
Cell Reports

Article
The Mef2 Transcription Network Is Disrupted
in Myotonic Dystrophy Heart Tissue,
Dramatically Altering miRNA and mRNA Expression
Auinash Kalsotra,1,6 Ravi K. Singh,1 Priyatansh Gurha,2,7 Amanda J. Ward,1,3,8 Chad J. Creighton,4

and Thomas A. Cooper1,3,5,*
1Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
2Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA
3Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
4The Dan L. Duncan Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston, TX 77030, USA
5Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
6Present address: Departments of Biochemistry and Medical Biochemistry, University of Illinois, Urbana-Champaign, IL 61801, USA
7Present address: Center for Cardiovascular Genetics, Institute of Molecular Medicine, University of Texas Health Sciences Center, Houston,
TX 77030, USA
8Present address: Isis Pharmaceuticals, Carlsbad, CA 92010, USA

*Correspondence: tcooper@bcm.edu

http://dx.doi.org/10.1016/j.celrep.2013.12.025
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-No Derivative Works

License, which permits non-commercial use, distribution, and reproduction in any medium, provided the original author and source are

credited.
SUMMARY

Cardiac dysfunction is the second leading cause of
death in myotonic dystrophy type 1 (DM1), primarily
because of arrhythmias and cardiac conduction
defects. A screen of more than 500 microRNAs
(miRNAs) inaDM1mousemodel identified54miRNAs
that were differentially expressed in heart. More than
80% exhibited downregulation toward the embryonic
expression pattern and showed a DM1-specific
response. A total of 20 of 22 miRNAs tested were
also significantly downregulated in human DM1 heart
tissue. We demonstrate that many of these miRNAs
are direct MEF2 transcriptional targets, including
miRNAs for which depletion is associated with
arrhythmias or fibrosis. MEF2 protein is significantly
reduced in both DM1 and mouse model heart sam-
ples, and exogenous MEF2C restores normal levels
of MEF2 target miRNAs andmRNAs in a DM1 cardiac
cell culture model. We conclude that loss of MEF2 in
DM1 heart causes pathogenic features through aber-
rant expression of both miRNA and mRNA targets.

INTRODUCTION

Myotonic dystrophy type 1 (DM1) is an autosomal-dominant dis-

ease caused by an expanded CTG repeat in the last exon of the

dystrophia myotonica-protein kinase (DMPK) gene. Pathogen-

esis is caused primarily by the mRNA containing expanded

CUG repeats (CUGexp RNA) that is expressed from the mutated

allele (Wheeler and Thornton, 2007). DMPK is expressed in mul-

tiple tissues that are subsequently affected in the disease, but
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the primary causes of mortality are muscle wasting (60%) and

sudden cardiac death (25%–30%) (Groh et al., 2008; Heatwole

et al., 2012; Phillips and Harper, 1997; Salehi et al., 2007).

More than 80% of individuals affected with DM1 have cardiac

conduction defects and arrhythmias, and a lower percentage

are affected by interstitial fibrosis and dilated cardiomyopathy

(Groh et al., 2008; Lazarus et al., 2002; Nazarian et al., 2010;

Pelargonio et al., 2002; Phillips and Harper, 1997; Sovari et al.,

2007). Although several molecular mechanisms of DM1 patho-

genesis have been defined (Sicot et al., 2011; Udd and Krahe,

2012), the specific mechanisms causing electrophysiological,

fibrotic, and contractility abnormalities in DM1 heart tissue are

unknown.

The best-characterized effects of CUGexp RNA are disrupted

functions of the RNA binding proteins muscleblind-like 1

(MBNL1) and CUGBP and Elav-like family member 1 (CELF1),

which regulate multiple RNA-processing events including

alternative splicing, translation, mRNA stability, andmRNA intra-

cellular localization (Lee and Cooper, 2009; Timchenko, 2013).

Celf1 is downregulated during mouse postnatal heart and skel-

etal muscle development while Mbnl1 activity is upregulated,

driving their target alternative splicing events to the adult pat-

terns (Kalsotra et al., 2008; Lin et al., 2006). Celf1 downregulation

is posttranscriptionally mediated by microRNA (miRNA)-

repressed translation and protein destabilization by dephos-

phorylation (Kalsotra et al., 2008, 2010; Kuyumcu-Martinez

et al., 2007). CUGexp RNA reverses normal postnatal regulation

of MBNL1 and CELF1 by sequestration of MBNL1, which binds

with high affinity to the CUG repeats, and stabilization of CELF1

by PKC-activated phosphorylation, resulting in a 2- to 4-fold in-

crease in heart and skeletal muscle (Kuyumcu-Martinez et al.,

2007; Savkur et al., 2001; Timchenko et al., 2001; Wang et al.,

2007). In addition to disrupted alternative splicing, molecular

defects of CUGexp RNA toxicity involve repeat-associated
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non-ATG (RAN) translation (Zu et al., 2011), abnormal DNA

methylation (López Castel et al., 2011), bidirectional transcrip-

tion (Moseley et al., 2006), and miRNA dysregulation (Fernan-

dez-Costa et al., 2013; Perbellini et al., 2011; Rau et al., 2011).

We previously demonstrated that postnatal downregulation of

Celf1 and its paralog Celf2 in mouse heart results from a dra-

matic upregulation of miR-23a and miR-23b between postnatal

day 2 (PN2) and PN21 (Kalsotra et al., 2008, 2010). Therefore,

we wanted to determine whether altered miRNA expression in

DM1 could be an additional mechanism of CELF1 upregulation.

