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a b s t r a c t

Anti-angiogenic therapy has been recognized as a powerful potential strategy for impeding the growth of
various tumors. However no major therapeutic effects have been observed to date, mainly because of the
emergence of several resistance mechanisms. Among novel strategies to target tumor vasculature, some
oncolytic viruses open up new prospects. In this context, we addressed the question whether the rodent
parvovirus H-1PV can target endothelial cells. We show that cultures of human normal (HUVEC) and
immortalized (KS-IMM) endothelial cells sustain an abortive viral cycle upon infection with H-1PV and
are sensitive to H-1PV cytotoxicity. H-1PV significantly inhibits infected KS-IMM tumor growth. This
effect may be traced back by the virus ability to both kill proliferating endothelial cells and inhibit VEGF
production Recombinant H-1PV vectors can also transduce tumor cells with chemokines endowed with
anti-angiogenesis properties, and warrant further validation for the treatment of highly vascularized
tumors.

& 2013 Elsevier Inc. All rights reserved.

Introduction

In addition to genetic and epigenetic changes that occur during
the transformation of a normal cell into a cancer cell, the induction
of a tumor vasculature, termed “angiogenic switch” is required to
allow tumor propagation and progression (Bergers et al., 2003).
Indeed the generation of a tumor blood supply is necessary to
provide an adequate amount of oxygen, metabolites, get rid of waste
products from the tumor site and trigger metastasis. Induction of the
angiogenic switch relies on the tumor-induced change of the local
balance between positive (such as VEGF, FGFs) and negative reg-
ulators of angiogenesis (Ferrara and Alitalo 1999; Gerwins et al.,
2000; Chung et al., 2010). The dependency of tumors on blood
supply has led to the development of anti-angiogenic molecules and
the design of anti-angiogenic strategies for cancer treatment. More-
over, interference with the tumor blood supply appears as an
attractive therapeutic option since it may be effective against a wide
range of tumor types. Thus, targeting VEGF pathway with various
inhibitors has led to FDA approval of multiple drugs for the

treatment of advanced cancer. Such treatment conferred transient
clinical benefit, including overall survival (Ferrara, 2010). However,
inherent or acquired resistance eventually develops which can lead
to more invasive or metastatic potential (Ferrara 2010; Rubenstein
et al., 2000; Ebos and Kerbel, 2011). As a consequence, research
efforts have focused on search for new anti-angiogenic therapeutic
strategies, including oncolytic virus-based therapies (Breitbach et al.,
2013).

Some rodent parvoviruses, among them the rat H-1PV, con-
stitute promising candidates for oncolytic virotherapy of cancer.
Indeed, they present an intrinsic oncotropism and oncolytic
activity as well as an excellent safety profile (Nuesch et al., 2012;
Rommelaere et al., 2010). H-1PV belongs to the genus Parvovirus.
These autonomous parvoviruses are non-enveloped viruses which
consist of an icosahedral capsid containing a single-stranded DNA
of about 5000 nucleotides (Cotmore and Tattersall, 2007). The
parvoviral genome mainly consists of two overlapping transcrip-
tion units whose expression is under the control of two promoters.
The P4 promoter directs the expression of the non-structural
proteins (NS1 and NS2) and the P38 promoter drives the expres-
sion of the capsid proteins (VP1 and VP2) (Cotmore et al., 2007)
and of the non-structural SAT protein (Zadori et al., 2005). NS1
protein is a mainly nuclear, phosphorylated, multifunctional pro-
tein of about 83 kDa that is required for the replication of the viral
genome, transactivation of the P38 promoter and is the main
effector of parvoviral cytotoxicity (Li and Rhode, 1990; Caillet-
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Fauquet et al., 1990; Nuesch et al., 2008). The oncoselectivity of
PVs is usually not due to a better virus uptake by transformed cells
but to more efficient PV replication in these cells. In particular,
conversion of the viral single-stranded DNA genome into double-
stranded replication forms and transcription of these duplex forms
depends on factors that are deregulated during oncogenic trans-
formation (Cornelis et al., 1988). Moreover, the lack of preexisting
antiviral immunity in most humans plays in favor of the efficacy of
PV use in cancer treatment. Numerous data have been accumu-
lated, showing the tumor suppressive activity of parvoviruses
against various models of rodent and human cancers. PVs can be
either used in their natural form (Geletneky et al., 2010; Angelova
et al., 2009; Rommelaere et al., 2010) or armed to deliver toxic or
immunostimulatory transgenes (Enderlin et al., 2009; Wetzel
et al., 2007; Dempe et al., 2012; Haag et al., 2000; Giese et al.,
2002). Based on the promising in vitro and preclinical evidence of
anti-tumor properties, the rat parvovirus H-1PV is currently used
in a phase I/IIa clinical trial for treatment of patients with
glioblastoma multiforme (Geletneky et al., 2012). In addition to
its oncolytic activity, immunostimulating effects are likely to
participate in the suppression of tumors by PVs (McKisic et al.,
1998; Moehler et al., 2003, 2005; Sieben et al., 2012; Grekova et al.,
2012; Bhat et al., 2011).

The pathogenicity of rodent parvoviruses is restricted to pro-
liferating tissues and decreases from the fetus to the adult for
which the infection remains asymptomatic (Rommelaere and
Cornelis, 1991). Pathogenic features in persistently infected hosts
indicate that some rodent parvoviruses display a tropism for
endothelial and vascular smooth muscle cells (Siegl, 1984; Ball-
Goodrich et al., 1998; Jacoby et al., 1996; Cole et al., 1970; Margolis
and Kilham, 1970; Jacoby et al., 2000). This endotheliotropism
raises the possibility that, in addition to a direct anti-tumor
activity, parvoviruses may also target and exert toxicity on tumor
vasculature, provided that the vessels are actively growing (neo-
angiogenesis). The present study aimed to evaluate the anti-
angiogenic potential of (i) H-1PV on Kaposi sarcoma (KS-IMM)
cells, a human model for vascular tumors (Albini et al., 1997; Mesri
et al., 2010) and (ii) H-1PV-based recombinant viruses armed to
deliver two potent anti-angiogenic chemokines: IP-10/CXCL10 and
PF-4var/CXCL4L1.

