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1. Introduction

  Oxidative stress induced by free radicals is believed to be 
a primary factor in various degenerative diseases such as 
atherosclerosis, carcinogenesis, diabetes, hypertension and 
aging. Generation of reactive oxygen species (ROS) beyond 
the body' s endogenous antioxidant balance cause a severe 
imbalance of the cellular antioxidant defense mechanism 
and results in oxidative stress which deregulates the cellular 

function leading to various pathological conditions[1]. 
Various endogenous antioxidant defense mechanisms 
play an important role in the elimination of ROS and 
lipid peroxides and therefore protect the cells against its 
toxic effects[2]. The antioxidant defense can be further 
strengthened with a diet rich in antioxidants. Plant drugs 
are known to play a vital role in the management of liver 
diseases. Hepatoprotective herbal drugs contain a variety 
of chemical constituents like phenols, coumarins, lignans, 
essential oil, monoterpenes, carotinoids, glycosides, 
flavanoids, organic acids, lipids, alkaloids and xanthines.
  Amorphophallus campanulatus (Roxb.) (A. campanulatus) 
Blume (Family: Araceae) is a perennial herb commonly 
known as elephant foot yam. It grows in wild and cultivate 
as vegetable in Asian and African countries[3]. The rounded 
tuberous root stock or corm is used as an important source 
of food in many parts of the world. Till date, different 
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components including glucose, galactose, rhamnose, 
xylose, triacontane, lupeol, betulinic acid, stigmasterol, 
毬-sitosterol and its palmitate have been reported in the 
corm of A. campanulatus[4]. Further, the plant is valuable as 
medicine especially the corm has been used traditionally 
for the treatment of liver diseases, abdominal pain, 
abdominal tumours, piles, enlargement of spleen, asthma 
and rheumatism[5]. Moreover, the corm has been reported to 
possess antibacterial, antifungal and cytotoxic activities[6]. 
The present investigation was undertaken to identify the 
phytochemical constituents of A. campanulatus tuber and to 
evaluate its antioxidant potential through in vitro and in vivo 
models.

2. Material and methods

2.1.  Chemicals

  Thioacetamide (TAA) was purchased from Loba Cheme, 
Mumbai, India. 5, 5' -dithiobis-(2-nitrobenzoic acid), 
1-chloro-2, 4-dinitrobenzene and nitroblue tetrazolium 
were purchased from Sisco Research Laboratories, Mumbai, 
India. Silymarin and 2, 2-Diphenyl-1-picrylhydrazyl 
(DPPH) were procured from Sigma Chemical Co., St. Louis, 
MO, USA. Assay kits for serum alanine aminotransferase 
(ALT), aspartate aminotransferase (AST), alkaline 
phosphatase (ALP) and lactate dehydrogenase (LDH) 
were purchased from Agappe Diagnostic, India. All other 
chemicals were of analytical grade. 

2.2.  Collection and preparation of plant extracts

  A. campanulatus tubers were collected from the local 
market (Kottayam, Kerala, India) and authenticated. A 
voucher specimen (SBSBRL.02) is maintained in the institute. 
Tubers were cleaned, chopped, shade-dried and powdered. 
A 50 g of dried powder was soxhlet extracted with 400 mL of 
n-hexane and followed by methanol for 48 h. The extracts 
were concentrated under reduced pressure using a rotary 
evaporator and were kept under refrigeration. The yield of 
the n-hexane and methanolic extracts were 0.45% (w/w) and 
9.3% (w/w), respectively. The concentrate was suspended 
in DMSO for in vitro studies and in 5% Tween 80 for in vivo 
studies. 

2.3. Preliminary phytochemical screening

  Preliminary phytochemical screening of n-hexane and 
methanolic extracts of A. campanulatus tuber were carried 
out for the detection of phytoconstituents using standard 
conventional protocols[7].  

2.4. Evaluation of in vitro antioxidant activity

  The antioxidant activity of A. campanulatus tuber n-hexane 
extract (ACHE) and A. campanulatus tuber methanolic 
extract (ACME) was measured in terms of hydrogen donating 
or radical scavenging ability using the stable radical DPPH. 