Using an established heart-specific and inducible DM1 mouse

model, we found that postnatal upregulation of miR-23a and

miR-23b is dramatically reversed upon induction of CUGexp

RNA in adult heart. Furthermore, an analysis of >500 miRNAs

identified 54 that are misregulated within 72 hr of CUGexp RNA

induction, >80% of which represent reversal of postnatal upre-

gulation. A total of 20 of 22 miRNAs affected in the DM1 mouse

model were also downregulated in DM1 heart tissues. Pathway

analysis of mRNAs and miRNAs misregulated in the DM1mouse

heart identified a loss of function of the Mef2 transcriptional

network. Loss of MEF2A andMEF2CmRNA and protein expres-

sion was demonstrated in heart tissue from the DM1 mouse

model and in individuals affected by DM1. In addition, 20 of 20

protein-coding genes that are demonstrated targets of MEF2

were downregulated in the DM1 mouse model. Misregulation

of miRNA andmRNAMEF2 targets by CUGexp RNAwas rescued

by MEF2C. For several of the affected miRNAs, downregulation

has previously been shown to produce arrhythmias or fibrotic

changes. Our results demonstrate that the MEF2 transcription

network is disrupted by CUGexp RNA, leading to altered expres-

sion of a large number of miRNA and mRNA targets with effects

consistent with DM1 heart pathology.

RESULTS

Disrupted Expression of Postnatally Regulated miRNAs
in Adult DM1 Heart
To determine whether CELF1 upregulation in DM1 heart tissue

resulted from altered miRNA expression, we quantified miR-

23a andmiR-23b expression in heart tissue from a heart-specific

DM1 mouse model (EpA960; MerCreMer [MCM]). These mice

inducibly express human DMPK exon 15 containing 960 CUG

repeats and exhibit Celf1 upregulation (Figure 1A) (Wang et al.,

2007). We observed a strong postnatal increase in miR-23a

and miR-23b levels in wild-type mouse hearts between embry-

onic day 14 (E14) and adultmice as described earlier (Figure S1A)

(Kalsotra et al., 2010). Importantly, the levels of miR-23a and

miR-23b were significantly reduced (p < 0.05) both at 72 hr

and 1 week following induction of CUGexp RNA expression (Fig-

ure S1A). Comparable levels of CUGexp RNA induction are

observed at both time points (Figure S1B). This result identified

a direct link between induction of CUGexp RNA andmisregulated

expression of miRNAs and suggested that Celf upregulation in

DM1 resulted from loss of miRNA expression in addition to the

previously described phosphorylation-mediated stabilization

(Kuyumcu-Martinez et al., 2007).

To determine if additional miRNAs are misregulated in

DM1, we used quantitative real-time reverse-transcription PCR
C

(RT-PCR)-based TaqMan arrays to profile expression of >500

miRNAs from the hearts of wild-type E14 mice, adult

EpA960;MCM DM1 mice, and MCM control mice. We

identified 54 miRNAs that were differentially expressed (fold

change > 1.8; p < 0.05) between MCM controls and DM1 mice

1 week following induction of CUGexp RNA (Figure 1B; Table

S1). A total of 83% (45/54) of the miRNAs are regulated during

normal postnatal heart development and exhibit an adult-to-

embryonic shift in expression in DM1 mice, whereas 17% (9/

54) exhibit a change but are not regulated postnatally (Figure 1C).

A heatmap representation of 42 miRNAs that are upregulated

during normal heart development shows a striking decrease in

their expression both at 72 hr and 1 week following CUGexp

RNA induction (Figure 1D), indicating cardiac expression of

CUGexp RNA results in developmental reprogramming of a

subset of miRNAs.

Next, we assayed miRNA expression in heart tissues of eight

DM1 and four unaffected individuals. A total of 20 out of the

top 22 miRNAs found to be misregulated in the DM1 mouse

model were significantly reduced (p < 0.05) in DM1 heart tissue

(Figure 1E). We also determined that reduced levels of develop-

mentally regulated miRNAs in DM1 are not a general response

secondary to cardiomyopathy, as the same miRNA subset is

not coordinately affected in two separate models of heart dis-

ease (Figure 1F and G) or among a subset of the miRNAs tested

in human heart failure samples (Figure S1E). On the basis of

these data, we conclude that reduced expression of develop-

mentally regulated miRNAs is specific to DM1 rather than a

general response to cardiac injury. In addition, the DM1 mouse

model does not show activation of hypertrophy markers, sug-

gesting that the response of the heart to induced CUGexp RNA

is distinct from a hypertrophic response (Figures S1B and S1C).

Altered miRNA Expression Induced by CUGexp RNA Is
Not Reproduced by Loss of Mbnl1 or Gain of Celf1
CUGexp RNA disrupts the functions of the RNA binding proteins

MBNL1 and CELF1 resulting in missplicing of their pre-mRNA

targets (Lee and Cooper, 2009; Wheeler and Thornton, 2007).

Altered expression of one miRNA, miR-1, in DM1 heart was pro-

posed to result from disrupted pre-miRNA processing due to

loss of MBNL1 activity (Rau et al., 2011). To determine whether

the adult-to-embryonic shift in miRNA expression observed in

DM1 is driven by misregulation of Mbnl1 or Celf1, we quantified

expression of 23 miRNAs most affected in the DM1 mouse

model in heart tissue from Mbnl1DE3/DE3 mice (Kanadia et al.,

2003) and a previously described heart-specific and tetracycline

(tet)-inducible human CELF1 transgenic mouse line (Kalsotra

et al., 2008; Koshelev et al., 2010). None of the miRNAs were

misregulated in CELF1-inducible transgenic animals (Figure 2A)

and only the three let-7 family members were reduced signifi-

cantly (p < 0.05) in Mbnl1DE3/DE3 mice (Figure 2C). Loss of

Mbnl1 and gain of CELF1 activities were confirmed in the

same RNA samples by showing altered splicing of Mbnl1 or

CELF1 targets (Figures 2B and 2D).