The interferon gamma inducible protein-10 (IP-10) and platelet
factor-4 variant (PF-4var) belong to the CXC chemokine subfamily
that lack the sequence Glu-Leu-Arg (ELR motif) at their NH2-
terminus (ELR-negative chemokines). Most chemokines of this
subfamily constitute potent inhibitors of angiogenesis (Strieter
et al., 1995; Keeley et al., 2010). Thus, IP-10 has been shown to
suppress endothelial cell differentiation, migration and prolifera-
tion (Loetscher et al., 1996). Moreover it recruits activated T-cells
and NK cells via binding to the G protein-coupled CXCR3 receptor
(Loetscher et al., 1996; Taub et al., 1993). Anti-tumor effects of
IP-10 are still controversial. IP-10 and its receptor have been
reported to have dual actions on tumorigenesis, depending on
the model and method of delivery (Zipin-Roitman et al., 2007; Liu
et al., 2010, 2011; Narvaiza et al., 2000; Giese et al., 2002; Enderlin
et al., 2009; Dempe et al., 2012). Although the mechanism of IP-10-
mediated tumor suppression is not fully elucidated, both its anti-
angiogenic activity and immunomodulatory properties are required
(Angiolillo et al., 1995; Farber, 1997).

Platelet Factor-4 (CXCL4/PF-4) was the first chemokine shown to
inhibit angiogenesis. CXCL4L1/PF-4var was isolated from thrombin-
stimulated platelets and differs from PF-4 in three carboxy-terminal
amino acids (Green et al., 1989; Eisman et al., 1990; Struyf et al.,
2004). PF-4var was found to be a more potent angiostatic and anti-
tumoral chemokine compared to PF-4 in various in vitro and in vivo
assays (Vandercappellen et al., 2011; Struyf et al., 2007). Moreover
PF-4var presents chemoattractive activity towards activated T-cells,

human NK cells and human immature dendritic cells (Struyf et al.,
2011). Both CXCR3 receptor and glycosaminoglycans are involved in
the activities of PF-4var (Struyf et al., 2011). PF-4var antitumoral
activity was predominantly mediated through inhibition of angio-
genesis and induction of apoptosis (Vandercappellen et al., 2011).

In this manuscript, we show that proliferating normal HUVEC and
immortalized Kaposi sarcoma-derived, KS-IMM human endothelial
cells are sensitive to H-1PV toxicity in vitro. However, relatively high
virus doses have to be used, due to the fact that the cells undergo an
abortive infection which does not lead to progeny virus production
and spread. Interestingly, H-1PV infection of highly angiogenic
KS-IMM cells significantly reduces their tumor-forming ability after
s.c. implantation into recipient mice, thus demonstrating the poten-
tial of H-1PV for treatment of vascular tumors. Notably, infection
with H-1PV-based vectors inhibits the expression of the key angio-
genesis factor, VEGF, in endothelial cells, irrespective of their arming
with chemokine transgenes. Finally, we show that active anti-
angiogenic chemokines are produced upon transduction of KS-IMM
cells with H-1PV-based recombinant vectors. Altogether these data
warrant further validation of chemokine-delivering H-1PV for tumor
neo-angiogenesis suppression.

Results

Primary and immortalized endothelial cells are sensitive
to H-1PV cytotoxicity in vitro

To determine the capacity of H-1PV to infect human endothe-
lial cells, normal primary (HUVEC) and immortalized (KS-IMM)
endothelial cells were infected with H-1PV at increasing multi-
plicities of infection (MOI). The viability of the endothelial cells
was determined by MTT assay at day 1, 2, and 3 post-infection
(p.i.), and compared to the survival of the highly H-1PV-permissive
human embryonic kidney NB-324K cells (Fig. 1a–c). Both HUVEC
and KS-IMM cells were found to be sensitive to H-1PV infection in
a dose-dependent manner, yet to various degrees. Indeed, at the
highest MOI tested (30 RU/cell), the viability of KS-IMM cells
dropped to less than 5%, whereas the survival HUVEC cells was
around 20% at day 3 p.i. In contrast, the viability of H-1PV-infected
HUVEC cells was reproducibly lower than that of KS-IMM cells at
lower MOIs. Compared with HUVEC and KS-IMM cells, control
NB-324K cells showed a greater drop in survival over post-
infection time, with close to 95% of dead cells at day 3 following
infection at a multiplicity as low as 0.3 RU/cell (Fig. 1c). This high
sensitivity of NB-324K cells can be ascribed to their full permis-
siveness for H-1PV production and propagation (Dempe et al.,
2012). At day 3 post-infection, cell lysis was evaluated by the
release of lactate dehydrogenase (LDH) in the cell culture medium
(Fig. 1d). The levels of LDH in the cell culture medium increased
with the virus dose tested: up to 50% (HUVEC cells) and 80%
(KS-IMM and NB-324K cells) of total LDH, after infection at a MOI
of 30 RU/cell. This indicates that the decrease in cell viability is
likely due to the induction of cell lysis upon H-1PV infection rather
than a cytostatic effect on the cell growth.

H-1PV infection leads to an abortive viral cycle in endothelial cells

The susceptibility of HUVEC and KS-IMM cells to H-1PV
infection prompted us to investigate whether these cells were
able to propagate the virus. To this end, cells were infected at a
MOI of 0.5 PFU/cell and the production of progeny viruses was
monitored over 6 days p.i. As shown on Fig. 2a, whereas NB-324K
cells sustained a 2000-fold amplification of the virus inoculum at
day 2 p.i., KS-IMM and HUVEC cells produced only marginal levels
of progeny viruses (about 10-fold increase compared to the virus
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inoculum). This indicates that these human endothelial cells,
though susceptible to H-1PV infection and toxicity, are poorly
competent with respect to their ability to produce progeny viruses.
In order to identify which step(s) of the viral cycle is impaired in
KS-IMM and HUVEC cells, the expression of the viral proteins was
analysed by Western blotting. As seen in Fig. 2b, high levels of NS1
accumulated in both KS IMM and HUVEC cells in infected cells
from day 1 to 3 post-infection, (MOI¼3 RU/cell), and decreased at
later times. A similar NS1 production was sustained by NB-324K
cells but dropped at an earlier time between day 2 and day 3 p.i.
NS1 is considered as the major mediator of parvovirus-induced
cytotoxicity (Caillet-Fauquet et al., 1990; Momoeda et al., 1994;
Brandenburger et al., 1990; Li and Rhode, 1990). The expression of
this protein in endothelial cells is thus consistent with the
observed killing effect of the virus on these cells (Fig. 1a–d), while
the faster fading of the NS1 signal in NB-324K vs endothelial cells
can be traced back to the above-mentioned killing of the former
cells for an extended time (Fig. 1c). The accumulation of the small
NS2p protein was slightly, yet reproducibly, lower in HUVEC cells
compared with the two other cells. Striking differences in the
accumulation of the capsid (VP1 and VP2) proteins were observed
between endothelial and NB-324K cells. High steady-state levels of
capsid proteins were detected in NB-324K cells throughout the
time period studied, in agreement with the production of progeny
virions in these cells. In contrast, KS-IMM and HUVEC cells failed
to accumulate VP proteins over time p.i., suggesting that the
synthesis and/or stability of VPs was impaired in these cells. Since
only trace amounts of NS1 are sufficient to efficiently transactivate
the viral P38 promoter programming the capsid-encoding genes
(Lorson et al., 1996), we hypothesize that a post-transcriptional
event is likely to be responsible for the low steady-state levels of
VPs in endothelial cells, in particular VP instability. In support of

