Available online at www.sciencedirect.com

provided by Elsevier - Publisher Conne

brought to you by **U** CORE

and its Applications

Topology and its Applications 154 (2007) 561-566

www.elsevier.com/locate/topol

Topology

Asymptotic oscillations

M. Filali^{a,*}, I. Protasov^b

^a Department of Mathematical Sciences, University of Ouly, PO Box 3000, FIN-90014, Finland ^b Kyiv University, Department of Cybernetics, Volodimirska 64, Kyiv 01033, Ukraine

Received 28 February 2006; received in revised form 27 July 2006; accepted 27 July 2006

Abstract

Given a function $f: X \to \mathbb{R}$ defined on the support of a ballean, we introduce the notion of slow oscillation in direction of a filter on X. We show that there exists a filter on X responsible for the rate of slow oscillation of f at infinity. We apply this result to the Stone–Čech compactifications of discrete groups. © 2006 Elsevier B.V. All rights reserved.

© 2000 Elsevier D. v. All fights feser

MSC: 26A21; 54D80; 54E15

Keywords: Ballean; Slowly oscillating function

Let (X, d) be a metric space. A function f is called *slowly oscillating* if, for any $\varepsilon > 0$ and r > 0, there exists a bounded subset V of X such that

 $\operatorname{diam}(fB_d(x,r)) < \varepsilon$

for every $x \in X \setminus V$, where

 $B_d(x,r) = \{ y \in X : d(x, y) < r \}$ and diam $A = \sup\{ |x - y| : x, y \in A \}.$

This notion was introduced by N. Higson (see for example [7, p. 29]) in the context of index theory. For applications of slowly oscillating functions see [1,3,7].

In this note we study the following question: given an arbitrary function $f: X \to \mathbb{R}$, how far is it from being slowly oscillating? To answer this question we introduce the notion of slow oscillation in the direction of a filter on X. For one special case this notion appeared in [3]. We show that there exists a maximal filter so(f) on X such that f is slowly oscillating in the direction of so(f). This filter can be considered as a measure of the slow oscillation of f at infinity.

Following [2,6], we base our exposition on the concept of balleans, the asymptotic counterparts of the uniform topological spaces.

^{*} Corresponding author. Tel.: +358 8 5531755; fax: +358 8 5531730.

E-mail addresses: mahmoud.filali@oulu.fi (M. Filali), protasov@unicyb.kiev.ua (I. Protasov).

^{0166-8641/\$ –} see front matter $\, @$ 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.topol.2006.07.009 $\,$

1. Preliminaries

A *ball structure* is a triplet $\mathcal{B} = (X, P, B)$, where X, P are nonempty sets and, for any $x \in X$ and $\alpha \in P$, $B(x, \alpha)$ is a subset of X which is called a *ball of radius* α around x. It is supposed that $x \in B(x, \alpha)$ for all $x \in X$, $\alpha \in P$. The set X is called the *support* of B, P is called the set of radiuses.

Given any $x \in X$, $A \subseteq X$, $\alpha \in P$, we put

$$B^*(x,\alpha) = \left\{ y \in X \colon x \in B(y,\alpha) \right\}, \qquad B(A,\alpha) = \bigcup_{a \in A} B(a,\alpha).$$

A ball structure \mathcal{B} is called a *ballean* if

• for any $\alpha, \beta \in P$, there exist $\alpha', \beta' \in P$ such that, for every $x \in X$,

$$B(x, \alpha) \subseteq B^*(x, \alpha'), \qquad B^*(x, \alpha) \subseteq B(x, \beta');$$

• for any $\alpha, \beta \in P$, there exists $\gamma \in P$ such that, for every $x \in X$,

$$B(B(x,\alpha),\beta) \subseteq B(x,\gamma).$$

Replacing every ball $B(x, \alpha)$ by $B(x, \alpha) \cup B^*(x, \alpha)$, we get an equivalent ballean [6], so in what follows we suppose that $B(x, \alpha) = B^*(x, \alpha)$ for all $x \in X$, $\alpha \in P$.

Every metric space (X, d) determines a *metric ballean* (X, \mathbb{R}^+, B_d) .

A ballean \mathcal{B} is called *connected* if, for any $x, y \in X$, there exists $\alpha \in P$ such that $y \in B(x, \alpha)$.

A subset $Y \subseteq X$ is called *bounded* if there exist $x \in X$ and $\alpha \in P$ such that $Y \subseteq B(x, \alpha)$. We say that \mathcal{B} is *bounded* if its support is bounded. A subset $Z \subseteq X$ is called *cobounded* if $X \setminus Z$ is bounded.