To determine whether the expression of miRNA primary

transcripts (pri-miRNA) were affected in the DM1 mouse model,

we performed quantitative RT-PCR (qRT-PCR) analysis using

TaqManprobes specific for thepri-miRNAsof tendownregulated
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Figure 1. Misregulation of a Subset of miRNAs in a Heart-Specific Mouse Model for DM1

(A) Schematic of an inducible heart-specific DM1 mouse model. EpA960 mice contain a transgene containing DMPK exon 15 with 960 CTG interrupted repeats

that were crossed with MerCreMer (MCM) (Sohal et al., 2001) mice to generate heart-specific and tamoxifen-inducible expression of CUGexp RNA.

(B) Expression profiling using quantitative real-time RT-PCR-based TaqMan arrays of >500 miRNAs in EpA960;MCM versus MCM control mouse heart 1 week

after tamoxifen injection. The volcano plot shows up- or downregulated miRNAs in DM1 mice compared to MCM controls. Data are normalized relative to U6

small nuclear RNA (snRNA) (n = 3).

(C) Adult-to-embryonic shift in miRNA expression in DM1 mice upon CUGexp RNA expression. Pie chart summarizing miRNAs that are differentially expressed

and exhibit a developmental shift toward the embryonic pattern.

(D) Heatmap showing developmental upregulation of 42 miRNAs during normal mouse heart development, which are downregulated at 72 hr and 1week after

repeat RNA expression.

(E) Reduced miRNA expression in DM1 heart tissue. Each bar represents fold change in individual miRNA expression (mean ± SD) from heart samples of adults

with DM1 (n = 8) relative to heart samples from unaffected individuals (n = 4).

(F and G) Developmentally regulated miRNAs do not show a coordinate reduction in expression in two distinct models of heart disease: calcineurin transgenic

(CnA-Tg) mice (F) and wild-type mice (G) 8 weeks after transverse aortic constriction (TAC). Each bar represents fold change in individual miRNA expression

(mean ± SD) from heart samples of CnA-Tg mice relative to littermate controls (n = 3) or from mice that underwent TAC surgery relative to shams (n = 3).

*p < 0.05.
miRNAs. We found that ten out of ten primary miRNA transcripts

examined showed decreased expression that paralleled the

reduced expression of their mature miRNAs when assayed at

72 hr and 1 week after CUGexp RNA induction (Figure 2E). More-

over, we found that expression of pri-miR-1-1 and pri-miR-1-2

are significantly reduced in the hearts of DM1 patients relative

to unaffected controls (Figure 2F). Overall, these data demon-

strate that gain of Celf1 or loss ofMbnl1 activity is not responsible

for the alteredmiRNAexpression inDM1.Our data are consistent

with an upstream defect in transcription rather than a down-

stream RNA processing defect.

Large-Scale Shift in Gene Expression in DM1 Is Partly
due to Loss of miRNAs and Inactivation of the Mef2
Transcriptional Program
To assess if in addition to splicing and miRNA defects, CUGexp

RNA also perturbed mRNA steady-state levels, we carried out
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a microarray study on heart RNA from wild-type E14 and adult

mice as well as adult MCM control and DM1 mice. As antici-

pated, we noted a large number of genes to be developmentally

regulated in wild-type hearts; however, within 72 hr of CUGexp

RNA induction, many genes showed a coordinated adult-to-

embryonic shift in mRNA expression (Figure 3A). Strikingly,

1 week of CUGexp RNA expression resulted in a pervasive shift

in transcript levels of a large number of genes toward the embry-

onic pattern (Figure 3A).

Gene Ontology analysis using the Ingenuity Pathway Analysis

(IPA) showed the mitochondrial pathway as the most signifi-

cantly affected pathway (p = 5.36 3 10�8 and threshold ratio =

0.259) (Figure S2). To identify the transcription factors and

miRNAs that are potentially responsible for these gene

expression changes and the ensuing phenotype in DM1 mice,

we performed an upstream regulator analysis by IPA. This

analysis examined the enrichment of known targets of each



A B

C D

E F

Figure 2. Altered miRNA Expression Identi-

fied in DM1 Is Not Reproduced by Loss of

Mbnl1 or Gain of CELF1

(A) qRT-PCR analysis of miRNA expression in

hearts of tet-inducible and heart-specific CELF1

transgenic (TgCELF1) mice. Each bar represents

fold change in individualmiRNAexpression (mean±

SD) in TgCELF1 mice relative to MHC-rtTA controls

given doxycycline (dox). Data are normalized rela-

tive to U6 snRNA (n = 3).

(B) RT-PCR analysis monitoring percent spliced in

(PSI) of two CELF1-regulated alternative splicing

events,Mtmr3exon16andMfn2exon3 inMHCrtTA

or TgCELF1 mice given dox or Mbnl1DE3/DE3 mice.

(C) miRNA expression in hearts of Mbnl1DE3/DE3

relative to Mbnl1+/+ mice showing fold change in

individual miRNA expression (mean ± SD). Data

are normalized relative to U6 snRNA (n = 3).

(D) Real-time PCR analysis monitoring PSI of two

Mbnl1-regulated alternative splicing events,

Mbnl1 exon 5 and Tnnt2 exon 5 in Mbnl1+/+,

TgCELF1 + dox, or Mbnl1DE3/DE3 mice.