this, it has been reported that in murine cells, the reduction in VP
accumulation is not due to reduced viral protein synthesis but
rather to impaired capsid assembly, which render capsid proteins
unstable and, hence, susceptible to degradation (Cotmore et al.,
1997). In order to determine whether earlier steps of the parvo-
viral cycle are impaired in endothelial cells, we investigated viral
DNA replication in infected KS-IMM and HUVEC cells. For this
purpose, viral DNAwas extracted at two time points post-infection
(18 and 42 h) and analysed by Southern blotting using a NS1-
specific DNA probe. As shown in Fig. 2c, NB-324K cells sustained
the time-dependent accumulation of both monomeric (mRF) and
dimeric (dRF) DNA replicative forms, as well as the packaging-
coupled displacement of single-stranded (ss) genomes. In contrast,
only mRF forms could be detected in KS-IMM and HUVEC cells,
which sustained very limited DNA amplification. Altogether, these
data indicate that the abortive nature of endothelial cell infection
with parvoviruses can be traced back to the impairment of several
steps of the viral life-cycle, limiting the accumulation of both DNA
replication intermediates and capsid proteins.

H-1PV infection inhibits the growth of KS-IMM tumors in vivo

Although KS-IMM and HUVEC cells are not fully permissive to
H-1PV infection, i.e. fail to produce and propagate the virus, our
results show that these cells are sensitive to H-1PV toxicity when
high enough doses of virus are used. This sensitivity indicates that
some endothelial cells may constitute targets for parvovirus infec-
tion and toxicity, provided that they are proliferating, and suggests
that the endotheliotropism of H-1PV might contribute to the tumor-
suppressive activity of this virus through the inhibition of tumor
neo-angiogenesis. This prompted us to investigate the anti-tumor
potential of H-1PV against KS-IMM xenografts. To this end, 3�106

Fig. 1. Cytotoxic effects exerted by H-1PV on normal endothelial (HUVEC) and immortalized Kaposi sarcoma (KS-IMM) cells. HUVEC (a), KS-IMM (b) and control virus-
producer NB-324K (c) cells were infected with wild-type (wt) H-1PV at different multiplicities of infection (MOI): mock (buffer)-treated (CTRL), 0.3, 3 and 30 RU/cell. The cell
viability of virus-infected and mock-treated cells was determined by MTT assay at days 1–3 post-infection. Values are expressed relative to mock-treated controls virus lytic
activity was measured through quantification of the cytoplasmic release of LDH into the culture medium at day 3 post-infection. Values are expressed as a percentage of total
LDH present in the infected or mock-treated (CTRL) cultures (d). Means 7SD from three independent experiments carried out in triplicate. npo0.05 in Wilcoxon signed rank
test (cell viability) or Mann–Whitney test (cell lysis). (a) HUVEC, (B) KS Imm, (c) NB-324K and (d) Cell Iysis.
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KS-IMM cells were infected with H-1PV (MOI of 12 RU/cell)
and subcutaneously implanted into nude Balb/c recipient mice.
A control group was inoculated with mock (buffer)-treated cells.
Tumors became palpable in controls 12–14 days after cell inoculation,
and tumor volumes were measured three times a week over a 55-
day period. As shown on Fig. 3a, all the mice developed fast growing
tumors, irrespective of whether they were H-1PV-treated or not.
However a significant delay in tumor development was observed in
the group of animals that received H-1PV-infected KS-IMM cells

compared with the group receiving mock-treated cells. This was
most apparent the lower percentage of mice bearing tumors larger
than 350 mm3 at day 20 post inoculation in the group of animals that
were engrafted with virus-treated cells, compared with the control
group (Fig. 3a). As a consequence, a significant increase in the
survival time of the animals belonging to the H-1PV-treated group
was observed (Fig. 3b). Altogether, our results show that H-1PV can
target and inhibit the growth of endothelial tumors. However this
effect is transient, and high doses of H-1PV are required to inhibit the

Fig. 3. H-1PV-induced inhibition of human KS-like tumor development. 3�106 KS-IMM cells were mock (buffer)-treated or infected with H-1PV at a MOI of 12 RU/cell. The
cells were mixed with Matrigel and subcutaneously implanted into the right flank of Balb/c nude mice (n¼13: mock-treated, n¼7: H-1PV-infected). Tumor development was
monitored over time. The percentage of mice bearing a tumor larger than 350 mm3 (a) and mouse survival (b) are plotted as a function of time post-implantation. The results
represent one experiment out of two.

Fig. 2. Abortive infection of endothelial cells by H-1PV. (a) Production of progeny virus after infection of endothelial cells. 5�105 KS-IMM, HUVEC and NB-324K cells were
infected with H-1PV (MOI of 0.5 PFU/cell). The amounts of infectious particles (intra- and extracellular; total PFU) recovered at the indicated times post-infection were
determined by plaque assays. (b) Viral non-structural (NS1, NS2) and capsid (VP1, VP2/VP3) protein accumulation in H-1PV-infected endothelial cells. KS-IMM, HUVEC and
control NB-324K cells were mock-treated (m) or infected with H-1PV (MOI of 3 RU/cell) and incubated for the indicated days post-infection (dpi). Cell extracts were then
processed for Western blotting using primary antibodies specific for NS1, NS2p and VP proteins and horseradish peroxidase-conjugated secondary antibodies. 14-3-3
proteins were used as the loading control. (c) Viral DNA replication in H-1PV-infected endothelial cells. Cells were infected with H-1PV at a MOI of 3 PFU/cell. At 18 h and
42 h post infection, viral DNA replicative forms purified from cell lysates were separated by agarose gel electrophoresis and subjected to Southern blotting. Viral replicative
intermediates were revealed using a NS1-specific 32-P labelled DNA probe. m: mock-treated, mRF: monomeric replicative form, dRF: dimeric replicative form. ss: single
stranded viral DNA was used as size marker.
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growth of KS Imm tumor cells in vitro and in vivo. We have previously
shown that the oncosuppressive capacity of H-1PV in different tumor
models could be enhanced by arming this parvovirus with immu-
nostimulatory transgenes (Haag et al., 2000; Dempe et al., 2012). This
led us to investigate the anti-angiogenic potential of parvovirus H-
1PV vectors armed with angiostatic chemokines, hypothesizing that
expression of these molecules might improve the efficacy of H-1PV
in the treatment of highly vascularized tumors such as KS-IMM
tumors.