The reduction capability of DPPH radicals is determined by 
the decrease in its absorbance at 517 nm[8]. Ascorbic acid 
was used as standard control. 
  The inhibitory effect of the extracts to prevent the 
degradation of deoxyribose by Fe3+ ions in presence of 
H2O2-EDTA-ascorbate was determined in hydroxyl radical 
scavenging assay[9]. The reference standard used was 
quercetin. 
  The antioxidant activity of ACHE and ACME was also 
manifested through their reducing power. In this assay, 
the Fe3+ → Fe2+ transformation was established as 
reducing capacity[10]. Ascorbic acid was used as a standard 
antioxidant compound. 
  The amount of total phenolic compounds in the extracts 
was determined using the Folin-Ciocalteu method[11]. A 
calibration curve of gallic acid was prepared and the results 
were expressed as mg gallic acid equivalents (GAE)/g dry 
extract. 
  The total flavonoid content of ACHE and ACME was 
determined spectrophotometrically by the method described 
by Quettier-Deleu et al[12]. It was determined using a 
standard curve with quercetin and expressed as milligrams 
of quercetin equivalents (QE/g of dry extract).
  The total antioxidant capacity of the extracts was 
determined according to the method of Jayaprakasha et al[13]. 
Ascorbic acid was used as standard and the total antioxidant 
capacity was expressed as the equivalent of ascorbic acid 
per gram of extract. 
  All the tests were performed in triplicate and the results 
were expressed with the mean values.

2.5. Evaluation of in vivo antioxidant activity

2.5.1. Animals and diets
  Male Wistar rats weighing (156±5.8) g (n=30) were used 
in this study. The animals were housed in polypropylene 
cages and given standard rat chow (Sai Feeds, Bangalore, 
India) and drinking water ad libitum. The animals were 
maintained at a controlled condition of temperature of 26-
28 ℃ with a 12 h light: 12 h dark cycle. Animal studies 
were followed according to Institute Animal Ethics 
Committee regulations approved by Committee for the 
Purpose of Control and Supervision of Experiments on 
Animals (Reg. No. B 2442009/6) and conducted humanely.

2.5.2. Preparation of doses and treatments
  Thioacetamide suspended in normal saline was 
administered (100 mg/kg body weight) subcutaneously 
to induce the oxidative stress in rats[14]. Silymarin at an 
oral dose of 100 mg/kg body weight was used as standard 
control in the experiment[15]. The most promising ACME 
was selected to study the in vivo antioxidant activity. It is 
reported that the extracts of A. campanulatus tubers are safe 
up to the dose of 2 000 mg/kg[16]. Different doses (125 and 
250 mg/kg) of ACME suspended in 5% Tween 80 were also 
prepared for oral administration to the animals.

2.5.3. Experimental design
  Rats were divided into five groups with six rats in each 
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group and that were treated as follows:
Group栺: Control rats (vehicle only);
GroupⅡ: Thioacetamide control (100 mg/kg, s.c.) ;
Group Ⅲ: Thioacetamide (as in groupⅡ)+silymarin (100 mg/
kg, p.o.);
Group Ⅳ: Thioacetamide (as in groupⅡ)+ACME (125 mg/kg, 
p.o.);
Group Ⅴ: Thioacetamide (as in groupⅡ)+ACME (250 mg/kg, 
p.o.)
  All the groups except groupⅠreceived a single dose of 
thioacetamide (100 mg/kg, s.c.) suspended in normal saline 
on 9th day of the experiment. Group栿 received silymarin 
and the groups Ⅳ and Ⅴ received ACME for 9 days before 
thioacetamide challenge[17]. GroupⅠanimals treated as 
vehicle control received 5% Tween 80 and normal saline 
instead of drug and thioacetamide respectively. Animals 
were sacrificed 24 h after thioacetamide administration. 

2.5.4. Serum enzyme analysis
  Hepatotoxicity was assessed by quantifying the serum 
levels of AST (EC 2.6.1.1), ALT (EC 2.6.1.2), ALP (EC 3.1.3.1) 
and LDH (EC 1.1.1.27) by kinetic method using the kit of 
Agappe Diagnostic Ltd., India. Activities of these serum 
enzymes were measured using semi autoanalyzer (RMS, 
India). 