(E) Reduced expression of ten primary (pri-) miRNA

transcripts at 72 hr and 1 week after CUGexp RNA

induction in DM1 mice. Each bar represents fold

change in individual pri-miRNAs in DM1 mice

relative to MCM controls at 72 hr or 1 week after

tamoxifen injection.

(F) Reduced steady-state levels of pri-miR-1-1 and

pri-miR-1-2 transcripts in human heart samples

fromDM1patients relative to unaffected individuals

(n = 3).

*p < 0.05.
transcriptional regulator present in our gene list to that in the

database, resulting in an estimation of an overlap p value. Based

on activation or suppression of target genes (for a transcriptional

regulator) compared with observed changes in gene expression,

an activation Z score was assigned. Z score > 2 illustrates acti-

vation and Z score < �2 illustrates inhibition of activity. Using

this approach, we discovered the cardiac transcription factors

Mef2a and Mef2c as most significantly inhibited (Mef2a Z score

of�2.941, p = 1.703 10�4;Mef2c Z score of�3.017, p = 1.203

10�7) (Figure 3B; Table S2).

IPA also predicted inhibition of miRNA families miR-29, let-7,

miR-1, and miR-34a, corroborating the reciprocal upregulation

of their corresponding targets (Table S2). Finally, to understand

how Mef2 and the predicted miRNAs interact with one another

and their targets, we made an interaction network and overlaid

it with the cardiac disease function from the function and disease

tools of IPA. These analyses showed genes involved in cardiac

arrhythmia, hypertrophy, and fibrosis as overrepresented in

the network (Figure 3B). Importantly, these categories correlate

strongly with the phenotypic changes observed in DM1 patients

and mice, including prolonged PR intervals and QRS duration,

decreased contractility, dilated cardiomyopathy, hypertrophy

of cardiomyocytes, and proliferation of mitochondria (Wang

et al., 2007).

Quantitative real-time RT-PCR assays confirmed significant

downregulation (p < 0.05) of Mef2a and Mef2c mRNAs in our

DM1 mouse model (Figure 4A, top) as well as in DM1 patient

samples (Figure 4A, bottom). As a control, we assessed Gata4
C

transcript levels, which were unchanged in both the DM1mouse

model and DM1 heart tissues. MEF2A and MEF2C mRNA levels

were not affected in human heart failure samples (Figure S3D),

indicating that reduced expression is not a general response to

heart disease. We also found that the alternative exons in

Mef2a (a and b exons) and Mef2c (g exon) did not exhibit a sig-

nificant difference in percent spliced in (PSI) values following

1 week of CUGexp RNA expression when compared to MCM

controls (Figure S3A). Similarly, while alternative splicing of the

MEF2A b exon and MEF2C g exon were affected in some DM1

heart samples, differences are not statistically significant (Fig-

ure S3E), indicating that downregulation rather than altered

splicing is likely to have the larger impact on MEF2 activity.

Western blot analysis showed a 2-fold decrease in MEF2A

protein levels in DM1 compared to unaffected hearts (Figure 4B).

As expected, CELF1 protein levels were induced >2-fold in DM1

heart tissue. Importantly, Mef2a and Mef2c transcripts were

unaltered in hearts of either Celf1 transgenic or Mbnl1DE3/DE3

mice compared to their littermate controls (Figure S3B), suggest-

ing reducedMef2 expression in DM1 is unrelated to themisregu-

lation of either RNA binding protein.

Furthermore, we tested whether high-confidence Mef2 target

genes expressed in heart were altered in the DM1mouse model.

A high-confidence Mef2 target was defined as a gene that has

published chromatin immunoprecipitation (ChIP) evidence of

Mef2 occupancy, for which promoter analysis has implicated

Mef2 as a direct transcriptional activator and/or that displays

decreased transcript levels upon loss of Mef2 activity. Twenty
ell Reports 6, 336–345, January 30, 2014 ª2014 The Authors 339
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Figure 3. The DM1 Heart Mouse Model Shows a Large-Scale Shift in Gene Expression that Identifies a Disrupted Mef2 Network

(A) Gene expression profiling in mouse heart development and adult DM1 mice shows a developmental reversion in mRNA expression. Heatmap representation

of transcripts overexpressed (yellow) and underexpressed (blue) in hearts of wild-type adult mice, wild-type embryonic day 14 (E14), and DM1 mice induced to

express CUGexp RNA for 72 hr and 1week, when compared to MCM controls (p < 0.01; fold change > 1.5). Rows, transcripts (values centered on MCM group);

columns, profiled samples.

(B) Ingenuity Pathway Analysis identified Mef2 as a key regulator of both miRNA and mRNA with altered expression in heart tissue expressing CUGexp RNA.

Cardiovascular gene function categories with p < 1 3 10�5 are highlighted in the figure.
such targets were chosen (see the Supplemental Information).

Remarkably, 100% (20/20) of the Mef2 target genes examined

were downregulated in DM1 mouse heart tissue (Figure 4C,

left). As a control data set, we tested a target gene set for

Gata4 (see the Supplemental Information), which is unaffected

in DM1 heart tissue (Figure 4A). We observed no significant

change in expression of Gata4 targets in DM1 mice (Figure 4C,

right). These results indicate that the vast majority of experimen-

tally supported Mef2 target genes expressed in heart are down-

regulated in DM1.

Identification of Mef2-Regulated miRNAs in Cardiac
Cells
In addition to many muscle-specific genes, Mef2 directly acti-

vates transcription of bicistronic primary transcripts encoding

miR-1-2/-133a-1 and miR-1-1/-133a-2 (Liu et al., 2007), which

we found to be downregulated in DM1 patient and mouse model

heart tissues. However, it is not known what other miRNAs are

regulated by Mef2 in heart. We searched 10 kb genomic regions

spanning each of the 54 differentially expressed miRNAs in DM1

mice for Mef2 binding sites [CTA(A/T)4TAG] and found 65 puta-

tive sites in 34 different miRNA genes.