The kinetics and levels of H-1PV-mediated transduction of angiostatic
PF-4var/CXCL4L1 and IP-10/CXCL10 in endothelial cells are cell-type
and chemokine-dependent

Recombinant vectors (Chi-H1, Dempe et al., 2012) armed with
angiostatic chemokines IP-10/CXCL10 or PF-4var/CXCL4L1
(Chi-H1/IP-10 and Chi-H1/PF-4var, respectively) were produced
and examined for their transduction capacity. In a first step, KS-
IMM and HUVEC cells were infected with the recombinant viruses
at a MOI of 3 RU/cell, and chemokines secreted in the culture
media were measured at various days post-infection using specific
ELISAs. Infected KS-IMM cells secreted IP-10 and PF-4var with a
peak of daily production at day 2 p.i, while the highest chemokine
production took place earlier (day 1 p.i.) in HUVEC cells (Fig. 4).
In both cell types accumulated levels of the chemokines reached a
plateau from day 3 p.i. on. Similar maximal cumulative levels of
PF-4v (40–50 ng/ml) were measured in the supernatants from
both KS-IMM and HUVEC cells. Surprisingly cumulative IP-10
concentrations were reproducibly (n¼3) 5-fold higher in the
supernatants of transduced KS-IMM cell cultures (300 ng/ml)
compared with those of HUVEC cultures (60 ng/ml). Moreover
the accumulated levels of IP-10 on day 3 p.i. exceeded the sum of
daily productions on days 1–3. Since no IP-10 induction was
observed after infection of KS-IMM cells with the control (empty)
vector, above-accumulation IP-10 values are most likely due to an
autocrine stimulation of IP-10 production in Chi-H1/IP-10-infected
KS-IMM cells. The concentrations of PF-4var and IP-10 in KS-IMM
supernatants are in the range needed for their activity in vitro
(Struyf et al., 2011; Bodnar et al., 2006).

Virus-transduced IP-10 and PF-4var inhibit KS-IMM endothelial cell
proliferation and angiogenesis in vitro

We next analysed the biological activity of the chemokines
produced upon transduction of KS-IMM cells. The supernatants of
KS-IMM cultures infected with Chi-H1/IP-10 or Chi-H1/PF-4var
vectors (MOI¼3 or 12 RU/cell) were harvested at day 3 post-
infection, and chemokine concentrations were determined by
ELISA (Fig. 5a). A 2-fold increase in chemokine concentrations
was observed when a 4-fold higher dose of virus was applied to
the cells. The chemokine levels in the supernatants of empty
vector (Chi-H1/Δ800) or non-infected cells were below the
detection limit (r2 ng/ml). Conditioned medium (CM) was har-
vested from infected cell cultures (Fig. 5a). Untreated (naïve) KS-
IMM cells were then incubated for 72 h in the presence of CM and
cell viability was assessed by MTT assays (Fig. 5b). No significant
difference in cell viability was observed when KS-IMM cells were
incubated with CM from cells infected with Chi-H1/Δ800, Chi-H1/
IP-10 or Chi-H1/PF-4var at a MOI of 3 RU/cell (Fig. 5b, left part).
Only a slight decrease in the number of viable cells (90% of the
mock-treated control) was detected after incubation with CM from
cells infected with Chi-H1/Δ800 at a MOI of 12 RU/cell. In contrast,
the number of viable cells dropped after incubation with CM from
cells infected at this MOI with Chi-H1/IP10 (50%) and Chi-H1/PF-
4var (70%) (Fig. 5b, right part). This loss of viable cells was unlikely
to result from cell destruction, since the lytic activity of both
chemokine-armed vectors was similar to that of Chi-H1/Δ800 in
infected donor KS-IMM cultures, as measured by LDH assays (data
not shown). This suggests that the decrease in viable cell numbers
in KS-IMM cultures exposed to chemokine-containing CM (Fig. 5b)
is due to an inhibitory effect of virally-transduced IP-10 and PF-
4var on the proliferation of endothelial cells, rather than their
integrity. This conclusion is in agreement with the known proper-
ties of these angiostatic chemokines on the proliferation of
endothelial cells in vitro (Strieter et al., 2005; Dubrac et al.,
2010). Since IP-10 and PF-4var are known to signal via the G
protein-coupled receptor CXCR3 (Struyf et al., 2011), we analysed
the expression of CXCR3 in KS-IMM cells by RT-PCR, using
total RNA extracts from mock-treated and virus-infected cells.

Fig. 4. Daily and cumulative secretion of the chemokines PF-4var and IP-10 after transduction of endothelial cells with recombinant H-1PV-based vectors. 5�105 KS-IMM
and HUVEC cells were infected with IP-10 or PF-4var-transducing Chi-H1/based vectors at a MOI of 3 RU/cell. Cell supernatants were analysed at indicated days post-
infection for their chemokine concentrations using specific ELISAs. Values are means 7SD of three measurements from a representative infection (out of three).
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The levels of viral (NS) and cellular (GAPDH) transcripts were also
determined as internal controls for virus infection and total RNA
matching, respectively. As shown on Fig. 5c, a specific amplification
product corresponding to CXCR3 mRNA was obtained from mock
and infected cells. The specificity of the reaction was confirmed by
the presence of NS transcripts in vector-infected but not mock-
treated cells (Fig. 5c). No amplification product was obtained when
reverse transcriptase was omitted from the reaction (Fig. 5c, RTctrl)
indicating the absence of contaminating genomic DNA. The steady-
state level of CXCR3 transcripts was not modified by vector
infection.

We next investigated the anti-angiogenic potential of the trans-
duced chemokines using an in vitro assay. Untreated KS-IMM cells
were seeded on matrigel-coated dishes and incubated with the CM
collected from donor KS-IMM cultures infected (MOI¼12 RU/cell)
with the different parvoviral vectors, as described for Fig. 5. The
results were normalized to CM from KS-IMM cells infected with the
empty vector, in order to take the toxic effects of the vector into
account. KS-IMM cells formed a network of tube-like structures
within 12–18 h (Fig. 6a). A significant inhibition of tube formation
was observed when the cells were incubated with CM containing
IP-10 or PF-4var, as compared to the control CM (Fig. 6a). Although
the concentration of PF-4var was about 4-times lower than that of
IP-10 (90 ng/ml and 400 ng/ml, respectively), the inhibitory effects
of PF-4var-containing CM on network formation were stronger in
comparison with IP-10 (40% versus 20% inhibition, Fig. 6b). These
results are consistent with previous reports showing that, under
in vitro conditions, PF-4var inhibits angiogenesis at lower concen-
trations than IP-10 (Struyf et al., 2007; Vandercappellen et al., 2011;
Bodnar et al., 2006). As mentioned above, incubation of KS-IMM
cultures with chemokine-containing CM for 3 days resulted in a

reduction of the number of viable cells compared with control
(empty vector treatment) CM (Fig. 5b). In order to determine
whether the inhibitory effects of chemokine-containing CMs on
in vitro angiogenesis was due to reduced growth of the viable cell
population, the size of this population was determined by MTT
assay after the 12–18 h incubation used in the angiogenesis assay.
No significant difference in the relative number of viable cells was
observed between cultures exposed for this short period of time to
CM from vector, compared with mock-treated cells (Fig. 6c). Taken
together, our data show that the CMs of Chi-H1/PF-4var and Chi-H1/
IP-10-infected KS-IMM cells contain biologically active chemokines
which exert both a rapid suppression of the angiogenic phenotype
of endothelial cells and an inhibition of the proliferation of these
cells later on.

