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Abstract

Given a function f: X — R defined on the support of a ballean, we introduce the notion of slow oscillation in direction of a filter
on X. We show that there exists a filter on X responsible for the rate of slow oscillation of f at infinity. We apply this result to the
Stone—Cech compactifications of discrete groups.
© 2006 Elsevier B.V. All rights reserved.
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Let (X, d) be a metric space. A function f is called slowly oscillating if, for any ¢ > 0 and r > 0, there exists
a bounded subset V of X such that

diam(de(x,r)) <e
for every x € X\V, where
By(x,r)= {y eX:dx,y) <r} and diamA:sup{|x -yl x,y eA}.

This notion was introduced by N. Higson (see for example [7, p. 29]) in the context of index theory. For applications
of slowly oscillating functions see [1,3,7].

In this note we study the following question: given an arbitrary function f : X — R, how far is it from being slowly
oscillating? To answer this question we introduce the notion of slow oscillation in the direction of a filter on X. For
one special case this notion appeared in [3]. We show that there exists a maximal filter so(f) on X such that f is
slowly oscillating in the direction of so(f). This filter can be considered as a measure of the slow oscillation of f at
infinity.

Following [2,6], we base our exposition on the concept of balleans, the asymptotic counterparts of the uniform
topological spaces.

* Corresponding author. Tel.: +358 8 5531755; fax: +358 8 5531730.
E-mail addresses: mahmoud.filali@oulu.fi (M. Filali), protasov@unicyb.kiev.ua (I. Protasov).

0166-8641/$ — see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.topol.2006.07.009


https://core.ac.uk/display/82079502?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

562 M. Filali, I. Protasov / Topology and its Applications 154 (2007) 561-566

1. Preliminaries

A ball structure is a triplet B = (X, P, B), where X, P are nonempty sets and, for any x € X and o € P, B(x, )
is a subset of X which is called a ball of radius « around x. It is supposed that x € B(x, «) forall x € X, « € P. The
set X is called the support of B, P is called the set of radiuses.

Givenany x € X, AC X, o € P, we put

B*(x,a):{yeX: xeB(y,ot)}, B(A,a) = UB(a,ot).
acA

A ball structure B is called a ballean if

e for any o, B € P, there exist o’, 8’ € P such that, for every x € X,
B(x,a) € B*(x,d), B*(x,a) € B(x, B);
e for any «, 8 € P, there exists y € P such that, for every x € X,

B(B(x,a), ) S B(x,y).

Replacing every ball B(x,®) by B(x,a) U B*(x,«), we get an equivalent ballean [6], so in what follows we
suppose that B(x,«) = B*(x,«) forallx € X, @ € P.

Every metric space (X, d) determines a metric ballean (X, R*, By).

A ballean B is called connected if, for any x, y € X, there exists « € P such that y € B(x, @).

A subset Y C X is called bounded if there exist x € X and o € P such that Y C B(x, o). We say that B is bounded
if its support is bounded. A subset Z C X is called cobounded if X \ Z is bounded.

We say that a filter ¢ on X is going fo infinity if X \ V € ¢ for every bounded subset V of X.

We use also a preordering < on the set P: « < g if and only if B(x,«) € B(x, B) for every x € X. A subset
P’ C P is called cofinal if, for every a € P, there exists 8 € P’ such that a < . The cofinality cf B is the minimal
cardinality of cofinal subsets of P.

We endow X with the discrete topology and use the Stone—Cech compactification X of X. We take the points of
BX to be the ultrafilters on X with the points of X identified with the principal ultrafilters. For every subset A C X,
we put A = {q € BG: A € q}. The topology of BG can be defined by stating that the family {A: A C X} is a base for
the open sets. For every filter ¢ on X, the subset § = [{A: A € ¢} is clearly closed in 8X, and for every nonempty
closed subset K of 8X, there exists a filter ¢ on X such that K = ¢.

Given a ballean B = (X, P, B), we denote by X* the set of all ultrafilters on X going to infinity. We say that
two ultrafilters r, g € X* are parallel (and write r || ¢) if there exists « € P such that, for every R € r, we have
B(R, a) € q. We denote by ~ the minimal (by inclusion) closed (in X #x X% equivalence on X* such that | € ~.
For the equivalence ~ and its relationship with slowly oscillating functions see [6].

2. Oscillation in direction of filter

In what follows all balleans are supposed to be connected and unbounded.
Let 5= (X, P, B) be a ballean, ¢ be a filter on X going to infinity. We say that a function f:X — R is slowly
oscillating in direction of ¢ if, for any ¢ > 0 and @ € P, there exists F € ¢ such that
diam f(B(x,a)) <&

for every x € F. We say that f is slowly oscillating if f is slowly oscillating in direction of the filter of cobounded
subsets of X.
We say that f is oscillating on a subset Y C X if there exist ¢ > 0 and @ € P such that

diamf(B(x, oz)) >¢

for every x € Y. In the case Y = X, we say that f is very oscillating.
For any ¢ > 0 and @ € P, we put

X(f,e,a)= {x e X: diamf(B(x,a)) <8}.