To determine the fraction of miRNA genes physically bound by

Mef2 proteins in heart, we performed ChIP assays on wild-type

adult mouse hearts using a pan-Mef2 antibody. Nonimmune

immunoglobulin Gs (IgGs) and RNA Pol II antibodies served as

negative and positive controls, respectively. The genomic re-

gions harboring the ChIP-ed Mef2 consensus sites were ampli-

fied using specific primer sets. PCR analyses of the precipitated
340 Cell Reports 6, 336–345, January 30, 2014 ª2014 The Authors
chromatin showed strong Mef2 binding along the genomic

regions of previously characterized Mef2 targets (Smyd1,

Pgc1a, Myom1, and cTnI3), whereas no significant binding was

detected to an intergenic negative control region (Figure S4A).

Using the ChIP assay, we confirmed that 20 of 65 sites in 15

different pri-miRNAs were occupied by Mef2 (Figure S4B). The

let-7d upstream region does not contain a Mef2 site and showed

no binding, whereas a previously characterized pri-miR-1-2

binding site showed positive binding, as expected. RNA Pol II

showed preferential association with all miRNA and mRNA

genomic regions tested, confirming these are actively tran-

scribed in wild-type mouse hearts (Figure S4B).

To determine whether expression of the miRNAs downregu-

lated in DM1 heart require Mef2, we used small interfering

RNAs (siRNAs) to knock down Mef2a and Mef2c genes individ-

ually or in combination in mouse atrial cardiac HL-1 cells. We

consistently achieved over 80% knockdown efficiency for both

Mef2a and Mef2c from their endogenous levels (Figure 5A). We

tested expression of three known Mef2 target genes (Myocd,

Myom1, and Ctnna3) inMef2 knockdown cultures and observed

an expected reduction in their steady-state levels compared to

the control knockdowns (Figure 5A). Importantly, both individual

and combinedMef2 knockdowns resulted in a significantly lower

expression (p < 0.05) of 10 out of 15 pri-miR transcripts that

showedMef2 binding in the ChIP assays (Figure 5B; Figure S4B).

A total of 4 out of 15 were not expressed in HL-1 cells, whereas

pri-miR-30a was expressed but was unaffected by the

knockdowns (Figure 5B). These results indicate that in addition

to pri-miR-1/-133 clusters, Mef2 proteins drive expression of
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B Figure 4. Disruption of the Mef2 Transcrip-

tion Program in DM1

(A) Reduced Mef2a andMef2c expression in heart

tissue from the EpA960;MCM DM1 mouse model

(n = 3) and individuals with DM1 (n = 8) or normal

controls (n = 4). Gata4 mRNA levels are not

affected. Data are normalized to ribosomal protein

L30 (Rpl30).

(B) Western blot showing reduction in steady-state

MEF2A protein levels in human DM1 heart sam-

ples. CELF1 protein levels are upregulated in these

samples, as previously described (Savkur et al.,

2001; Timchenko et al., 2001). Quantification of

relative band intensities, normalized to GAPDH

levels, is shown below.

(C) Decreased Mef2a and Mef2c expression

affects mRNA steady-state levels of Mef2 target

genes in mouse DM1 heart tissue. Representative

Mef2 target genes show a significant reduction in

expression (light red bars), whereas Gata4 target

genes are unaffected (light blue bars).

*p < 0.05.
several other pri-miRNAs in cardiac cells. We next used a pan

Mef2 antibody to perform ChIP analysis of DM1mouse heart tis-

sue. Consistent with reduced Mef2a and Mef2c levels we noted

their association with the response elements was decreased on

both miRNA and mRNA targets in DM1 mouse heart tissues in

comparison to the MCM controls (Figure 5C). Collectively, these

data demonstrate that loss of Mef2 expression in DM1 is likely to

have a significant impact on expression of downstream targets

directly due to their reduced occupancy on the target genes.

Misregulation of miRNAs and mRNAs in a DM1 Cardiac
Cell Model Is Rescued by Exogenous Mef2c
To test whether re-expression of Mef2 could rescue the loss

of expression of select miRNA and mRNA targets in DM1, we

infected HL-1 cells with control or tet-inducible Mef2c lentivirus

that coexpresses an rtTA transactivator (Figure 6A). After a 12 hr

induction of Mef2c expression with doxycycline, cells were

transfected with pBi-tet-DT0-GFP or -DT960-GFP plasmids.

These plasmids express GFP and the DMPK 30 UTR with or

without 960 CUG repeats through a tet-inducible bidirectional

promoter (Figure 6A) (Lee et al., 2012). Thirty-six hours later, cells

were either fixed for combined fluorescence in situ hybridization/

immunofluorescence analysis or lysed to extract total RNA. As

shown previously (Lee et al., 2012), we found that most trans-

fected cells that expressed GFP also formed CUG-repeat-con-

taining RNA foci (Figure 6B). GFP expression or foci formation

was not observed in the absence of doxycycline (Figures 6B

and 6C), and no significant differences in DMPK mRNA levels

were noted upon exogenous Mef2c expression (Figure 6C).