2.5.5. Tissue analysis
  Liver and kidney were excised, washed thoroughly in ice-
cold saline to remove the blood. Ten percent of homogenate 
was prepared in 0.1M Tris HCl buffer (pH-7.4). The 
homogenate was centrifuged at 3 000 rpm for 20 min at 4 曟 
and the supernatant was used for the estimation of catalase 
(CAT), glutathione peroxidase (GPx), glutathione reductase 
(GR), glutathione-S-transferase (GST), reduced glutathione 
(GSH), lipid peroxidation [Thiobarbituric acid reactive 
substances(TBARS)] and total protein.
  Tissue CAT (EC 1.11.1.6) activity was determined from the 
rate of decomposition of H2O2[18]. GPx (EC 1.11.1.9) activity 
was determined by measuring the decrease in GSH content 
after incubating the sample in the presence of H2O2 and 
NaN3[19]. GR (EC 1.6.4.2) activity was assayed at 37 曟 and 
340 nm by following the oxidation of NADPH by GSSG[20]. GST 
(EC 2.5.1.18) activity was determined from the rate of increase 
in conjugate formation between reduced glutathione and 
CDNB[21]. Reduced GSH was determined based on the 
formation of a yellow colored complex with DTNB[22]. The 
level of lipid peroxidation was measured as malondialdehyde 
(MDA), a thiobarbituric acid reacting substance (TBARS), 
using 1'1'3'3' tetramethoxypropane as standard[23]. Protein 
content in the tissue was determined using bovine serum 
albumin (BSA) as the standard[24].

2.5.6. Histopathological studies
  Small pieces of liver tissues fixed in 10% buffered formalin 
were processed for embedding in paraffin. Sections of 
5-6 毺m were cut and stained with hematoxylin and eosin 
and examined for histopathological changes under the 
microscope (Motic AE 21, Germany). The microphotographs 

were taken using Moticam 1000 camera at original 
magnification of 100×. 
  Liver sections were graded numerically to assess the 
degree of histological features in acute hepatic injury. 
Centrilobular necrosis is the necrosis around the central vein 
characterized by prominent ballooning, swollen granular 
cytoplasm with fading nuclei. Bridging hepatic necrosis is a 
form of confluent necrosis of liver cells linking central veins 
to portal tracts or portal tracts to one another[25]. A combined 
score of centrilobular necrosis, bridging hepatic necrosis and 
lymphocyte infiltration was given a maximum value of 6 and 
descriptive modifiers such as mild, moderate, and severe 
was applied to activity and staging. The parameters were 
graded from score 0 to 6, with 0 indicating no abnormality, 1 
to 2 indicating mild injury, 3 to 4 indicating moderate injury 
and 5 to 6 representing severe liver injury.

2.6. Statistical analysis
  
  Results are expressed as mean±SD and all statistical 
comparisons were made by means of one-way ANOVA test 
followed by Tukey' s post hoc analysis and P-values less 
than or equal to 0.05 were considered significant. 

3. Results

3.1. Preliminary phytochemical analysis

  The preliminary phytochemical evaluation of ACHE 
showed the presence of steroids. But the screening of ACME 
revealed the presence of phytochemical constituents such as 
alkaloids, tannins, glycosides, phenols, flavonoids, saponins 
and carbohydrates.

3.2. In vitro antioxidant activity

3.2.1. DPPH radical scavenging activity
  The DPPH radical scavenging activity of extracts and 
standard exhibited a concentration dependent reaction 
trend. The IC50 values of ascorbic acid, ACME and ACHE 
were 4.2, 52.4 and 1 470.5 毺g/mL, respectively.

3.2.2. Hydroxyl radical scavenging activity
  ACME has better hydroxyl radical scavenging activity than 
ACHE. Extracts and quercetin, the standard antioxidant, 
scavenged hydroxyl radicals in a concentration dependent 
manner and the estimated IC50 values of ACHE, ACME and 
quercetin were 29.2, 23.4 and 20.8 毺g /mL, respectively.

3.2.3. Determination of reducing power
  Ascorbic acid used as reference compound exhibited a 
superior reducing power at all concentrations, compared 
with ACHE and ACME (Figure 1). At 0.50 mg/mL, the 
absorbencies of ascorbic acid, ACHE and ACME (at 700 nm) 
were 1.530, 0.081 and 0.101, respectively. These values reflect 
the following reducing capability: ascorbic acid > ACME > 
ACHE.
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Figure 1. Reducing power of ACHE and ACME compared with 
standard antioxidant ascorbic acid.