Infection with parvoviral vectors reduces the expression of VEGF-A
in KS-IMM cells

Kaposi's sarcoma cells are known to produce VEGF-A which
constitutes a key angiogenic stimulator and a critical mitogen in
the development of the tumor (Masood et al., 1997; Sodhi et al.,
2000). Hence, this growth factor is a good candidate target for
anti-angiogenesis-based tumor therapy (Ellis and Hicklin, 2008).
This prompted us to test whether chemokine-armed parvoviral
vectors may modify the expression of VEGF-A in KS-IMM cells,
besides exerting above-mentioned toxic, cytostatic and anti-
angiogenic effects. To this end, KS-IMM cells were infected at
different MOIs with empty and recombinant parvoviral vectors,
and total RNA was extracted at day 2 post-infection. After reverse-
transcription, VEGF-A cDNAs were quantified by real time PCR, and
their abundance in vector-treated cells was expressed relative to

Fig. 5. Anti-proliferative effects of the conditioned media from Chi-H1/IP-10 and Chi-H1/PF-4var-infected KS-IMM cells. (a) Recombinant vector dose-dependency of the
chemokine levels secreted by KS IMM cells. 4.5�104 KS IMM cells were infected with Chi-H1/IP-10 or Chi-H1/PF-4var at MOI of 3 and 12 RU/cell. At day 3 post-infection, the
supernatants were harvested and the levels of IP-10 and PF-4var determined by specific ELISAs. Values represent means 7SD from three independent experiments carried
out in triplicate. nnpo0,01, npo0,05 in the Mann–Whitney test. (b) Viability of KS-IMM cells incubated with chemokine-transduced conditioned media (CM). KS-IMM cells
were infected with Chi-H1/Δ800, Chi-H1/IP-10 or Chi-H1/PF-4var at a MOI of 3 and 12 RU/cell or mock-treated. At day 3 post-infection, the cell supernatants (CM) were
harvested and transferred to untreated KS-IMM cells. After 72 h incubation, the cell viability was determined by MTT assay. The values are expressed as percentages of the
value obtained for mock-treated cultures. Values are means 7SD from three independent experiments each carried out in triplicate. nnp¼0,001, np¼0,005 in the Mann–
Whitney test. (c) Expression of CXCR3 receptor in KS-IMM cells. 5�105 KS-IMM cells were mock-treated (M) or infected with the viral vectors: Chi-H1/Δ800, Chi-H1/IP-10 or
Chi-H1/PF-4var (MOI of 3 RU/cell). At day 3 post-infection, total RNA was extracted from the cells and reverse-transcribed. cDNAs were amplified by PCR using primers
specific for CXCR3-, viral NS1- or GAPDH-transcripts, and visualized on 1% ethidium bromide-stained agarose gels. RTctrl: control reactions in the absence of reverse
transcriptase.
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non-infected cells. As depicted in Fig. 7, a vector dose-dependent
specific decrease of the VEGF-A transcripts was observed in all
infected cells, compared to the control, independently of vector
arming with a transgene. At the MOI of 3 RU/cell, a 40% decrease of
VEGF-A cDNA levels was observed compared to the uninfected
control, which could be further enhanced to 50–60% by increasing
the MOI to 12 or 24 RU/cell. The amounts of VEGF-A transcripts
were normalized to those of 18S ribosomal RNA. The decrease of
the levels of VEGF-A transcripts is unlikely to be due to cell killing
upon viral infection. Indeed, transcription levels were not mod-
ified for the housekeeping gene GAPDH (data not shown), arguing
for the specificity of VEGF-A expression inhibition upon parvovirus
(vector) infection.

Discussion

Anti-angiogenic therapy has been recognized as a powerful
potential strategy for impeding the growth of various tumors.
However, despite the development of inhibitors of angiogenic
signalling, in particular VEGF signalling, to control tumor neovas-
cularization and growth, no major therapeutic effects have been
observed to date. This is mainly because of the emergence of
several resistance mechanisms that contribute to develop alter-
native angiogenic pathways or even to enhance tumor invasive-
ness, thereby circumventing anti-angiogenic therapy (Soda et al.,
2013; Ebos and Kerbel, 2011; Giuliano and Pages, 2013). Thus,
there is an urgent need to develop new approaches to overcome
these limitations. Among alternative strategies to target tumor
vasculature, some oncolytic viruses open up new prospects, as
they selectively infect and destroy tumor vasculature while normal
vasculature remains intact (Breitbach et al., 2011, 2013). Over the
past years, experimental data have been accumulated on the
potential of oncolytic parvoviruses for cancer therapy, leading to
a phase I/IIa clinical trial of the rat parvovirus H-1PV in patients
with recurrent glioblastoma multiforme (Rommelaere et al., 2010;
Geletneky et al., 2012). The rodent parvoviruses are rarely patho-
genic to host animals, and if so this effect is mainly restricted to
fetuses and neonates (Jacoby et al., 1996). Typical features that
parvoviruses may induce in neonates include leukopenia and

hemorrhages of several tissues, suggesting that lymphocytes and
vascular endothelium are among the main cellular targets of
parvovirus infection (Jacoby et al., 1996). In this context, we
specifically addressed the question whether the rodent parvovirus
H-1PV can target endothelial cells in vitro and, if so, to which
extent this property may contribute to its antitumor activity.