Similar to the DM1 mouse model and the human patient sam-

ples, transient transfection of HL-1 cells with the DT960 plasmid

led to a significant decrease (p < 0.05) in endogenous Mef2a

and Mef2c transcript levels when compared to the DT0 plasmid

(Figure 6D). Forced expression of exogenous Mef2c in the DM1

cardiac cell model not only increased the Mef2a and Mef2c

transcript levels (Figure 6D) but also rescued the expression of

its mRNA and miRNA targets (Figures 6E and 6F). These results
C

thus provide direct evidence that misregulation of the cardiac

Mef2 regulatory network plays a fundamental role in the patho-

logical response to CUGexp RNA in DM1 hearts.

DISCUSSION

We demonstrated a hierarchical relationship between expres-

sion of CUGexp RNA and loss of Mef2 activity using two indepen-

dent experimental systems (an inducible heart-specific DM1

mouse model and a DM1 cardiac cell culture model) and vali-

dated the results in DM1 heart tissue. CUGexp RNA leads to an

overall decrease in MEF2 expression and decreased expression

of MEF2 miRNAs and mRNA targets resulting in global reprog-

ramming of the cardiac transcriptome. Our results identify

several miRNA families that are deregulated in DM1 heart tis-

sues. This is predicted to have a cascade effect, as individual

miRNAs can target multiple mRNAs (Bartel, 2009) and therefore

modulate DM1 phenotype by regulating functionally related net-

works. For instance, miR-1 is known to regulate gap junction

proteins and cardiac channels, including Gja1, Cacna1c, and

Kcnd2, and a greater than 50% reduction in its expression

may directly contribute to the conduction defects seen in DM1

(Rau et al., 2011; Zhao et al., 2007). This is consistent with a pre-

vious report where genetic loss of one of the two miR-1 family

members resulted in a range of cardiac abnormalities, including

postnatal electrophysiological defects with a spectrum of car-

diac arrhythmias (Zhao et al., 2007).

Interstitial fibrosis is another important feature of DM1 heart

tissue (Nazarian et al., 2010). Our study identified dysregulation

of a network of four miRNA families that may be directly respon-

sible for this phenotype. CUGexp RNA expression leads to an

upregulation of miR-21 and downregulation of miR-29, miR-30,

and miR-133 family members. miR-21 is known to repress the

Sprouty homolog 1 (3-fold downregulated in our study), a nega-

tive regulator of ERK-MAP kinase signaling, thereby leading to

fibrosis (Thum et al., 2008). miR-29 represses expression of col-

lagens (van Rooij et al., 2008), many of which are upregulated in
ell Reports 6, 336–345, January 30, 2014 ª2014 The Authors 341
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Figure 5. Identification of Mef2-Regulated

miRNAs in Cardiac Cells

RNAi-based Mef2 knockdowns coupled with

chromatin immunoprecipitation (ChIP) assays

identify miRNAs directly regulated by Mef2.

(A) Knockdown efficiency of Mef2a and Mef2c

siRNAs in HL-1 cardiac cells was determined by

qRT-PCR in three independent experiments.

Reducedsteady-state levelsofMef2mRNA targets

Myocardin (Myocd), Myomesin (Myom1), and a-T-

catenin (Ctnna3) in response to Mef2A, Mef2C in-

dividual or double knockdowns (mean ± SD; n = 3).

(B) Reduced steady-state levels of pri-miRNAs in

Mef2 knockdowns. All data are plotted relative to

a luciferase control siRNA and expression is

normalized to Rpl30. *p < 0.05; ND, not detected.

(C) Reduced interaction of Mef2 with its primary

miRNA and mRNA gene targets in DM1 mice.

Quantification of genomic DNA in chromatin im-

munoprecipitates using Mef2 antibody in heart

tissue of MCM controls and DM1 mice. The

primers used for qRT-PCR assays span the Mef2

binding sites in target primary miRNAs or mRNAs.

Each bar represents mean ± SD of the fraction of

input detected in the Mef2 precipitates normalized

to IgG precipitates (n = 3).
our microarray study, and miR-30 and miR-133 repress expres-

sion of the connective tissue growth factor (Duisters et al., 2009),

a positive regulator of fibrosis (4.8-fold upregulated in our study).

Thus, the results from this study show tight reciprocal relation-

ships between gain and loss of these four miRNAs and their

target genes that support the critical role of this core network

in DM1 cardiac fibrosis.

One of the clear downstream implications of miRNA dysfunc-

tion in DM1 is that reduced miR-23a/b levels lead to increased

expression of its target, CELF1 protein. The miR-23a/b family

regulates posttranscriptional loss of Celf1 protein during mouse

postnatal heart development (Kalsotra et al., 2010). Reduced

levels of both miR-23a and miR-23b in DM1 heart tissue, there-

fore, is expected to result in an overall increase in CELF1 protein

levels, thus contributing to misregulation of CELF1 splicing tar-

gets. Together, these data indicate that dysregulation of specific

miRNAs are likely to contribute to specific cardiac phenotypes

observed in DM1.

MBNL1 and CELF1 are RNA binding proteins that are required

for alternative splicing regulation during normal skeletal muscle

and heart development (Kalsotra et al., 2008; Lin et al., 2006).

Disruption of their functions by CUGexp RNA results in missplic-

ing of their pre-mRNA targets such that adult tissues express

embryonic splice forms. It was recently described that reduced

expression of miR-1 in DM1 patients is due in part to mispro-

cessing of pre-miR-1 (Rau et al., 2011). It was proposed that

MBNL1 binding within the loop of pre-miR-1 disrupts LIN28

binding to this region and thereby promotes its processing by

dicer (Rau et al., 2011). Our data argue against this model, as

we show that (1) primary and mature miRNAs exhibit a parallel

decrease in expression in heart tissues from DM1 mouse model

and patient samples and (2) Mbnl1 knockout mice do not show a

significant change in miR-1 and many other miRNAs in heart.