3.2.4. Phenolic contents, flavonoid contents and total 
antioxidant activity
  ACME had a higher quantity of total phenolics [(23.00暲
2.30) mg GAE/g dry extract] than ACHE [(5.70暲1.20) mg 
GAE/g dry extract]. ACME, which has a high total antioxidant 
activity [(90.00暲2.90) mg ascorbic acid/g dry extract] also 
had a great quantity of flavonoids [(5.20暲0.80) mg QE/g dry 

extract] compared to ACHE. In ACHE, the total antioxidant 
activity [(35.00暲4.70) mg ascorbic acid /g dry extract] and 
flavonoid content [(0.53暲0.20) mg QE/g dry extract] were 
comparatively low.

3.3. In vivo antioxidant activity

3.3.1. Serum enzymes 
  The serum levels of AST, ALT, ALP and LDH in group 栻
were significantly  elevated by the administration of a 
single dose of TAA, when compared to normal control(P< 
0.05). Treatment with ACME at a dose of 125 and 250 mg/kg 
showed a significant decrease of AST, ALT, ALP and LDH(P< 
0.05). Standard control drug, silymarin at a dose of 100 mg/
kg also prevented the elevation of serum enzymes (Figure 
2). Treatment with 250 mg/kg of ACME and 100 mg/kg of 
silymarin exhibited a protection of 81.7% and 77.5% in AST 
levels, 43.0% and 29.3% in ALT levels, 38.0% and 35.2% in 
ALP levels and 72.5% and 65.5% in LDH levels respectively. 
The preventive effect of the extract in decreasing the 
elevated levels of serum enzymes was in a dose dependent 
manner.
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Figure 2. Effects of ACME on changes in serum enzyme levels of rats treated with TAA. 
(A)-Aspartate aminotransferase, (B)-Alanine aminotransferase, (C)- Alkaline phosphatase and (D)- Lactate dehydrogenase; N: Normal control, 
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Table 1
Protective effects of ACME against TAA induced changes in the liver antioxidant status(mean依SD, n = 6).
Treatment groups GSH

(nmol/mg protein)
GST
( 毺 m o l  C D N B -
G S H c o n j u g a t e 
f o r m e d / m i n / m g 
protein)

GR
( n m o l  o f  G S S G 
ut i l i zed/min/mg 
protein)

GPx
( n m o l  o f  G S H 
oxidized/min/mg 
protein)

CAT
(U/mg protein)

MDA 
(nmol/g tissue)

Normal control 24.8依0.4 74.8依0.4 19.8依0.7 298.4依7.2 51.5依2.5 45.6依0.5
TAA (100 mg/kg, s.c.) 15.2依0.3殼 37.3依0.4殼   7.7依0.5殼 174.2依8.9殼 35.4依1.4殼 75.7依1.1殼

Silymarin (100 mg/kg)+TAA 21.3依0.5* 63.3依0.3* 15.8依0.3* 271.6依7.4* 46.5依1.9* 59.2依0.8*
ACME (125 mg/kg) +TAA 18.2依0.3* 59.3依0.5* 10.6依0.3* 209.7依9.0* 39.1依1.0* 63.3依1.0*
ACME (250 mg/kg) +TAA 23.3依0.4* 67.1依0.2* 17.2依0.3* 274.5依6.3* 47.6v1.2* 52.0依0.2*
 殼P < 0.05 versus normal control; *P<0.05 versus thioacetamide control.

Table 2
Protective effects of ACME against TAA induced changes in the kidney antioxidant status(mean依SD, n = 6).
Treatment groups GSH

(nmol/mg protein)
GST
( 毺 m o l  C D N B -
G S H  c o n j u g a t e 
f o r m e d / m i n / m g 
protein)

GR
( n m o l  o f  G S S G 
ut i l i zed/min/mg 
protein)

GPx
( n m o l  o f  G S H 
oxidized/min/mg 
protein)

CAT
(U/mg protein)

MDA 
(nmol/g tissue)