In this study we show that cultures of human normal (HUVEC)
and immortalized (KS-IMM) endothelial cells sustain an abortive
viral cycle upon infection with H-1PV and are sensitive to H-1PV
cytotoxicity. In a xenograft KS model in mice, H-1PV infection of
KS-IMM cells did not prevent tumor appearance but significantly
inhibited tumor growth, resulting in a marked extension of animal
survival. Although this effect can most likely be assigned to the
oncotoxicity of the virus, other factors may contribute to H-1PV-
mediated inhibition of KS-IMM tumor growth. In support of this
possibility, parvovirus (vector) infection was found to specifically
inhibit the expression of the key angiogenic molecule VEGF-A.
VEGF-A is produced by KS-IMM cells and has been shown to

Fig. 7. Inhibition of VEGF-A expression in KS-IMM cells after parvoviral infection.
5�105 KS-IMM cells were infected with indicated viral vectors at increasing MOI,
or mock-treated (control). At day 2 post-infection, total RNA was extracted from the
cells and reverse transcribed. cDNAs were subjected to real time PCR using primers
and probes specific for VEGF-A transcripts or 18S ribosomal RNA. VEGF-A mRNA
relative abundances were determined using the ddCt method. dCt values were
calculated using 18S ribosomal RNA as a reference sample, and then ddCt values
were calculated relative to the control (non infected cells). Values are means from
three independent experiments. nnpo0,01; npo0,05 in the Mann–Whitney test.

Fig. 6. Anti-angiogenic effects of CM from Chi-H1/PF-4var and Chi-H1/IP-10-infected KS-IMM cells. KS-IMM cells were seeded on Matrigel-coated dishes and incubated with
the supernatants (CM) of Chi-H1/IP-10, Chi-H1/PF-4var or Chi-H1/Δ800-infected (MOI 12 RU/cell) KS-IMM cells. After 12–18 h incubation, the formation of a network of
tube-like structures was examined. (a) Images were recorded at 4� magnification. (b) Quantification of angiogenesis was performed by counting the number of tube-like
structures obtained in the different conditions. The results are expressed as percentages of the control (CM from Chi-H1/Δ800-infected cells) and are the means7SD from
four independent experiments. np¼0,029 in the Mann–Whitney Test. (c) The cell viability of KS-IMM cells after incubation with the different conditioned media was
determined by MTT assay and is expressed as percentage of the control (Chi-H1/Δ800-infected cells).
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promote their growth in vitro and in vivo (Cornali et al., 1996;
Masood et al., 1997). Members of the VEGF/VEGF receptor (VEGFR)
family play critical roles in promoting tumor angiogenesis and
constitute the main targets of anti-angiogenic therapies that have
been developed so far (Kowanetz and Ferrara, 2006; Ebos and
Kerbel, 2011). Recent reports show that oncolytic virus treatment
results in tumor blood vessel coagulation and vasculature disrup-
tion (Breitbach et al., 2011, 2013) and may decrease the incidence
of therapeutic resistance (Kirn and Thorne, 2009). It has been
suggested that VEGF/VEGFR1/2 intracellular signalling may facil-
itate oncolytic virus infection/replication in tumor-associated
endothelium (Kottke et al., 2010). Whether this also applies to
H-1PV infection of KS-IMM tumors remains to be determined. The
molecular mechanisms leading to the down-regulation of VEGF-A
expression upon H-1PV infection need to be further investigated.
The expression of VEGF-A is controlled by complex mechanisms.
Indeed it is potently stimulated by growth factors, cellular stresses,
oncogenes and a variety of cytokines (Hoeben et al., 2004; Pages
and Pouyssegur, 2005). Notably, treatment of neuroendocrine
tumor patients with interferon-alpha down-regulates the expres-
sion of VEGF and tumor angiogenesis (Rosewicz et al., 2004).
Therefore the possible involvement of this pathway in H-1PV-
induced inhibition of VEGF-A expression is certainly worth testing.
Altogether, our data show that parvoviruses combine anti-
angiogenic and oncolytic properties, making them promising tools
to treat vascular and highly angiogenic tumours. Recombinant
vectors based on parvoviruses H-1PV and MVMp have been
designed to deliver immunostimulatory transgenes, and were
shown to have an enhanced tumor-suppressor activity compared
to the parental virus in some cancer models (Enderlin et al., 2009;
Haag et al., 2000; Wetzel et al., 2007; Dempe et al., 2012). This
prompted us to evaluate the impact of PV-mediated delivery of
two angiostatic chemokines on KS-IMM cell viability, growth and
angiogenic phenotype in vitro. Interestingly, the anti-angiogenic
activity of H-1PV vectors expressing PF-4var or IP-10 revealed at
least two components, one of which required direct KS-IMM cell
infection with the vector, whereas the other was mediated by
conditioned media from (vector)-infected cells. The former direct
effect resulted from the lytic activity of the virus (vector) on
endothelial cells, irrespective of transgene-arming. The latter
indirect effect was mediated by transduced chemokines and
consisted of the reduction of endothelial cell growth and the
inhibition of their angiogenic (tube-forming) phenotype. Several
mechanisms have been reported to contribute to the angiostatic
activity of PF-4/CXCL4 (Vandercappellen et al., 2011 and references
therein). In particular PF-4 competes for FGF-2 or VEGF binding
(Jouan et al., 1999), interacts with VEGF, and disrupts VEGF
receptor signaling (Gengrinovitch et al., 1995). As stated above,
the stimulation of endothelial cell-specific growth factor signaling
pathways at the tumor site may provide a favourable milieu to
initiate replication of oncolytic viruses (Breitbach et al., 2013;
Kottke et al., 2010). If this also applies to parvovirus H-1PV, one
may speculate that, at a later stage, the direct toxic activity of PF-
4var/IP-10-transducing parvoviral vectors acts overridden by the
concurrent anti-angiogenic effects of the chemokines in tumor-
associated endothelial cells. The activity of IP-10 and PF-4var is
mediated via a common receptor, CXCR3 (Struyf et al., 2011;
Loetscher et al., 1996). The influence of CXCR3 signaling on tumour
progression is controversial, both promoting and inhibiting effects
have been reported (Struyf et al., 2007; Vandercappellen et al.,
2011; Kawada et al., 2007; Liu et al., 2010, 2011; Wu et al., 2012;
Sato et al., 2007). Besides inhibiting angiogenesis, CXCR3 ligands
recruit CXCR3-expressing T and NK cells (Keeley et al., 2011 and
references therein). CXCR3 exists in three isoforms, CXCR3A,
CXCR3B and CXCR3-alt which are generated through alternative
splicing (Ehlert et al., 2004). CXCR3A is involved in the recruitment

of activated T and NK cells (Mueller et al., 2008), while CXCR3B is
believed to mediate the angiostatic activity of PF-4/PF-4var, IP-10,
Mig/CXCL9 and I-TAC/CXCL11 on endothelial cells (Lasagni et al.,
2003; Struyf et al., 2011). In this paper we show that, as expected,
CXCR3 is expressed on KS-IMM cells, and that expression of this
receptor is not modified by parvovirus infection. Whether treat-
ment of KS-IMM tumors with recombinant parvoviruses expres-
sing IP-10 and PF-4var may improve the anti-cancer activity of
wild-type H-1PV in recipient mice remains to be determined.
Previous studies from our laboratory using two syngeneic tumor
models of vascularized tumors, (hemangiosarcoma and gliob-
lastoma), have shown that parvovirus MVMp vector-mediated
expression of IP-10, either alone (Giese et al., 2002) or in
combination with TNF-α (Enderlin et al., 2009), significantly
increased the survival of recipient mice. However no evidence of
a significant inhibition of tumor vascularization could be shown in
these models, and chemokine-mediated immunostimulation was
most likely responsible for the therapeutic efficacy of IP-10-
expressing MVMp.