M. Filali, I. Protasov / Topology and its Applications 154 (2007) 561-566 563

Clearly, f is very oscillating if and only if there exist € > 0 and o € P such that X (f, &, o) = (. Assume that
X (f,¢e,a) is bounded for some & and «. We fix an arbitrary point y ¢ X (f, ¢,®) and choose B € P such that
B(y,a) € B(x, B) for every x € X(f,e,a). Then X(f, e, B) = . Hence, a function f is not very oscillating if
and only if every subset X (f, ¢, «) is unbounded.

In what follows we suppose that f is not very oscillating so every subset X (f, €, &) is unbounded. If ¢ < &1, ¢ < &
and o > aq, o > ap, then X (f,e,a) € X(f, e1,a1) N X(f, &2, a2). This means that the family

{X(f.e,@)\V: >0, a € P, Visbounded}

forms a base of some filter so(f) on X. In the following theorem we fix some basic properties of so( f).

Theorem 1. The filter so( f) has the following properties:

(1) so(f) is going to infinity;
(i) f is slowly oscillating in direction of so(f);
(iii) f is oscillating on every subset X \ F, F € so(f), F # X.

If a filter ¢ on X satisfies (1), (ii), (iii), then ¢ = so(f).
Given a ballean B = (X, P, B), we say that a filter ¢ on X is thick if

(a) ¢ is going to infinity;
(b) forany F € ¢ and « € P, there exists H € ¢ such that B(H,«) C F,
(c) ¢ has a base of cardinality < cf B.

The adjective “thick” in this definition is related to condition (b).
Theorem 2. The filter so(f) is thick.
Proof. We need only to check (b). Fix an arbitrary ¢ > 0, o € P and a bounded subset V of X. Choose B € P such
that B(B(x, ), ) € B(x, B) for every x € X. Then
B(X(f.e,)\B(V,),a) S X(f,e,0)\ V. O

In the next section we study the question whether, given a thick filter ¢ on X, there exists a function f: X — R
such that ¢ = so(f).

Theorem 3. A function f:X — R is slowly oscillating in direction of a filter ¢ if and only if f is slowly oscillating
in direction of every ultrafilter ¢ on X such that ¢ C q.

Proof. If f is slowly oscillating in direction of ¢, then f is slowly oscillating in direction of every filter ¢ such that

pCy.
Assume that f is slowly oscillating in direction of every ultrafilter g € ¢ (this is the same as ¢ C ¢). Fix an arbitrary
e>0and a € P. For every g € ¢, we pick A; € g such that

diam f(B(x,a)) <&
for every x € A;. Then we consider the open covering {A_q : g € ¢} of the compact space @ and choose some finite
subcovering {A_ql, ce A_q,,}. Then A = Ay, U---U Ay, € ¢, for otherwise, ¢ U {X \ A} has the finite intersection

property, and so it is contained in some ultrafilter p. This is clearly not possible since § € A means that every
ultrafilter containing ¢ must contains A as well. Since

diam f(B(x,a)) <&

forevery x € A, U---UAy, € ¢, we see that f is slowly oscillating in direction of ¢. O
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Corollary. If g € so(f), then q' € so(f) for every ultrafilter q' such that g ~ q’.

Proof. By Theorem 1, we have
so(f) = {q e X*: f is slowly oscillating in direction of q}.

If » € X* and r || ¢, then by Theorem 2, r € so(f), and so g’ € so(f) whenever g ~¢’. O
3. Inverse problem

Let B = (X, P, B) be aballean, ¢ be a thick filter on X. Does there exist a function f: X — R such that ¢ = so(f)?
We begin with a negative answer to the question in this general form, and then give a positive solution of the inverse
problem in some special case.

Example. Let X = {2": n € w}, d(x, y) = |x — y| forall x, y € X, so we have a metric ballean (X, d). It is easy to see
that every function f:X — R is slowly oscillating, so so(f) is the filter of cofinite subsets of X. On the other hand,
every filter ¢ on X with a countable base is thick provided that (¢ = @.

Theorem 4. Let (X, d) be an unbounded metric space, ¢ be a thick filter on X. Assume that there exists r > O such
that |B(x,r)| > 1 for every x € X. Then there exists a function f:X — R such that ¢ = so(f).