We say that a filter φ on X is going to infinity if $X \setminus V \in \varphi$ for every bounded subset V of X.

We use also a preordering \leq on the set *P*: $\alpha \leq \beta$ if and only if $B(x, \alpha) \subseteq B(x, \beta)$ for every $x \in X$. A subset $P' \subseteq P$ is called *cofinal* if, for every $\alpha \in P$, there exists $\beta \in P'$ such that $\alpha \leq \beta$. The *cofinality* of \mathcal{B} is the minimal cardinality of cofinal subsets of *P*.

We endow X with the discrete topology and use the Stone–Čech compactification βX of X. We take the points of βX to be the ultrafilters on X with the points of X identified with the principal ultrafilters. For every subset $A \subseteq X$, we put $\overline{A} = \{q \in \beta G : A \in q\}$. The topology of βG can be defined by stating that the family $\{\overline{A} : A \subseteq X\}$ is a base for the open sets. For every filter φ on X, the subset $\overline{\varphi} = \bigcap \{\overline{A} : A \in \varphi\}$ is clearly closed in βX , and for every nonempty closed subset K of βX , there exists a filter φ on X such that $K = \overline{\varphi}$.

Given a ballean $\mathcal{B} = (X, P, B)$, we denote by $X^{\#}$ the set of all ultrafilters on X going to infinity. We say that two ultrafilters $r, q \in X^{\#}$ are *parallel* (and write $r \parallel q$) if there exists $\alpha \in P$ such that, for every $R \in r$, we have $B(R, \alpha) \in q$. We denote by ~ the minimal (by inclusion) closed (in $X^{\#} \times X^{\#}$) equivalence on $X^{\#}$ such that $\parallel \subseteq \sim$. For the equivalence ~ and its relationship with slowly oscillating functions see [6].

2. Oscillation in direction of filter

In what follows all balleans are supposed to be connected and unbounded.

Let $\mathcal{B} = (X, P, B)$ be a ballean, φ be a filter on X going to infinity. We say that a function $f: X \to \mathbb{R}$ is *slowly oscillating in direction of* φ if, for any $\varepsilon > 0$ and $\alpha \in P$, there exists $F \in \varphi$ such that

diam $f(B(x,\alpha)) < \varepsilon$

for every $x \in F$. We say that f is *slowly oscillating* if f is slowly oscillating in direction of the filter of cobounded subsets of X.

We say that f is oscillating on a subset $Y \subseteq X$ if there exist $\varepsilon > 0$ and $\alpha \in P$ such that

diam $f(B(x,\alpha)) \ge \varepsilon$

for every $x \in Y$. In the case Y = X, we say that f is very oscillating.

For any $\varepsilon > 0$ and $\alpha \in P$, we put

 $X(f,\varepsilon,\alpha) = \left\{ x \in X: \operatorname{diam} f\left(B(x,\alpha)\right) < \varepsilon \right\}.$

Clearly, f is very oscillating if and only if there exist $\varepsilon > 0$ and $\alpha \in P$ such that $X(f, \varepsilon, \alpha) = \emptyset$. Assume that $X(f, \varepsilon, \alpha)$ is bounded for some ε and α . We fix an arbitrary point $y \notin X(f, \varepsilon, \alpha)$ and choose $\beta \in P$ such that $B(y, \alpha) \subseteq B(x, \beta)$ for every $x \in X(f, \varepsilon, \alpha)$. Then $X(f, \varepsilon, \beta) = \emptyset$. Hence, a function f is not very oscillating if and only if every subset $X(f, \varepsilon, \alpha)$ is unbounded.

In what follows we suppose that f is not very oscillating so every subset $X(f, \varepsilon, \alpha)$ is unbounded. If $\varepsilon < \varepsilon_1, \varepsilon < \varepsilon_2$ and $\alpha > \alpha_1, \alpha > \alpha_2$, then $X(f, \varepsilon, \alpha) \subseteq X(f, \varepsilon_1, \alpha_1) \cap X(f, \varepsilon_2, \alpha_2)$. This means that the family

 $\{X(f,\varepsilon,\alpha) | V: \varepsilon > 0, \ \alpha \in P, \ V \text{ is bounded}\}$

forms a base of some filter so(f) on X. In the following theorem we fix some basic properties of so(f).