In conclusion, our data argue for the ability of H-1PV to inhibit
tumor angiogenesis, by showing that at least under in vitro condi-
tions the virus can directly kill infected endothelial cells, and also act
in an indirect way by inhibiting the expression of the key angiogenic
factor VEGF. This possibility cannot be tested readily using a tumor
model in mice, since mouse cells (including endothelial ones) are
restricted in their permissiveness to the rat parvovirus H-1PV due to
blocking of the virus cycle at an early step of infection (Wrzesinski
et al., 2003). This resistance of the mouse vasculature to H-1PV
infection may limit the efficiency of H-1PV against KS-IMM tumor
xenografts into mice. However, the intrinsic endothelial nature of
the KS tumor allowed to demonstrate the anti-angiogenic effects of
the virus under conditions in which target cells are proliferating
in vivo. Furthermore, our data indicate that H-1PV can be used as a
vector to transduce tumor cells with functionally active chemokines
endowed with anti-angiogenesis properties. Taken together, this
evidence warrants the further validation of H-1PV for the treatment
of highly vascularized tumors.

Material and methods

Cells and reagents

The simian virus 40 (SV40)-transformed human newborn kidney
cells NB-324K (Tattersall and Bratton, 1983) were propagated in
Eagle's minimal essential medium (MEM, Sigma-Aldrich, Taufkirchen,
Germany) supplemented with 5% fetal bovine serum (FBS, PAA
Laboratories, Pasching, Austria), 2 mM L-glutamine (Gibco/Invitrogen,
Karlsruhe, Germany) and antibiotics (100 U/ml of penicillin G and
100 mg/ml of streptomycin sulphate, Gibco/Invitrogen).

Primary human umbilical vein endothelial cells (HUVEC) were
purchased from, Promocell (Heidelberg, Germany) and cultured in
endothelial basal (EBM-2) medium supplemented with the EGM-2
Bulletkit (Lonza, Cologne, Germany).

The simian virus 40T antigen-, adenovirus 5-transformed human
cell line 293T/17 was obtained from the American Type Culture
Collection. The Kaposi sarcoma cell line, KS-IMM (Albini et al., 1997),
was kindly provided by A.Vecchi (Istituto Clinico Humanitas, Roz-
zano, Italy). The 293T/17 and KS-IMM cells were grown in Dulbecco's
modified Eagle's medium (DMEM, Sigma-Aldrich) supplemented
with 10% fetal bovine serum, 2 mM L-glutamine and antibiotics.

Plasmids

The H-1PV parvoviral based vectors pChi-H1/Δ800 and pChi-
H1/IP-10 have been described elsewhere (Dempe et al., 2012).
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pChi-H1/PF-4var was obtained by PCR amplification of the PF-4var
cDNA from the pHENI expression vector (Struyf et al., 2007) with
primers containing NotI-XmaI linkers and cloned in the NotI-XmaI
sites of the multiple cloning site of the pChi-H1/Δ800 vector.

Virus infection, production and titration

Virus infections were performed at 37 1C for 1 h with a virus
inoculum of purified (recombinant) H-1PV and occasional rocking
of the plate. Stocks of recombinants H-1PV were produced by
transfection of 293T cells and wild-type (wt) H-1PV by infection
of NB-324K cells, purified by iodixanol gradient centrifugation and
titrated by infected cell hybridization assay (recombinant and wt
H-1PV) or plaque assay (wt H-1PV) on NB-324K indicator cells as
previously described (Haag et al., 2000; Tattersall and Bratton,
1983). Wt H-1PV titers were previously shown to be similar,
whether determined using the infected cell hybridization assay or
the plaque assay (Haag et al., 2000). Virus titers were expressed as
replication units (RU) or plaque forming units (PFU) per milliliter of
virus suspension.

Quantification of transgene secretion

Levels of secreted cytokines were measured in the cell culture
supernatants of recombinant H-1PV-infected KS-IMM and HUVEC
cells at different time-points post-infection (p.i.) using specific ELISAs
for IP-10 (Abu El-Asrar et al., 2004), PF-4var (Vandercappellen et al.,
2007) and VEGF-A (BIOO Scientific, Austin, TX).

Immunoblotting

A 1–2�106 cells were infected with H-1PV at a MOI of 3 RU/cell
and harvested at different times p.i. After cell lysis in RIPA buffer
(150 mM NaCl, 10 mM Tris, 1 mM EDTA, 1% NP-40, 0.5% sodium
deoxycholate, 0.1% SDS, protease inhibitor) and protein quantifica-
tion (Bio-Rad Protein Assay, BioRad Laboratories, Munich, Germany),
20 mg of total proteins were separated by SDS-10% polyacrylamide
gel electrophoresis (SDS-PAGE) and electro-transferred to Protran
nitrocellulose membranes (PerkinElmer Life Sciences, Überlingen,
Germany). The membranes were incubated with either rabbit
polyclonal antiserum directed against NS1 (SP8, Brockhaus et al.,
1996), NS2 (α-NS2p, Wrzesinski et al., 2003), H-1PV capsid proteins
(α-VP, Kestler et al., 1999) and the appropriate horseradish
peroxidase-coupled antibody (Promega, Mannheim, Germany).or
mouse monoclonal anti-14-3-3 β-horseradish peroxidase-coupled
antibody (H-8, Santa Cruz Biotechnology, Santa Cruz, CA). Immunor-
eactive proteins were revealed by enhanced chemiluminescence (GE
Healthcare Europe, Freiburg, Germany).

Southern blot analysis

Low molecular weight viral DNA was extracted from infected
cells using the DNeasy Blood and Tissue kit (Qiagen, Hilden,
Germany) according to the manufacturer's instructions. Viral
replicative DNA forms were separated by 1% agarose gel electro-
phoresis. After gel denaturation in a 1.5 M NaCl, 0.5 M NaOH
solution and neutralization in a 1.5 M NaCl, 0.5 M Tris–HCl
pH7.2, 1 mM EDTA solution, DNA molecules were transferred onto
nitrocellulose membranes (Protran, GE Healthcare) for 15–20 h at
room temperature by capillary action in the presence of 10X SSC
buffer (1.5 M NaCl, 0.15 M sodium citrate) and further linked to the
membrane by heat treatment for 2 h at 80 1C. Membranes were
hybridized at 65 1C with a 1000bp-long 32P-labelled H-1PV DNA
probe from the NS region and exposed to autoradiographic films
(Biomax, MS Film Kodak, Kiel, Germany) at �80 1C with intensifier
screen.