Normal control 18.2依0.4 49.8依0.8 16.7依0.3 285.7依6.7 58.8依1.2 42.4依0.4
TAA(100 mg/kg, s.c.)   8.1依0.2殼 27.4依0.4殼   6.3依0.4殼 160.3依8.1殼 47.1依1.7殼 72.3依0.7殼

Silymarin(100 mg/kg)+TAA 14.7依0.5* 43.3依0.3* 12.0依0.5* 258.9依5.3* 56.8依1.9* 54.6依0.3*
ACME(125 mg/kg) +TAA 11.1依0.5* 39.2依0.4*   9.2依0.4* 197.6依8.9* 49.3依1.5* 59.3依0.5*
ACME (250 mg/kg) +TAA 16.1依0.5* 47.2依0.3* 14.2依0.3* 261.5依5.8* 56.3依0.5* 49.4依0.6*
 殼P < 0.05 versus normal control; *P<0.05 versus thioacetamide control.

3.3.2. Estimation of reduced GSH
  Rats administered with TAA alone were found significantly 
lower level of reduced GSH(P< 0.05). Treatment with ACME 
exhibited significant increase in both hepatic (Table 1) 
and renal (Table 2) glutathione levels(P< 0.05). In liver and 
kidney, 250 mg/kg of ACME showed a protection of 84.6% and 
83.6%, respectively. Silymarin treated rats also prevented 
the lowering of GSH and the percentage of protection was 
63.5% and 63.9%, respectively for liver and kidney. 

3.3.3. Estimation of GST
  When compared to normal control the GST activity of 
liver and kidney tissues were significantly reduced in 
TAA intoxicated rats(P< 0.05). ACME dose dependently 
increased the activity of GST in both the hepatic and renal 
tissues (Table 1 and 2) (P< 0.05). Treatment with 250 mg/kg 
ACME exhibited significant increase ie., 79.4% and 88.6%, 
respectively in hepatic and renal GST levels. In addition, 
silymarin treated rats also prevented the TAA induced 
decrease in GST activity by 69.2% and 70.9% in hepatic and 
renal tissues respectively.

3.3.4. Estimation of GR
  GR activity was significantly decreased in TAA treated 
animals when compared to normal control(P< 0.05). A 
significant increase in the level of GR was observed in ACME 
(125 and 250 mg/kg) and silymarin (100 mg/kg) treated rats 
intoxicated with TAA(P< 0.05). Both hepatic and renal tissues 
showed the same pattern of GR activity in all groups treated 
with ACME and silymarin (Table 1 and 2). The percentage of 
protection in liver and kidney tissues were 78.9% and 75.9%, 
respectively for 250 mg/kg of ACME.  Silymarin restored the 
GR activity by 67.1% in liver and 54.8% in kidney.

3.3.5. Estimation of GPx
  Activities of hepatic and renal GPx were significantly 
lowered in TAA treated rats (Table 1 and 2) (P< 0.05). ACME 
dose dependently prevented the lowering of GPx in both the 
organs compared to TAA alone treated groups. In liver and 
kidney, 250 mg/kg of ACME showed a protection of 80.7% and 
80.6%, respectively. Silymarin treated rats also prevented 
the lowering of GPx by 78.3% in hepatic and 78.6% in renal 
tissues.

3.3.6. Estimation of CAT
  Animals injected with TAA alone showed significant 
reduction in hepatic and renal CAT activity(P< 0.05). ACME 
dose dependently increased the activity of CAT in both 
hepatic and renal tissues (Table 1 and 2). Treatment with 
250 mg/kg of ACME exhibited significant increase ie., 75.8% 
and 78.6%, respectively in liver and kidney. In addition, 
silymarin treated rats also prevented  the TAA induced 
decrease in CAT activity by 68.7% and 82.2% in hepatic and 
renal tissues respectively(P< 0.05).

3.3.7. Estimation of Lipid peroxidation (MDA)
  A significant increase P< 0.05) in tissue MDA level was 
observed in TAA alone treated rats. However, TAA induced 
elevation of MDA concentration was lowered (P< 0.05) by 
78.5% in hepatic and renal tissues of rats treated with ACME 
at a dose of 250 mg/kg. Silymarin also showed a protection  
of 54.8% in liver and 59.3% in kidney(P< 0.05) (Table 1 and 
2).

