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a b s t r a c t

StyA2B represents a new class of styrene monooxygenases that integrates flavin-reductase and sty-
rene-epoxidase activities into a single polypeptide. This naturally-occurring fusion protein offers
new avenues for studying and engineering biotechnologically relevant enantioselective biochemical
epoxidation reactions. Stopped-flow kinetic studies of StyA2B reported here identify reaction inter-
mediates similar to those reported for the separate reductase and epoxidase components of related
two-component systems. Our studies identify substrate epoxidation and elimination of water from
the FAD C(4a)-hydroxide as rate-limiting steps in the styrene epoxidation reaction. Efforts directed
at accelerating these reaction steps are expected to greatly increase catalytic efficiency and the value
of StyA2B as biocatalyst.
� 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Styrene monooxygenases (StyAB; EC 1.14.14.11) are two-com-
ponent enzymes performing regio- and enantioselective oxidations
(Scheme 1) [1,2]. The smaller NADH-dependent flavin reductase
component StyB produces reduced FAD (FADred) which is taken
up by the epoxidase component StyA [2–6]. Then oxygen gets also
incorporated in StyA and thus activated to a FAD C(4a)-hydroper-
oxide (FADHOOH) intermediate allowing StyA to perform a variety
of biotechnologically relevant epoxidation and sulfoxidation
reactions [1–7].

Recently, a novel self-sufficient styrene monooxygenase
(StyA2B) from Rhodococcus opacus 1CP was identified that
comprises the reductase and epoxidase components in a single
polypeptide chain [4]. The fused StyA2B protein may have several
advantages over conventional two-component StyAB systems
[2,4]. One major advantage would be the more efficient transloca-
tion of FADred from the reductase to the epoxidase active site, so
that more epoxide per NADH can be gained.

Steady-state kinetic characterization revealed that the reduc-
tase (3.7 U mg�1) as well as epoxidase (0.02 U mg�1) activity of
StyA2B are far behind that of two-component StyAB enzymes of
pseudomonads (reductase: 200 U mg�1 and epoxidase 2.1 U mg�1)
[3,4,6]. One reason might be that this fused type evolved more re-
cently [8]. To gain more insight into the catalytic features of
StyA2B, we set out to investigate the kinetics of the reductive
and oxidative half-reaction of StyA2B using stopped-flow spectros-
copy. The results provide an understanding of the catalytic mech-
anism of StyA2B and reveal different rate-limiting steps between
one-and two-component styrene monooxygenases.

2. Materials and methods

His-tagged StyA2B was provided via gene expression (pSRo-
A2B_P1 in the host Escherichia coli BL21 pLysS) and purification
via Ni–NTA affinity chromatography as described previously [4].
The protein concentration was either determined by BCA-assay
or estimated from the 280 nm absorbance applying the molar
extinction coefficient of 71.550 mM�1 cm�1 (StyA2B apo-protein).
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Scheme 1. The enantioselective epoxidation of styrene by means of StyA, molecular
oxygen, and FADred yields the almost pure S-enantiomer of styrene oxide.

Fig. 1. Electronic absorbtion spectra representative of StyA2B(FADox), and the
StyA2B(FADHOOH), and StyA2B(FADHOH) reaction intermediates. About 25 lM
StyA2B and FADox were mixed in 25 mM Tris–HCl buffer (pH 7.25) and spectro-
photometrically analysed under oxidizing conditions and after anaerobically
titrating with dihionite in the presence or absence of styrene and then exposing
to an aerobic atmosphere to generate stable oxygen intermediates.
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If FADox was still bound to the protein for the latter protein deter-
mination procedure the absorbance of FAD (e280 20.5 mM�1 cm�1,
e450 11.3 mM�1 cm�1) was considered. Total amount of free oxi-
dized FAD (FADox) in samples was determined after heat denatur-
ation and separation of the protein pellet via centrifugation.
Approximately 360 mg pure StyA2B protein out of 6 L fermentation
broth was obtained after Ni–NTA purification and subsequent
ammonium sulfate precipitation. Protein was stored at �20 �C in
a storage buffer (100 mM Tris–HCl, pH 7.25, containing 50% v/v
glycerol and 100 mM ammonium sulfate) as described elsewhere
[4]. In order to equilibrate the protein in reaction buffer and to re-
move unbound flavin, protein samples were passed through a
desalting column (Bio-Gel P6, 10 ml; Biorad) prior to experiments.