Assessment of cell viability and cell lysis

Cell viability was tested with the 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) assay as recommended by
the manufacturer (Sigma-Aldrich). A 1.5�104 (KS-IMM) or 2�104

(HUVEC) cells per well were cultured in 48-well plates and
infected with (recombinant) H-1PV at different MOIs. At day 3 post
infection, MTT 5 mg/ml (final concentration) was added to the cell
culture medium and cells were incubated 4 h at 37 1C. After
removing the supernatant and drying the cells, 100 ml of isopro-
panol were added. The absorbance was measured at 595 nm
(Multiscan PlusTM, Titertek Instruments, Huntsville, AL).

Cell lysis was determined by the release of lactate dehydro-
genase (LDH) into the culture medium by using the Cytotox 96
cytotoxicity assay kitTM (Promega) according to the manufac-
turer's instructions.

RT-PCR analysis and quantitative real time PCR

Total RNA was extracted from cells using the RNEasy kit
(Qiagen). About 1–2 mg of total RNA was treated with DNAse I,
reverse-transcribed using 200 U of RNA-dependent DNA polymer-
ase M-MLV RT (Promega) in the presence of 500 mM dNTPs
(Invitrogen), 20 U of RNasin and 20 ng/ml of random primers
(Promega) in a reaction volume of 25 ml for 1 h at 38 1C. After
heat-inactivation of the reverse-transcriptase, the cDNA was diluted
1:8 in RNAse/DNAse-free water (Invitrogen). Specific PCR amplifica-
tions were performed in 25 ml reactions using 5 ml of cDNA, 200 mM
of dNTPs (Invitrogen), 1.5 mM of MgCl2 (Invitrogen), 500 nM of each
specific forward and reverse primers (Eurofins MWG Operon,
Ebersberg, Germany) and 2 U of Taq DNA polymerase (Invitrogen).
The PCR cycles were performed as following: 95 1C, 3 min for initial

Table 1
Primers and probes used for cDNA amplification and detection.

Target genea Primer/probe sequence (5′-3′) Tan. (1C) Amplicon size (bp)

h GAPDH GCCTTCCGTGTCCCCACTGC1 GGCTGGTGGTCCAGGGGTCT2 62 334
PV NS1 CTAAATGGAAAGGACATCGGTTGGAATAG1 GCCTCCGTCCCTTGGTGG2 62 570
h CXCR3 GGTGAGTGACCACCAAGTGC1 AGGTAGCGGTCAAAGCTGATGC2 61 441
h VEGF-A CCATGAACTTTCTGCTGTCTTG1 TGAACTTCACCACTTCGTGAT2

6FAM/TGCTCTACC/ZEN/TCCACCATGCCAAG/IABkFQ3
60 131

h RN18S1 ACGGACAGGATTGACAGATTG1 ATCGCTCCACCAACTAAGAAC2

6FAM/ACCACCCAC/ZEN/GGAATCGAGAAAGAG/IABkFQ3
60 80

Tan. annealing temperature, bp base pairs, PV parvovirus, h human, GAPDH glyceraldehyde-3-phosphate dehydrogenase, RN18S1 18S ribosomal 1 RNA.
a Target cDNAs were amplified with the indicated pair of forward1 and reverse2 primers. Relative transcripts expression level was determined by TaqMan real time PCR

using indicated probes3, labeled with the reporter dye 6-carboxyfluorescein (6FAM) at the 5′ end, with the quencher dye Iowa Black FQ (IABkFQ) at the 3′ end and the ZEN
internal quencher.
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denaturation, 35 cycles of 95 1C, 30 s, annealing: 53–60 1C, 30 s,
extension:72 1C, 30 s and 72 1C, 7 min, for the final extension.

The relative transcript levels were determined by TaqMan real
time PCR using the primers and probes listed in Table 1. Quanti-
tative PCR was performed with 4 μl of cDNA, 10 μl of 2� Taqman
PCR master mix (Perkin-Elmer Applied Biosystems, Rodgau,
Germany), 250 nM of each primer and probe in a total volume of
20 μl. The thermal cycling conditions were performed as follow-
ing: 50 1C, 2 min, 95 1C, 10 min, followed by 45 cycles of 95 1C, 15 s
and 60 1C, 1 min. Data collection was performed during each
annealing phase. Appropriate controls were included in each PCR
reaction. The relative abundance of transcripts was determined by
the ddCt method. dCt values were calculated using 18S ribosomal
RNA as a reference sample, and the ddCt values relative to the
control gene (from mock-infected cells).

In vitro angiogenesis assay

The tube-like formation assay was performed following the
manufacturer's instructions (In vitro angiogenesis assay kit, Milli-
pore, Schwalbach, Germany). Briefly, wells from a 96-well plate
were coated with ECMatrix solution and incubated for 1 h at 37 1C
to allow the matrix solution to solidify. A 3�103 KS-IMM cells
were seeded in each well and incubated with the supernatants of
recombinant virus-infected cells. Tube formation was monitored
under an inverted microscope 12–18 h after seeding. The number
of tubular structures formed in each condition was determined in
10 fields using the freeware ImageJ. Cell viability was determined
by MTT assay in the different conditioned media and expressed as
percentage of control (conditioned medium of Chi-H1/Δ800-
infected KS-IMM cells).

Tumor model

Female nude Balb/c mice (Janvier Labs, St Berthevin, France), 7–8
weeks old were maintained under pathogen-free conditions. KS-IMM
cells were mock (buffer)-treated or infected with H-1PV at a MOI of
12 RU/cell. At 4 h post-infection, 3�106 KS-IMM cells suspended in
ice-cold calcium-, magnesium- and glucose-containing Dulbecco's
PBS were mixed with liquid Matrigel (BD Biosciences, Heidelberg,
Germany) to a final volume of 200 ml. The mixture was subcuta-
neously (s.c.) implanted into the right flank of mice (7–13 mice/
group). Tumor sizes were measured with an electronic digital calliper
(Farnell, Germany) three times a week and the tumor volume was
calculated according to the formula: V¼1/2� length�width2 (mm3).
Animals were killed for ethical reasons when the tumor volume
reached 1500 mm3. The animal experimental procedures were
approved by the responsible Animal Protection Officer at the DKFZ
and by the Regional Council according to the German Protection Law.

Statistical analysis

Statistically significant differences were determined by the
nonparametric Mann–Whitney rank sum test. Differences were
considered significant at pr0.05.
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