3.4. Histopathological analysis

  Normal architecture of the liver (Figure 3B) was completely 
lost in rats treated with TAA with the appearance of 
centrilobular necrosis, bridging hepatic necrosis and 
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lymphocyte infiltration with a score of 5.3依0.5 (n=3). The 
animals administered with silymarin and ACME at 250 and 
100 mg/kg showed a significant protection from TAA induced 
liver damage(P< 0.05) as evident from hepatic architectural 
pattern with mild to moderate hepatitis with scores 3.3依0.5, 
3.0依1.0, and 2.6依0.5 (n=3) (P< 0.05), respectively (Figure 
3C-E).

Figure 3. Histopathological changes occurred in rat liver after TAA 
intoxication and prevention by the treatment with ACME (hematoxylin 
and eosin, 100伊). 
(A) Normal control; (B) TAA control (100 mg/kg s.c.); (C) Silymarin 
(100 mg/kg) + TAA; (D) ACME (125 mg/kg) + TAA; (E) ACME (250 
mg/kg) + TAA.

4. Discussion

  Natural antioxidants can protect the human body from free 
radicals and retard the progress of many chronic diseases. 
In the present study, n-hexane and methanolic extracts of A. 
campanulatus tuber exhibited in vitro antioxidant activity in 
DPPH radical scavenging assay, hydroxyl radical scavenging 
assay and reducing power assay. DPPH is a stable free 
radical that easily accepts an electron or hydrogen radical 
to become a stable diamagnetic molecule[26]. Though the 
DPPH radical scavenging abilities of the extracts were less 
than that of ascorbic acid, the study showed that ACME 
have potent proton-donating ability and could serve as free 
radical inhibitors or scavengers. The extremely reactive 
hydroxyl radicals can cause oxidative damage to DNA, lipids 
and proteins[27]. The potent hydroxyl radical scavenging 
activity of ACME may be due to its active hydrogen 
donating ability.  The total reducing power of ACME was 
also comparatively higher than ACHE. The reducing power 
of a compound may serve as a significant indicator of its 
potential antioxidant activity. The reducing properties are 
generally associated with the presence of reductones which 