Theorem 1. The filter so(f) has the following properties:

- (i) so(f) is going to infinity;
- (ii) f is slowly oscillating in direction of so(f);
- (iii) f is oscillating on every subset $X \setminus F$, $F \in so(f)$, $F \neq X$.

If a filter φ on X satisfies (i), (ii), (iii), then $\varphi = \operatorname{so}(f)$.

Given a ballean $\mathcal{B} = (X, P, B)$, we say that a filter φ on X is *thick* if

(a) φ is going to infinity;

- (b) for any $F \in \varphi$ and $\alpha \in P$, there exists $H \in \varphi$ such that $B(H, \alpha) \subseteq F$;
- (c) φ has a base of cardinality $\leq \operatorname{cf} \mathcal{B}$.

The adjective "thick" in this definition is related to condition (b).

Theorem 2. The filter so(f) is thick.

Proof. We need only to check (b). Fix an arbitrary $\varepsilon > 0$, $\alpha \in P$ and a bounded subset *V* of *X*. Choose $\beta \in P$ such that $B(B(x, \alpha), \alpha) \subseteq B(x, \beta)$ for every $x \in X$. Then

 $B(X(f,\varepsilon,\beta)\setminus B(V,\alpha),\alpha)\subseteq X(f,\varepsilon,\alpha)\setminus V.$

In the next section we study the question whether, given a thick filter φ on X, there exists a function $f: X \to \mathbb{R}$ such that $\varphi = so(f)$.

Theorem 3. A function $f: X \to \mathbb{R}$ is slowly oscillating in direction of a filter φ if and only if f is slowly oscillating in direction of every ultrafilter q on X such that $\varphi \subseteq q$.

Proof. If *f* is slowly oscillating in direction of φ , then *f* is slowly oscillating in direction of every filter ψ such that $\varphi \subseteq \psi$.

Assume that f is slowly oscillating in direction of every ultrafilter $q \in \overline{\varphi}$ (this is the same as $\varphi \subseteq q$). Fix an arbitrary $\varepsilon > 0$ and $\alpha \in P$. For every $q \in \overline{\varphi}$, we pick $A_q \in q$ such that

 $\operatorname{diam} f(B(x,\alpha)) < \varepsilon$

for every $x \in A_q$. Then we consider the open covering $\{\overline{A_q}: q \in \overline{\varphi}\}$ of the compact space $\overline{\varphi}$ and choose some finite subcovering $\{\overline{A_{q_1}}, \ldots, \overline{A_{q_n}}\}$. Then $A = A_{q_1} \cup \cdots \cup A_{q_n} \in \varphi$, for otherwise, $\varphi \cup \{X \setminus A\}$ has the finite intersection property, and so it is contained in some ultrafilter p. This is clearly not possible since $\overline{\varphi} \subseteq \overline{A}$ means that every ultrafilter containing φ must contains A as well. Since

diam $f(B(x,\alpha)) < \varepsilon$

for every $x \in A_{q_1} \cup \cdots \cup A_{q_n} \in \varphi$, we see that f is slowly oscillating in direction of φ . \Box

Corollary. If $q \in \overline{so(f)}$, then $q' \in \overline{so(f)}$ for every ultrafilter q' such that $q \sim q'$.

Proof. By Theorem 1, we have

 $\overline{\text{so}(f)} = \{q \in X^{\#}: f \text{ is slowly oscillating in direction of } q\}.$

If $r \in X^{\#}$ and $r \parallel q$, then by Theorem 2, $r \in \overline{so(f)}$, and so $q' \in \overline{so(f)}$ whenever $q \sim q'$. \Box

3. Inverse problem

Let $\mathcal{B} = (X, P, B)$ be a ballean, φ be a thick filter on X. Does there exist a function $f: X \to \mathbb{R}$ such that $\varphi = \mathrm{so}(f)$? We begin with a negative answer to the question in this general form, and then give a positive solution of the inverse problem in some special case.

Example. Let $X = \{2^n : n \in \omega\}, d(x, y) = |x - y|$ for all $x, y \in X$, so we have a metric ballean (X, d). It is easy to see that every function $f: X \to \mathbb{R}$ is slowly oscillating, so so(f) is the filter of cofinite subsets of X. On the other hand, every filter φ on X with a countable base is thick provided that $\bigcap \varphi = \emptyset$.

Theorem 4. Let (X, d) be an unbounded metric space, φ be a thick filter on X. Assume that there exists r > 0 such that |B(x,r)| > 1 for every $x \in X$. Then there exists a function $f: X \to \mathbb{R}$ such that $\varphi = \operatorname{so}(f)$.