Instead, we provide evidence that a select set of miRNAs in
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DM1, including miR-1, is downregulated due to a reduced

MEF2 transcriptional program.

The MEF2 paralogs are a conserved family of proteins that

bind to a consensus DNA sequence CTA(A/T)4TAG in the

promoter region of target genes (Molkentin and Olson, 1996).

Although MEF2 proteins are expressed in various tissues, the

expression of the Mef2 target genes in mouse is highest in skel-

etal muscle, heart, and brain (Potthoff and Olson, 2007). In addi-

tion to Gata4 and Tbx5, Mef2c is a key transcription factor

required for direct reprogramming of cardiac fibroblasts into

induced cardiomyocytes (Ieda et al., 2010; Qian et al., 2012).

This study identifies loss of Mef2 activity as causal to deregula-

tion of many miRNAs and mRNAs in a DM1 cardiac cell culture

model and heart tissue from DM1mouse model. Reduced levels

of Mef2a and Mef2c in response to transient expression of

repeats in cultured cardiac cells argues for a direct effect of

CUGexp RNA in reduction of Mef2 levels. The results we obtained

in DM1 heart tissue are in contrast to results from microarray

studies showing increased expression of MEF2A and MEF2C

in skeletal muscle from DM1 as well as other neuromuscular dis-

orders (Bachinski et al., 2010) and suggest different pathogenic

effects of CUGexp RNA in heart and skeletal muscle. In summary,

our data support a model in which nuclear accumulation of

CUGexp RNA in DM1 affects a MEF2-miRNA regulatory circuit

such that reduced MEF2 activity results in loss of expression

of its miRNA and mRNA targets in cardiac cells. The specific

mechanism by which CUGexp RNA affects mRNA and protein

levels of MEF2 paralogs remains to be determined.
EXPERIMENTAL PROCEDURES

Animal Models and Human Tissue Samples

The tamoxifen (Tam)-inducible and heart-specific EpA960;MCM DM1 mouse

model was described previously (Wang et al., 2007). CUGexp RNAwas induced
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Figure 6. Rescued Expression of Mef2

miRNA and mRNAs Targets in a Cardiac

Cell DM1 Model by Exogenous Mef2c

(A) Experimental schematic of Mef2c rescue in

CUGexp RNA-expressing cardiac cells.

(B) GFP expression was detected by indirect

fluorescence using anti-GFP. RNA foci containing

DT960 RNA were detected by fluorescence in situ

hybridization using Cy3-labeled probes. Nuclei

were counterstained with DAPI. GFP expression

or RNA foci formation was not detected in the

absence of dox. All images were taken at the same

exposure time. Scale bars, 20 mm.

(C) Induction of DT0 and DT960 containing DMPK

mRNA after dox treatment. Each bar represents

fold change in expression relative to the DT0

control without dox treatment. Positions of qRT-

PCR primers used to quantitate mRNA expression

are indicated with red arrows. Data are normalized

relative to Rpl30. *p < 0.05.

(D–F) Reduced (D) Mef2A and Mef2C, (E) Myocd

and Myom1, and (F) pri-miR-1-1, 1-2, 133a-1 and

133a-2 steady-state levels in response to CUGexp

RNA expression. Exogenous Mef2c restores

the mRNA and miRNA expression in CUGexp

RNA-expressing cells. Each bar represents fold

change in expression relative to DT0 control. a,

significantly different from DT0 (infected with

control virus); b, significantly different from DT960

(infected with control virus).
in 2- to 4-month-old EpA960;MCM bitransgenic animals with a single injection

or five consecutive daily intraperitoneal injections of 20 mg/kg Tam (Sigma-

Aldrich). Tet-inducible CELF1 bitransgenic mice (TRECUGBP1/Myh6-rtTA)

were previously described (Kalsotra et al., 2008). All experiments were con-

ducted in accordance with the National Institutes of Health Guide for the

Use and Care of Laboratory Animals and approved by the Institutional Animal

Care and Use Committee of Baylor College of Medicine. Human tissue or RNA

samples were provided by Drs. C. Thornton and T. Ashizawa, X. Wehrens,

National Disease Research Interchange, and the University of Miami Tissue

bank. DM1 samples were from a 50-year-old male (respiratory failure [RF]),

48-year-old female (1,500 repeats, RF), 55-year-old male (pneumonia [PN]),

52-year-old female (>1,000 repeats, RF), 46-year-old male (PN), 50-year-old

female (RF), 53-year-old male (unknown cause), 26-year-old male (glioma),

55-year-old male (pulmonary embolism). Normal heart samples ranged from

21- to 55-year-old pooled autopsy samples. Heart failure samples were from

a 44-year-old male, 18-year-old male, and 51-year-old female.

Quantitative miRNA Profiling

TaqMan stem-loop RT-PCRMicroRNA Arrays (Applied Biosystems) were used

to quantify mature miRNA expression. Briefly, 500 ng of total RNA from each

sample was reverse transcribed using Megaplex RT Primers and the TaqMan

miRNA reverse transcription kit. Quantitative real-time PCR reactions were per-

formed in triplicate in a384-well plateona7900HTReal-TimePCRSystemusing

ABI TaqManUniversal PCRMasterMix. An initial denaturation step of 10min at

95�C was followed by 40 cycles of 95�C for 15 s and 60�C for 1 min. Cycle

threshold (Ct) values were calculated using the SDS software v.2.3 using auto-

matic baseline settings and a threshold of 0.2. Only the miRNAs with a Ct% 35

were included in the analyses. The Ct value of an endogenous control gene

(MammU6) was subtracted from the corresponding Ct value for the target

gene resulting in the DCt value, which was used for relative quantification.