In general, low-salt Tris–HCl buffers (25–100 mM, pH about
7.25) were applied to study the enzyme. Anaerobic conditions
were established for redox-titration experiments or kinetic studies,
respectively. Therefore a tonometer equipped with a titration port
(fixed Hamilton syringe) and a quartz cuvette was used to make
samples anaerobic by sequential evacuating and backfilling with
purified nitrogen gas via a Schlenk line as reported earlier [5]. Ki-
netic studies were performed by stopped-flow experiments and
absorbance or fluorescence data were recorded according Kantz
et al. [5,9,10]. When studying the oxidative half reaction reduced
enzyme was loaded in one drive syringe and mixed with aerobic
buffer containing styrene from the other syringe. Reductive half
reaction was investigated as follows. Aerobic enzyme was reacted
with aerobic NADH. The kinetics of the reduction reaction were
found to be independent of NADH concentration suggesting that
NADH binds in rapid equilibrium within the 3 ms dead-time of
the stopped-flow instrument. The observed kinetics thus represent
the first-order kinetic of hydride-transfer from NADH to FAD. All
experiments were initiated under pseudo-first order reaction con-
ditions. Observed rate constants were computed by exponential
fitting corresponding to the time-dependent evolution of interme-
diates in the reaction sequence.

In studies of the oxidative half reaction, FADox bound to StyA2B
was reduced by titration with sodium dithionite. Data obtained
were fitted and plotted using KaleidaGraph version 4.1. Rates were
calculated from at least three independently measured traces and
the standard error observed was about 15% or less. Numerical
modeling was performed with KINSIM [11] in order to estimate
extinction coefficients of the observed flavin-oxygen adducts.

3. Results and discussion

The StyA2B preparation obtained contained about 0.7 mol of
FADox per mole of protein. The remaining 30% of StyA2B were sup-
posed to be apo-protein under these aerobic conditions. The absor-
bance spectrum of protein-bound FADox showed maxima at
357 nm and 456 nm with distinct shoulders at higher wavelengths
(Fig. 1; under oxidized conditions). Addition of free FADox to
StyA2B samples with sub-stoichiometric FADox yielded similar
spectra implying that binding of FADox is reversible. The molar
extinction coefficients of FADox bound to StyA2B were calculated
to e357 9.8 mM�1 cm�1 and e456 10.7 mM�1 cm�1.
Spectra representative of intermediates, which accumulate in
the reaction of the StyA2B(FADred) with oxygen and styrene, are
compared with the spectrum of StyA2B(FADox) in Fig. 1. Spectra
were recorded after first preparing StyA2B(FADred) by titration of
StyA2B(FADox) with dithionite (stock solution: 2.5 mM) in the
presence or absence of 200 lM styrene and then opening the cuv-
ette to an aerobic atmosphere and mixing. In the absence of sty-
rene a spectrum with an absorbance maximum at 378 nm was
observed, while in the presence of styrene the absorbance maxi-
mum occurred at 370 nm. These observations are in congruence
with earlier studies on StyA of Pseudomonas putida S12 [5,9] where
during catalysis a FAD (C4a)-hydroperoxide (FADHOOH; maximum
absorbance at 382 nm) and FAD C(4a)-hydroxide (FADHOH; maxi-
mum absorbance at 368 nm) intermediate were formed.

In previous studies of StyA Pseudomonas putida S12 [9] a mini-
mum of four chemical steps were needed to fully describe the sty-
rene epoxidation reaction: (1) reaction of StyA(FADred) with
molecular oxygen to form StyA(FADHOOH), (2) epoxidation of sty-
rene yielding styrene oxide and StyA(FADHOH), (3) elimination of
water from StyA(FADHOH) to yield StyA(FADox), and (4) release of
FADox into the medium [2a]. However, for the reaction of
StyA2B(FADred) with oxygen and styrene a minimum of five expo-
nentials was needed to satisfactorily describe the absorbance and
fluorescence stopped-flow data (Fig. 2). This suggests that four
reaction intermediates are required to describe the oxidative half
reaction of StyA2B as illustrated in Scheme 2. Interestingly, in case
of 50 lM styrene in the second phase of the reaction an increase in
absorbance at 450 nm was observed (Fig. 2). This absorbance
change, amounting to 5% of the projected maximum of FADox,
has been modeled as uncoupled elimination of hydrogen peroxide
occurring in parallel with productive epoxidation of styrene
(Scheme 2). It was not found in presence of excess styrene
(550 lM) indicating that reactive FADHOOH is stabilized by the sub-
strate. Extinction coefficients computed for the observed reaction
intermediates are in a range expected for those compounds and
similar to those previously reported in the literature [5,9].