Proof. Since g is thick it has a countable base. We fix a base { F),: n € w} of ¢ such that Fo = X, B(F,4+1,r+n) C F,
for every n € w. At the first step we choose a subset A9 C Fp \ F) such that the family {B(x,r): x € Ap} is maximal
disjoint. Put

30=U{B(x,r):xeA0}, Co = (Fo\F1) U By,

and f(x)=1forevery x € Ag, f(x) = % for every x € Cy \ Aop.
At the second step we choose a subset Aj C F1 \ (F2 U Cp) such that the family {B(x,r): x € A1} is maximal
disjoint. Put

Bi = J{BGr.: xe Ai\Co, €1 = (FI\(F2UC) U (B \ Co),

and f(x) = 1 for every x € Ay, f(x) = 1 forevery x € Cy \ Aj.
At the third step we choose a subset A> C F> \ (F3UC1) such that the family {B(x, r): x € Ay} is maximal disjoint.
Put

By=|J{Bx.r): xe A4)\C1.  Cr=(F\(F3UC)) U B2\ Cy).

and f(x) = 1 for every x € Ap, f(x) = 1 for every x € Cr \ As.
After w steps, the function f:X — R defined in such a way is slowly oscillating in direction of ¢ and f is
oscillating on every subset X \ Fj,+1, n € w. By Theorem 1, ¢ =so(f). O

Let B = (X, P, B) be a ballean, Y be an unbounded subset of X. We say that a function f:X — R is slowly
oscillating on Y if, for any o € P and ¢ > 0, there exists a bounded subset V of X such that
diamf(B(y, a)) <e

forevery y € Y\ V, equivalently, f is slowly oscillating in direction of the filter on X with base {Y'\ V: V is bounded}.
The subsets Y, Z of X are called asymptotically disjoint if, for every « € P, there exists a bounded subset V of X
such that

B(Y\V,&)NB(Z\V,a)=0.

Theorem 5. Let (X, d) be a metric space, Y and Z be unbounded subsets of X. Assume that there exists r > 0 such
that |B(x,r)| > 1 for every x € X. Then the following statements are equivalent:
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(1) Y, Z are asymptotically disjoint,;
(ii) there exists a function f:X — R such that f is slowly oscillating on Y and f is oscillating on Z.

Proof. (i) = (ii) Fix some point xoy € X. Since Y, Z are asymptotically disjoint, we can choose an increasing se-
quence of natural numbers (k;), e, such that

B(Y \ B(x0,kn),n) N Z =0

for every n € w. For every m € w, we put

Fu=|J B(Y \ B(xo. k).n —m).

n=>m

and denote by ¢ the filter on X with base {F},,: m € w}. By construction, ¢ is thick and X \ Z € ¢. By Theorem 4,
there exists a function f: X — R such that ¢ = so(f). By Theorem 1, f is slowly oscillating in direction of ¢ and f
is oscillating on Z. By construction of ¢, f is slowly oscillating on Y.

(i) = (i). We pick ¢ > 0 and k € w such that diam f (B(z, k)) > ¢ for every z € Z. Fix an arbitrary m € w and
choose a bounded subset V of X such that diam f(B(y,m)) <& forevery ye Y\ V.Then ZNBXY \V,m)=0.1t
follows that Y and Z are asymptotically disjoint. O

Question. Let B = (X, P, B) be a ballean and let f: X — R be a function which is not very oscillating. Does there
exist an unbounded subset ¥ of X such that f is slowly oscillating on Y ? This is so if B is a metric ballean.

4. Application to SG

Let G be an infinite discrete group, G be the Stone—Cech compactification of G, G* = G \ G. Using the
universal property of the Stone—Cech compactification, the group multiplication on G can be extended to G in such
a way that, for every r € G, the right shift x — xr is continuous, and for every g € G, the left shift x > gx is
continuous. Formally, the product rg of the ultrafilters r, g € BG is defined by the rule: given any subset A of G,

Aerg < {gGG: g_lAeq}er.

For more information about the compact right topological semigroup SG and its combinatorial applications see [4].

For an infinite discrete group G with identity e, we denote by F,(G) the family of all finite subsets of G containing
e, and consider the ballean B, (G) = (G, F.(G), B,), where B,(x, F) = Fx. A subset V C G is bounded in B, (G) if
and only if V is finite, so G* = G*. We note also that the ultrafilters r, q € G* are parallel if and only if » = xq for
some x € G.

Theorem 6. Let G be a countable discrete group, ¢ be a filter on G with a countable base, (¢ = (. Then the
following statements are equivalent

(1) @ is a left ideal of BG,
(ii) there exists a function f:G — R such that ¢ =so(f).

Proof. (i) = (ii). We show that ¢ is thick. Fix an arbitrary F € ¢, x € G. For every g € ¢, we have xq € ¢, so there
is_Aq € g such that xA, C F. We consider an open covering {A;: g € ¢} of ¢ and choose some open subcovering
Agis..., Ay, Then

ApgU---UA, €9,  x(AyU---UA,)CF.

Since G is countable, B, (G) is metrizable [5]. If H € F;(G), then |B,(x, H)| = |H|, so we can apply Theorem 4.

(i)) = (i). Let g € so(f). By Theorem 2, so(f) contains all ultrafilters r € G* such that r || g. It means that
xq € so(f) for every x € G. Since BG is right topological semigroup and G is dense in G, we have pq € so(f) for
every p € BG. Hence, so(f) is aleftideal. O
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