have shown antioxidant action by breaking the free radical 
chain reaction donating a hydrogen atom[28].
  ACME had a higher quantity of total phenolics and 
flavonoids compared to ACHE. Phenolic compounds function 
as high-level antioxidants because they possess the ability 
to absorb and neutralize free radicals as well as quench 
reactive oxygen species. Flavonoids, one of the most diverse 
and widespread groups of natural compounds, are also 
probably the most natural phenolics capable of exhibiting in 
vitro and in vivo antioxidant activities. The results obtained 
in the present study showed that ACME can effectively 
scavenge reactive oxygen species including hydroxyl radical 
as well as other free radicals under in vitro conditions. The 
antioxidant activity of ACHE and ACME was compared with 
that of standard compounds and the ACME has been proven 
a promising antioxidant activity and hence it is chosen for in 
vivo studies.
  TAA is a compound endowed with liver damaging 
and carcinogenic activity. It has been used to induce 
a model of acute liver injury in rats. Shortly after its 
administration, thioacetamide is metabolized to acetamide 
and thioacetamide-5-oxide. The latter binds to tissue 
macromolecules responsible for the change in cell 
permeability, increased intracellular concentration of Ca++, 
increase in nuclear volume and enlargement of nucleoli and 
inhibits mitochondrial activity eventually leading to hepatic 
necrosis[29]. 
  The increase in the activities of AST, ALT, ALP and LDH in 
serum of rats treated with TAA might be due to the increased 
permeability of plasma membrane or cellular necrosis 
leading to leakage of the enzymes to the blood stream[30] and 
this showed the stress condition of the TAA treated animals. 
In the present study, administration of a single dose of TAA 
significantly (P< 0.05) elevated the serum transaminases, 
ALP and LDH activities compared to the normal rats. 
Marked decrease in serum transaminases, ALP and LDH 
levels demonstrate the preventive effect of ACME in TAA 
intoxication.
  Generation of a large amount of ROS due to TAA can 
overwhelm the antioxidant defense mechanism and damage 
cellular ingredients such as lipids, proteins and DNA; this 
in turn can impair cellular structure and function. The intra 
cellular antioxidant system comprises of different free radical 
scavenging antioxidant enzymes along with some non-
enzyme antioxidants like GSH and other thiols. CAT, GST, 
GPx, and GR constitute the first line of cellular antioxidant 
defense enzymes. Thus, to eliminate free radicals, these 
cellular antioxidants play an important role and equilibrium 
exists between these enzymes under normal conditions. 
When excess free radicals are produced, this equilibrium 
is lost and consequently oxidative insult is established[31]. 
Glutathione detoxifies toxic metabolites of drugs, regulates 
gene expression, apoptosis and transmembrane transport of 
organic solutes and it is essential to maintain the reduced 
status of the cell/tissue[32]. In the present study, treatment 
with ACME and silymarin significantly (P< 0.05) enhanced 
the hepatic and renal GSH level compared to the TAA alone 
treated animals.  The elevated GSH level could explain 
the dose dependent (250 and 125 mg/kg) hepatoprotective 
action of the extract. Our findings also show that pre-
treatment with ACME prior to TAA intoxication significantly 
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(P< 0.05) enhanced the GST activity, a phase Ⅱ enzyme. 
This was attributed to the decreased bioactivation of TAA 
caused by the ACME pre-treatment. GST offers protection 
against lipid peroxidation by promoting the conjugation of 
toxic electrophiles with GSH[33]. GR is also essential for the 
maintenance of GSH levels in vivo[34]. The significantly (P< 
0.05) elevated level of GR activity in the hepatic and renal 
tissues of ACME pre-treated rats shows the role of extract 
to maintain the GSH level in these tissues. These results 
indicate that the protection afforded by ACME against TAA 
induced hepatotoxicity may be related to the increased 
cellular GSH content, the increased GST and GR activity. 
Further, GPx catalyzes the GSH dependant reduction of 
H2O2 and other peroxides and protects the organism from 
oxidative damage[32]. The significant (P< 0.05) restoration 
of GPx activity in ACME and silymarin pre-treated rats 
might be due to the antioxidant activity by detoxifying the 
endogenous metabolic peroxides generated after TAA injury 
in hepatic and renal tissues.
  Catalase is responsible for breakdown of H2O2, an important 
ROS, formed during the reaction catalyzed by SOD[35]. 
Reduced activity of catalase after exposure to TAA in the 
present finding could be correlated to increased generation 
of H2O2. The pre-treatment of ACME significantly (P< 0.05) 
aided to maintain the CAT activity near to normal level 
in both hepatic and renal tissues. This evidently shows 
the antioxidant property of the extract against oxygen free 
radicals. The concentration of MDA in tissues of TAA alone 
exposed group was significantly (P< 0.05) differed from 
that of normal control. MDA is a major oxidation product of 
peroxidized polyunsaturated fatty acids and increased MDA 
content is an important indicator of lipid peroxidation[36-50]. 
Pre-treatment of rats with ACME protected the liver and 
kidney from increasing MDA formation. This demonstrates 
the antilipid peroxidative effect of the extract. The increased 
MDA content might have resulted from an increase of 
ROS as a result of stress condition in the rats with TAA 
intoxication. Histopathological evaluation showed negligible 
damage to a few hepatocytes present in the close vicinity of 
central vein in ACME treated rats and the improvement of 
histological scores proved the efficacy of the extract as an 
antihepatotoxic agent.
  ACME contains 毬-sitosterol, a component reported as a 
hepatoprotective agent[51] and stigmasterol, a phytosterol 
reported as antioxidant compound[52]. The identified class 
of components in single or in combination with other 
components present in the extract might be responsible for 
the reduction of hepatotoxicity. In conclusion, the result 
of serum biochemical parameters, level of hepatic and 
renal lipid peroxides, glutathione antioxidant systems, CAT 
and histopathological studies support the dose dependent 
hepatoprotective and antioxidant activity of ACME. The 
present study also supports the traditional use of A. 
campanulatus tuber as a liver tonic. The results do suggest 
that A. campanulatus tuber might ameliorate oxidative 
damage induced by radicals and this can be employed as 
main ingredient in medical food/nutraceuticals for disorders 
due to oxidative stress. However, further pharmacological 
evidences at molecular level are required to establish the 
mechanism of the action of the drug which is underway.
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