Fig. 2. Oxidative half-reaction of 16 lM StyA2B with chemically reduced FAD (only protein bound FAD was used) was investigated by rapid mixing experiments (25 mM
Tris–HCl, pH 7.25, 15 �C, various styrene: 50 or 550 lM). Reactions were followed with absorbance (375, 390, and 450 nm) and fluorescence (520 nm, excitation at 375 nm).
Results were combined and analysed by exponential fitting. Best fits derived with five rate constants are shown here as solid lines passing through the experimental data
points. Values of the best fitting rate constants are listed in the legend of Scheme 2.

Scheme 2. Proposed steps of the oxidative half-reaction of StyA2B are shown. Styrene epoxidation (S–SO) yields FADHOH. In parallel uncoupled formation of hydrogen
peroxide occurs. Extinction coefficients of FAD-species were calculated via numeric modelling approaches and used to assign the FAD species most likely present [5]. Rate
constants from exponential fitting were k1 = 85 s�1, k2 = 1.65 s�1, k3 = 0.165 s�1, k4 = 0.065 s�1, k5 = 0.009 s�1 in reactions with 50 lM styrene and k1 = 85 s�1, k2 = 52 s�1,
k3 = 0.11 s�1, k4 = 0.06 s�1, k5 = 0.006 s�1 in reactions with 550 lM styrene. Upon rapidly mixing the reduced enzyme with buffer containing styrene in air-saturated buffer,
the first observed rate kinetic phase occurs as a single-exponential increase in absorbance corresponding to formation of a FADHOOH intermediate. The proceeding second-
order kinetic steps of oxygen and styrene binding to the enzyme are relatively rapid and are thought for this reason not to significantly contribute to the observed kinetics of
peroxide formation.
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The oxidative half-reaction of StyA2B resembles that of StyA
from Pseudomonas putida S12 [5]. However, there are some striking
differences. First, the StyA2B rates are much slower (e.g., StyA
epoxidation rate is about 104 s�1) [2a]. Second, the uncoupling at
sub-stoichiometric amounts of FAD is rather uncommon for sty-
rene monooxygenases. Third, during catalysis we observed a tre-
mendous stabilization of StyA2B(FADHOH). This intermediate is
highly fluorescent as shown earlier [9,12,13]. With low amounts
of styrene less FADHOH was formed, but when supplying excess
substrate it built up and decomposed to FADox extremely slowly
as indicated by the very late increase in absorbance at 450 nm
(Fig. 2; after 10 s). For phenol hydroxylase from Trichosporon cuta-
neum, stabilization of FADHOH was strongly dependent on the type
of substrate and increased in the presence of monovalent anions
[13–15]. In case of StyA from Pseudomonas putida S12 an ionic
strength and pH dependent stabilizing effect was observed as well
[9]. For p-hydroxyphenylacetate 3-hydroxylase (HPAH) from Aci-
netobacter baumannii, stabilization of the respective FMN C(4a)-
hydroxide was attributed to interaction with a conserved serine
[16]. However, in case of StyA2B the FADHOH intermediate was
formed under normal catalytic conditions and remained very sta-
ble as StyA2B(FADHOH) which significantly distinguishes StyA2B
from those other flavoprotein monooxygenases.

Transient kinetic data recorded at 450 nm monitoring the
reductive half-reaction of StyA2B are presented in Fig. 3. In these
studies, StyA2B was mixed rapidly in the stopped-flow instrument
with NADH and various concentrations of FADox under anaerobic
conditions. An initial exponential drop in absorbance (kobs



Fig. 3. Reaction of 6.9 lM StyA2B with 250 lM NADH and oxygen in the presence and absence of 250 lM styrene as investigated by rapid mixing experiments (25 mM Tris–
HCl, pH 7.25, 15 �C) in the presence or absence of 15.8 lM added FADox. Absorbance at 340 nm and fluorescence emission at 520 nm were monitored and combined results
were analysed by exponential fitting (see Table 1).

Table 1
Rates observed after mixing StyA2B with NADH in presence of protein-bound or surplus FADox (see Fig. 3).

Signal FADox Observed rate constants (k in s�1) from best fits

Without styrene With styrene

Abs. Bound 32 1.6 0.01 – 32 1.6 0.01 –
Surplus 32 0.13 – – 32 0.13 – –

Rel. Flu. Bound 32 1.6 0.01 – 32 1.6 0.15 –
Surplus 32 0.38 0.25 0.03 32 2.2 0.13 0.03
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�32 s�1) corresponding to the reduction of StyA2B(FADox) by
NADH was followed by steady state turnover of the pool of free
FADox (not shown).