Fold change of miRNA expression was calculated by the equation 2�DDCt.

Microarrays

Total RNA was prepared using the RNeasy Kit (QIAGEN), and RNA quality was

tested with the Agilent Bioanalyzer 2100. Total RNA was amplified and labeled

using the Illumina Total Prep RNA Amplification Kit (catalog AMIL1791;
C

Ambion) and 500 ng of cRNA were applied to Illumina Mouse WG-6 v2

Whole-Genome Expression Beadchips. Following hybridization, washing

and detection, chips were scanned using the Illumina 500GX scanner at the

Genomics and Proteomics Core Laboratory at Texas Children’s hospital.

Expression values were quantile normalized. Genes were selected that

showed differential expression between 1 week and MCM (t test p < 0.01

and fold change > 1.5) or between 72 hr and MCM; expression values were

clustered as previously described (Creighton et al., 2008).

Protein and mRNA Expression Analysis

Normal (non-DM1) and DM1 human heart tissue lysates were prepared and

protein concentrations were determined by BCA assays (Pierce). A total of

50 mg of lysate from each sample was separated on 10% SDS-PAGE followed

by western blot. MEF2A (54 kDa; Cell Signaling Technology) CELF1 (50 kDa;

3B1), and GAPDH (36 kDa; Abcam) antibodies were used at 0.5-2 mg/mL

dilution as previously described (Kalsotra et al., 2008). Anti-mouse IgG horse-

radish peroxidase (HRP) (Invitrogen; 1:5,000) or anti-rabbit IgG-HRP (Calbio-

chem; 1:10,000) were used as a secondary antibodies. After appropriate

washing in PBST (0.1% Tween 20), immunoreactivity was detected by using

an HRP-chemiluminescence system (Pierce). Total RNA was prepared from

human heart samples using TRIzol. Steady-state mRNA expression was

measured by qRT-PCR as previously described (Kalsotra et al., 2008). All indi-

vidual pri-miRNA, miRNA, and mRNA qRT-PCR assays were performed using

predesigned TaqMan primers and probes (Applied Biosystems) according to

the manufacturer’s instructions.

Alternative Splicing Assays

Total RNA (0.3–0.5 mg) was used for RT-PCR as described elsewhere (Kalsotra

et al., 2010). Primer sequences for detecting alternative splicing ofMef2a (a and

bexons) andMef2c (gexon) are provided in Table S3. PSI values for the variable

region were calculated wirth Kodak Gel logic 2200 and Molecular Imaging

Software as [(inclusion band)/(inclusion band + exclusion band) 3 100].

Cell Culture and Transfections

HL-1 cells were cultured on gelatin (0.02%, w/v)/fibronectin (10 mg/ml) coated

plates and maintained in Claycomb medium (JRH Biosciences) as previously
ell Reports 6, 336–345, January 30, 2014 ª2014 The Authors 343



described (Kalsotra et al., 2010). TheHL-1 cells were infected in T25 flasks with

tet-inducible control or Mef2c expressing virus in presence of 5 mg/ml poly-

brene. After 48 hr of recovery, the cells were switched to 1 mg/ml doxycy-

cline-containing media for 12 hr. Next, the cells were transiently transfected

with pBi-tet DT0-GFP or pBi-tet DT960-GFP plasmids with Lipofectamine

2000 using the manufacturer’s instructions. Cells were harvested 36 hr later

in order to isolate total RNA or were fixed in 4% paraformaldehyde and per-

meabilized with 0.02% Triton X-100 in PBS. CUG transcripts were detected

using (CAG)5-Cy3-labeled LNA probes (Exiqon) as described previously

(Wang et al., 2007). Nuclei were stained with DAPI using Vectashield (Vector).

ChIP Assays

Mef2-ChIP was performed using the Imprint chromatin immunoprecipitation

kit (Sigma-Aldrich) according to the manufacturer’s instructions with minor

modifications. Three mouse hearts each from wild-type adults, MCM mice

given tamoxifen for 1 week, and DM1 mice induced to express CUG repeat

RNA for a week were collected in cold PBS, chopped into smaller pieces on

ice and then incubated in 1% formaldehyde in PBS for 10 min at room temper-

ature. Formaldehyde crosslinking was stopped by adding 10X glycine to a final

concentration of 1X and incubating at room temperature for 5 min. Tissue was

spun at 4�C at 220 g for 5 min and the remaining tissue pellet was rinsed twice

in ice-cold PBS. Tissues were harvested and lysed to isolate nuclei in a hypo-

tonic buffer, then re-suspended, lysed in lysis buffer, and sonicated in 15 ml

tubes with Bioruptor UCD-200 Diagenode (ultrasonic wave output power

250 W, 143 30 s) to yield chromatin size of 200–400 bp. ChIP was performed

two times with 2mg of anti-RNA Pol II rabbit polyclonal (Santa Cruz Biotech-

nology, sc-900) and anti-pan Mef2A and Mef2C goat polyclonal (Santa Cruz,

sc-313), anti-Mef2c specific rabbit polyclonal (Cell Signaling Technology,

5030) and 2mg of normal rabbit IgG (Santa Cruz, sc-2027) or goat IgG (Santa

Cruz, sc-2028) as isotype controls. Coprecipitated DNA was then analyzed

by qRT-PCR performed with SYBR green mix (Applied Biosystems). The

primers used are listed in Table S3.

Statistics

Data are presented as mean ± SD. Statistical significance was determined

with a two-tailed Student’s t test or one-way ANOVA followed by post hoc

Tukey’s multiple range tests. A p value of less than 0.05 was considered

significant.
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