Proof. Since φ is thick it has a countable base. We fix a base $\{F_n : n \in \omega\}$ of φ such that $F_0 = X$, $B(F_{n+1}, r+n) \subseteq F_n$ for every $n \in \omega$. At the first step we choose a subset $A_0 \subseteq F_0 \setminus F_1$ such that the family $\{B(x, r): x \in A_0\}$ is maximal disjoint. Put

$$B_0 = \bigcup \{ B(x,r) \colon x \in A_0 \}, \qquad C_0 = (F_0 \setminus F_1) \cup B_0,$$

and f(x) = 1 for every $x \in A_0$, $f(x) = \frac{1}{2}$ for every $x \in C_0 \setminus A_0$.

At the second step we choose a subset $A_1 \subseteq F_1 \setminus (F_2 \cup C_0)$ such that the family $\{B(x,r): x \in A_1\}$ is maximal disjoint. Put

$$B_1 = \bigcup \{ B(x,r) \colon x \in A_1 \} \backslash C_0, \qquad C_1 = (F_1 \backslash (F_2 \cup C_0)) \cup (B_1 \backslash C_0),$$

and $f(x) = \frac{1}{2}$ for every $x \in A_1$, $f(x) = \frac{1}{3}$ for every $x \in C_1 \setminus A_1$. At the third step we choose a subset $A_2 \subseteq F_2 \setminus (F_3 \cup C_1)$ such that the family $\{B(x, r): x \in A_2\}$ is maximal disjoint. Put

$$B_2 = \bigcup \{ B(x, r) \colon x \in A_2 \} \backslash C_1, \qquad C_2 = (F_2 \backslash (F_3 \cup C_1)) \cup (B_2 \backslash C_1) \}$$

and $f(x) = \frac{1}{3}$ for every $x \in A_2$, $f(x) = \frac{1}{4}$ for every $x \in C_2 \setminus A_2$. After ω steps, the function $f: X \to \mathbb{R}$ defined in such a way is slowly oscillating in direction of φ and f is oscillating on every subset $X \setminus F_{n+1}$, $n \in \omega$. By Theorem 1, $\varphi = so(f)$. \Box

Let $\mathcal{B} = (X, P, B)$ be a ballean, Y be an unbounded subset of X. We say that a function $f: X \to \mathbb{R}$ is slowly oscillating on Y if, for any $\alpha \in P$ and $\varepsilon > 0$, there exists a bounded subset V of X such that

$$\operatorname{diam} f(B(y,\alpha)) < \varepsilon$$

for every $y \in Y \setminus V$, equivalently, f is slowly oscillating in direction of the filter on X with base $\{Y \setminus V: V \text{ is bounded}\}$. The subsets Y, Z of X are called *asymptotically disjoint* if, for every $\alpha \in P$, there exists a bounded subset V of X such that

$$B(Y \setminus V, \alpha) \cap B(Z \setminus V, \alpha) = \emptyset$$

Theorem 5. Let (X, d) be a metric space, Y and Z be unbounded subsets of X. Assume that there exists r > 0 such that |B(x,r)| > 1 for every $x \in X$. Then the following statements are equivalent:

- (i) Y, Z are asymptotically disjoint;
- (ii) there exists a function $f: X \to \mathbb{R}$ such that f is slowly oscillating on Y and f is oscillating on Z.

Proof. (i) \implies (ii) Fix some point $x_0 \in X$. Since Y, Z are asymptotically disjoint, we can choose an increasing sequence of natural numbers $(k_n)_{n \in \omega}$ such that

 $B(Y \setminus B(x_0, k_n), n) \cap Z = \emptyset$

for every $n \in \omega$. For every $m \in \omega$, we put

$$F_m = \bigcup_{n \ge m} B(Y \setminus B(x_0, k_n), n - m).$$

and denote by φ the filter on X with base { $F_m: m \in \omega$ }. By construction, φ is thick and $X \setminus Z \in \varphi$. By Theorem 4, there exists a function $f: X \to \mathbb{R}$ such that $\varphi = \operatorname{so}(f)$. By Theorem 1, f is slowly oscillating in direction of φ and f is oscillating on Z. By construction of φ , f is slowly oscillating on Y.