To study the rate of NADH and FADox binding, StyA2B was pre-
pared with sub-stoichiometric or excess FADox and reacted in the
stopped-flow instrument with excess NADH, either in the absence
or presence of styrene under aerobic conditions. Depending on the
samples mixed, different numbers of exponentials were needed to
satisfactorily fit the data (Fig. 3, Table 1). Addition of NADH or
FADox first to StyA2B and rapid mixing of the other compound
did not differentiate the results. This indicates that NADH and
FADox bind rapidly and with high affinity to StyA2B such that the
kinetics of the FAD-reduction reaction is not influenced by the pre-
ceding FADox- and NADH-binding steps.

The kinetics of hydride transfer were monitored by absorbance
at 340 nm and fluorescence emission at 520 nm corresponding to
NADH oxidation and FAD reduction, respectively (Fig. 3). The ob-
served rate constant of this reaction (kred = 32 s�1) was similar
when the reaction was run anaerobically. The next phase of the
reaction (1.6 s�1) is characterized by slight decreases in 340 nm
absorbance and fluorescence signals. We postulate therefore the
formation of StyA2B(FADHOOH) from StyA2B(FADred) reacting with
oxygen. After a few seconds, a slower decrease in absorbance to-
gether with an increase in fluorescence was observed indicating
that StyA2B(FADred) and/or StyA2B(FADHOOH) slowly re-oxidized
and the formed FADox became again reduced. The picture changed
somewhat with FADox present in excess. Again fast reduction of
protein-bound FAD was observed followed now by a steady-
state reduction of surplus FADox (kred steady-state = 0.13 s�1).
StyA2B(FADred) subsequently reacted with oxygen to
StyA2B(FADHOOH) and re-oxidized again as indicated by the regain
of fluorescence and different rate constants observed (Table 1).

In both cases (stoichiometric and surplus FADox) with presence
of styrene the fusion protein still performs an initial fast reduction
followed by a steady-state turnover of FADox. FADHOH was formed
and stabilized by StyA2B and the rates observed for formation of
the highly fluorescent intermediate (Table 1: 0.15 or 0.13 s�1) were
comparable to those determined with chemically reduced FAD
(k3 = 0.165 or 0.11 s�1). Therefore, styrene epoxidation and corre-
sponding FADHOH formation seem independent of the FADred

source. Interestingly, on-going activity of the reductase moiety
and so continuous production of FADred did not serve to competi-
tively displace FADHOH from the active site of the epoxidase. This
suggests that fusion of the StyA2 and StyB protein components
does not significantly affect the behaviour of individual active sites,
and is indicative for a diffusive transfer of FAD between both pro-
tein components [17,18].

4. Conclusions

The herein investigated self-sufficient and naturally fused sty-
rene monooxygenase StyA2B presents an interesting candidate en-
zyme for enantioselective biocatalytic applications (Scheme 1).
Initial studies revealed that the epoxidase component of StyA2B
is rather slow [4]. Here we find that the reductive half-reaction
of StyA2B proceeds rapidly on a time scale similar to that of the
reductase component, StyB of the two-component SMO. The
following steps including the transport of FADred to the epoxidase
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active site of StyA2B and subsequent reaction of FADred with oxy-
gen to form FADHOOH are also rapid and not rate limiting in catal-
ysis. We find the ultimate bottleneck of the oxidative half-reaction
of StyA2B occurs at the stages of the styrene epoxidation and
FADHOH dehydration, which occur much more slowly than ob-
served in the single component SMO [5]. Interestingly, monovalent
anions, specific substrates, or low temperatures are not needed to
stabilize StyA2B(FADHOH) as with other monooxygenases [5,12–
15]. Thus, StyA2B provides a valuable system to study FADHOH

formation and its interaction with an enzyme.
The rather slow styrene turnover reaction of StyA2B appears to

be due to the rate-limiting elimination of water from the FADHOH

intermediate. Work focused on accelerating this reaction step
including site-directed mutagenesis of residues directly involved
in the stabilization of FADHOH [16] and directed evolution to fur-
ther enhance the epoxidase activity [2,19] has the potential to bet-
ter tune StyA2B as an efficient biocatalyst. Naturally fused styrene
monooxygenases are rarely found in nature [8], thus comparisons
of the mechanism of StyA2B with homologous systems is expected
to further provide significant mechanistic insight.
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