrary ε > 0, α ∈ P and a bounded subset V of X. Choose β ∈ P such
that B(B(x,α),α) ⊆ B(x,β) for every x ∈ X. Then

B
(
X(f, ε,β) \ B(V,α),α

) ⊆ X(f, ε,α) \ V. �
In the next section we study the question whether, given a thick filter ϕ on X, there exists a function f :X → R

such that ϕ = so(f ).

Theorem 3. A function f :X → R is slowly oscillating in direction of a filter ϕ if and only if f is slowly oscillating
in direction of every ultrafilter q on X such that ϕ ⊆ q.

Proof. If f is slowly oscillating in direction of ϕ, then f is slowly oscillating in direction of every filter ψ such that
ϕ ⊆ ψ .

Assume that f is slowly oscillating in direction of every ultrafilter q ∈ ϕ (this is the same as ϕ ⊆ q). Fix an arbitrary
ε > 0 and α ∈ P . For every q ∈ ϕ, we pick Aq ∈ q such that

diamf
(
B(x,α)

)
< ε

for every x ∈ Aq. Then we consider the open covering {Aq : q ∈ ϕ} of the compact space ϕ and choose some finite
subcovering {Aq1, . . . ,Aqn}. Then A = Aq1 ∪ · · · ∪ Aqn ∈ ϕ, for otherwise, ϕ ∪ {X \ A} has the finite intersection
property, and so it is contained in some ultrafilter p. This is clearly not possible since ϕ ⊆ A means that every
ultrafilter containing ϕ must contains A as well. Since

diamf
(
B(x,α)

)
< ε

for every x ∈ Aq1 ∪ · · · ∪ Aqn ∈ ϕ, we see that f is slowly oscillating in direction of ϕ. �
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Corollary. If q ∈ so(f ), then q ′ ∈ so(f ) for every ultrafilter q ′ such that q ∼ q ′.

Proof. By Theorem 1, we have

so(f ) = {
q ∈ X#: f is slowly oscillating in direction of q

}
.

If r ∈ X# and r ‖ q, then by Theorem 2, r ∈ so(f ), and so q ′ ∈ so(f ) whenever q ∼ q ′. �
3. Inverse problem

Let B = (X,P,B) be a ballean, ϕ be a thick filter on X. Does there exist a function f :X → R such that ϕ = so(f )?
We begin with a negative answer to the question in this general form, and then give a positive solution of the inverse

problem in some special case.

Example. Let X = {2n: n ∈ ω}, d(x, y) = |x −y| for all x, y ∈ X, so we have a metric ballean (X,d). It is easy to see
that every function f :X → R is slowly oscillating, so so(f ) is the filter of cofinite subsets of X. On the other hand,
every filter ϕ on X with a countable base is thick provided that

⋂
ϕ = ∅.

Theorem 4. Let (X,d) be an unbounded metric space, ϕ be a thick filter on X. Assume that there exists r > 0 such
that |B(x, r)| > 1 for every x ∈ X. Then there exists a function f :X → R such that ϕ = so(f ).

Proof. Since ϕ is thick it has a countable base. We fix a base {Fn: n ∈ ω} of ϕ such that F0 = X, B(Fn+1, r +n) ⊆ Fn

for every n ∈ ω. At the first step we choose a subset A0 ⊆ F0 \ F1 such that the family {B(x, r): x ∈ A0} is maximal
disjoint. Put

B0 =
⋃{

B(x, r): x ∈ A0
}
, C0 = (F0\F1) ∪ B0,

and f (x) = 1 for every x ∈ A0, f (x) = 1
2 for every x ∈ C0 \ A0.

At the second step we choose a subset A1 ⊆ F1 \ (F2 ∪ C0) such that the family {B(x, r): x ∈ A1} is maximal
disjoint. Put

B1 =
⋃{

B(x, r): x ∈ A1
}\C0, C1 = (

F1\(F2 ∪ C0)
) ∪ (B1 \ C0),

and f (x) = 1
2 for every x ∈ A1, f (x) = 1

3 for every x ∈ C1 \ A1.
At the third step we choose a subset A2 ⊆ F2 \ (F3 ∪C1) such that the family {B(x, r): x ∈ A2} is maximal disjoint.