(ii) \Longrightarrow (i). We pick $\varepsilon > 0$ and $k \in \omega$ such that diam $f(B(z, k)) \ge \varepsilon$ for every $z \in Z$. Fix an arbitrary $m \in \omega$ and choose a bounded subset *V* of *X* such that diam $f(B(y, m)) < \varepsilon$ for every $y \in Y \setminus V$. Then $Z \cap B(Y \setminus V, m) = \emptyset$. It follows that *Y* and *Z* are asymptotically disjoint. \Box

Question. Let $\mathcal{B} = (X, P, B)$ be a ballean and let $f : X \to \mathbb{R}$ be a function which is not very oscillating. Does there exist an unbounded subset *Y* of *X* such that *f* is slowly oscillating on *Y*? This is so if \mathcal{B} is a metric ballean.

4. Application to βG

Let G be an infinite discrete group, βG be the Stone-Čech compactification of G, $G^* = \beta G \setminus G$. Using the universal property of the Stone-Čech compactification, the group multiplication on G can be extended to βG in such a way that, for every $r \in \beta G$, the right shift $x \mapsto xr$ is continuous, and for every $g \in G$, the left shift $x \mapsto gx$ is continuous. Formally, the product rq of the ultrafilters $r, q \in \beta G$ is defined by the rule: given any subset A of G,

$$A \in rq \iff \left\{g \in G \colon g^{-1}A \in q\right\} \in r.$$

For more information about the compact right topological semigroup βG and its combinatorial applications see [4]. For an infinite discrete group G with identity e, we denote by $\mathcal{F}_e(G)$ the family of all finite subsets of G containing e, and consider the ballean $\mathcal{B}_r(G) = (G, \mathcal{F}_e(G), B_r)$, where $B_r(x, F) = Fx$. A subset $V \subseteq G$ is bounded in $\mathcal{B}_r(G)$ if and only if V is finite, so $G^{\#} = G^*$. We note also that the ultrafilters $r, q \in G^*$ are parallel if and only if r = xq for some $x \in G$.

Theorem 6. Let G be a countable discrete group, φ be a filter on G with a countable base, $\bigcap \varphi = \emptyset$. Then the following statements are equivalent

- (i) $\overline{\varphi}$ is a left ideal of βG ;
- (ii) there exists a function $f: G \to \mathbb{R}$ such that $\varphi = \operatorname{so}(f)$.

Proof. (i) \Longrightarrow (ii). We show that φ is thick. Fix an arbitrary $F \in \varphi$, $x \in G$. For every $q \in \overline{\varphi}$, we have $xq \in \overline{\varphi}$, so there is $A_q \in q$ such that $xA_q \subseteq F$. We consider an open covering $\{\overline{A_q}: q \in \overline{\varphi}\}$ of $\overline{\varphi}$ and choose some open subcovering $\overline{A_{q_1}, \ldots, A_{q_n}}$. Then

$$A_{q_1} \cup \dots \cup A_{q_n} \in \varphi, \qquad x(A_{q_1} \cup \dots \cup A_{q_n}) \subseteq F.$$

Since *G* is countable, $\mathcal{B}_r(G)$ is metrizable [5]. If $H \in F_l(G)$, then $|B_r(x, H)| = |H|$, so we can apply Theorem 4. (ii) \implies (i). Let $q \in \overline{so(f)}$. By Theorem 2, $\overline{so(f)}$ contains all ultrafilters $r \in G^*$ such that $r \parallel q$. It means that $xq \in \overline{so(f)}$ for every $x \in G$. Since βG is right topological semigroup and *G* is dense in βG , we have $pq \in \overline{so(f)}$ for every $p \in \beta G$. Hence, $\overline{so(f)}$ is a left ideal. \Box

References

- [1] A. Dranishnikov, Asymptotic topology, Russian Math. Surveys 55 (2000) 1085–1129.
- [2] M. Filali, I. Protasov, Slowly oscillating functions on locally compact group, Appl. Gen. Topology 6 (2005) 67–77.
- [3] M. Filali, P. Salmi, Slowly oscillating functions in semigroup compactifications and convolution algebras, Preprint, 2006.
- [4] N. Hindman, D. Strauss, Algebra in the Stone-Čech Compactification Theory and Applications, de Gruyter, Berlin, 1998.
- [5] I. Protasov, Metrizable ball structures, Algebra Discrete Math. 1 (2002) 129–141.
- [6] I. Protasov, Coronas of balleans, Topology Appl. 149 (2005) 149-160.
- [7] J. Roe, Lectures on Coarse Geometry, AMS University Lecture Ser., vol. 31, 2003.