Put

B2 =
⋃{

B(x, r): x ∈ A2
}\C1, C2 = (

F2\(F3 ∪ C1)
) ∪ (B2 \ C1),

and f (x) = 1
3 for every x ∈ A2, f (x) = 1

4 for every x ∈ C2 \ A2.
After ω steps, the function f :X → R defined in such a way is slowly oscillating in direction of ϕ and f is

oscillating on every subset X \ Fn+1, n ∈ ω. By Theorem 1, ϕ = so(f ). �
Let B = (X,P,B) be a ballean, Y be an unbounded subset of X. We say that a function f :X → R is slowly

oscillating on Y if, for any α ∈ P and ε > 0, there exists a bounded subset V of X such that

diamf
(
B(y,α)

)
< ε

for every y ∈ Y \V , equivalently, f is slowly oscillating in direction of the filter on X with base {Y \V : V is bounded}.
The subsets Y,Z of X are called asymptotically disjoint if, for every α ∈ P, there exists a bounded subset V of X

such that

B(Y \ V,α) ∩ B(Z \ V,α) = ∅.

Theorem 5. Let (X,d) be a metric space, Y and Z be unbounded subsets of X. Assume that there exists r > 0 such
that |B(x, r)| > 1 for every x ∈ X. Then the following statements are equivalent:
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(i) Y,Z are asymptotically disjoint;
(ii) there exists a function f :X → R such that f is slowly oscillating on Y and f is oscillating on Z.

Proof. (i) 
⇒ (ii) Fix some point x0 ∈ X. Since Y,Z are asymptotically disjoint, we can choose an increasing se-
quence of natural numbers (kn)n∈ω such that

B
(
Y \ B(x0, kn), n

) ∩ Z = ∅
for every n ∈ ω. For every m ∈ ω, we put

Fm =
⋃

n�m

B
(
Y \ B(x0, kn), n − m

)
,

and denote by ϕ the filter on X with base {Fm: m ∈ ω}. By construction, ϕ is thick and X \ Z ∈ ϕ. By Theorem 4,
there exists a function f :X → R such that ϕ = so(f ). By Theorem 1, f is slowly oscillating in direction of ϕ and f

is oscillating on Z. By construction of ϕ, f is slowly oscillating on Y .
(ii) 
⇒ (i). We pick ε > 0 and k ∈ ω such that diamf (B(z, k)) � ε for every z ∈ Z. Fix an arbitrary m ∈ ω and

choose a bounded subset V of X such that diamf (B(y,m)) < ε for every y ∈ Y \ V. Then Z ∩ B(Y \ V,m) = ∅. It
follows that Y and Z are asymptotically disjoint. �
Question. Let B = (X,P,B) be a ballean and let f :X → R be a function which is not very oscillating. Does there
exist an unbounded subset Y of X such that f is slowly oscillating on Y ? This is so if B is a metric ballean.

4. Application to βG

Let G be an infinite discrete group, βG be the Stone–Čech compactification of G, G∗ = βG \ G. Using the
universal property of the Stone–Čech compactification, the group multiplication on G can be extended to βG in such
a way that, for every r ∈ βG, the right shift x �→ xr is continuous, and for every g ∈ G, the left shift x �→ gx is
continuous. Formally, the product rq of the ultrafilters r, q ∈ βG is defined by the rule: given any subset A of G,

A ∈ rq ⇐⇒ {
g ∈ G: g−1A ∈ q

} ∈ r.

For more information about the compact right topological semigroup βG and its combinatorial applications see [4].
For an infinite discrete group G with identity e, we denote by Fe(G) the family of all finite subsets of G containing

e, and consider the ballean Br (G) = (G,Fe(G),Br), where Br(x,F ) = Fx. A subset V ⊆ G is bounded in Br (G) if
and only if V is finite, so G# = G∗. We note also that the ultrafilters r, q ∈ G∗ are parallel if and only if r = xq for
some x ∈ G.

Theorem 6. Let G be a countable discrete group, ϕ be a filter on G with a countable base,
⋂

ϕ = ∅. Then the
following statements are equivalent

(i) ϕ is a left ideal of βG;
(ii) there exists a function f :G → R such that ϕ = so(f ).

Proof. (i) 
⇒ (ii). We show that ϕ is thick. Fix an arbitrary F ∈ ϕ, x ∈ G. For every q ∈ ϕ, we have xq ∈ ϕ, so there
is Aq ∈ q such that xAq ⊆ F . We consider an open covering {Aq : q ∈ ϕ} of ϕ and choose some open subcovering
Aq1 , . . . ,Aqn . Then

Aq1 ∪ · · · ∪ Aqn ∈ ϕ, x(Aq1 ∪ · · · ∪ Aqn) ⊆ F.

Since G is countable, Br (G) is metrizable [5]. If H ∈ Fl(G), then |Br(x,H)| = |H |, so we can apply Theorem 4.
(ii) 
⇒ (i). Let q ∈ so(f ). By Theorem 2, so(f ) contains all ultrafilters r ∈ G∗ such that r ‖ q . It means that

xq ∈ so(f ) for every x ∈ G. Since βG is right topological semigroup and G is dense in βG, we have pq ∈ so(f ) for
every p ∈ βG. Hence, so(f ) is a left ideal. �
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