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Let (R,m) denote an n-dimensional Gorenstein ring. For an ideal
I ⊂ R of height c we are interested in the endomorphism ring
B = HomR(Hc

I (R), Hc
I (R)). It turns out that B is a commutative

ring. In the case of (R,m) a regular local ring containing a field
B is a Cohen–Macaulay ring. Its properties are related to the
highest Lyubeznik number l = dimk Extd

R (k, Hc
I (R)), d = dim R/I . In

particular R � B if and only if l = 1. Moreover, we show that the
natural homomorphism Extd

R (k, Hc
I (R)) → k is non-zero.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Let (R,m,k) denote a local Noetherian ring. For an ideal I ⊂ R let Hi
I (R), i ∈ Z, denote the local

cohomology modules of R with respect to I (see [3] for the definition). They carry several information
about I and R . Their Bass numbers dimk Ext j

R(k, Hi
I (R)), i, j ∈ Z, are in various directions important

invariants (see for instance [14,15,12,13,20] and others). In the case of a regular local ring they are
investigated by Lyubeznik (see [14]) known also as Lyubeznik invariants.

On the other hand, in recent research there are sufficient conditions when the endomorphism ring
of Hc

I (R), c = height I , is isomorphic to R (see for instance [8] and also [19]). Note that it is not clear
whether it is a commutative ring in general. The endomorphism ring B := HomR(Hc

I (R), Hc
I (R)) is the

main subject of our investigations here, in particular when (R,m) is a Gorenstein ring. It carries a lot
of interesting properties. For an ideal I ⊂ R let Id denote the intersection of the highest dimensional
primary components of I .
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Theorem 1.1. Let (R,m) denote an n-dimensional Gorenstein ring. Let I ⊂ R be an ideal with c = height I and
d = dim R/I . Then:

(a) The endomorphism ring B := HomR(Hc
I (R), Hc

I (R)) is commutative. There is a natural isomorphism

B = HomR
(

Hc
I (R), Hc

I (R)
) � Extc

R

(
Hc

I (R), R
)
.

Moreover B is m-adically complete provided R is a complete local ring.

Suppose that (R,m) is a complete regular local ring containing a field. Assume that d > 0. Then:

(b) The ring extension R ⊂ B is module-finite and B is a Noetherian ring.
(c) B is a free R-module of rank dimk Extc

R(k, Hc
I (R)) and therefore B is a Cohen–Macaulay module.

(d) B is a local Noetherian ring if and only if V (Id) is connected in codimension one.
(e) The natural homomorphism R → HomR(Hc

I (R), Hc
I (R)) = B is an isomorphism if and only if the com-

pletion of the strict Henselization of R/Id is connected in codimension one.

By the aid of the result shown by Huneke and Lyubeznik (see [11, Theorem 2.9]) about the second
Vanishing Theorem of Hartshorne (see [6, Theorem 7.5]) we get as a consequence of Theorem 1.1:

Corollary 1.2. Let (R,m) be a complete n-dimensional regular local ring containing a field. Let I ⊂ R denote
an ideal and d = dim R/I � 2. Then the following conditions are equivalent:

(i) The natural homomorphism R → HomR(Hc
I (R), Hc

I (R)) = B is an isomorphism.
(ii) Hi

I (R) = 0 for all i � n − 1.

In the general case of a local Gorenstein ring (R,m) it is not true (see Example 3.6) that B is a
module finite extension, while – in this example – it is a Noetherian ring. We conjecture that B is
always a Noetherian ring (see Example 3.6).

Another feature of our considerations here is the natural map

φ : Extd
R

(
k, Hc

I (R)
) → k, k = R/m,

where I ⊂ R is an ideal of height I = c and d = dim R/I . The homomorphism φ occurs as an edge
homomorphism of a certain spectral sequence resp. as a homomorphism in the construction of the
truncation complex (see Definition 5.2 and Lemma 6.1). In [8, Conjecture 2.7] Hellus and the author
conjectured that it is always non-zero. Here we show that φ is related to the natural homomorphism
λ : Extd

R(k, Hc
I (R)) → Hd

m(Hc
I (R)). As an application of our techniques there is the following statement:

Theorem 1.3. Let (R,m) be an n-dimensional Gorenstein ring. Let I ⊂ R denote an ideal with c = height I
and d = dim R/I . Then:

(a) If φ : Extd
R(k, Hc

I (R)) → k is non-zero, then λ : Extd
R(k, Hc

I (R)) → Hd
m(Hc

I (R)) is non-zero.

Suppose that (R,m) is a complete regular local ring containing a field. Then:

(b) The homomorphism φ : Extd
R(k, Hc

I (R)) → k is non-zero.

In a certain sense (see Remark 6.3) one might consider the homomorphism λ as the limit version
of the homomorphism Extd

R(k, K (R/Iα)) → Hd
m(K (R/Iα)) as it was studied by Hochster (see [9, Sec-

tion 4]). Here K (R/Iα) denotes the canonical module of R/Iα , α ∈ N. For the proof of Theorem 1.3
we refer to Section 6 and Theorem 6.2.
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As another application we prove a slight sharpening of Blickle’s result (cf. [2, Theorem 1.1])
about a certain duality for the Lyubeznik numbers. In Section 2 of the paper there are preliminar-
ies and auxiliary results needed in the sequel. In Section 3 we investigate the endomorphism ring of
Hc

I (R), c = height I , in the case of (R,m) a local Gorenstein ring and in Section 4 in the case of R a
regular ring containing a field. To this end me make use of the results of Huneke and Sharp (see [12])
in the case of prime characteristic p > 0 and of Lyubeznik (see [14]) in characteristic zero. In Section 5
there are some additional results about the so-called Lyubeznik numbers. In Section 6 we study the
natural homomorphism φ : Extd

R(k, Hc
I (R)) → k. In Section 7 we discuss some additional examples.

With our notation we follow Matsumura’s textbook [16]. In the context of the paper Gorenstein
ring means always a local Gorenstein ring. A local ring (A,m) is called complete whenever it is
m-adically complete.

2. Preliminaries and auxiliary results

In this section we will summarize a few auxiliary results. They are needed for further constructions
related to local cohomology modules and their asymptotic behavior. Here let R denote a commutative
Noetherian ring.

Let {Mα}α∈N denote a family of R-modules with homomorphisms ψα+1 : Mα+1 → Mα . The inverse
limit lim←− Mα is given by

lim←− Mα � {
(mα)α∈N: mα ∈ Mα,ψα+1(mα+1) = mα for all α ∈ N

}
.

For an application we have to know whether the inverse limit of an inverse system of rings is a
quasi-local ring. Here a commutative ring is called quasi-local provided there is a unique maximal
ideal.

Lemma 2.1. Let {(Aα,nα)}α∈N denote an inverse system of local rings such that

φα+1 : (Aα+1,nα+1) → (Aα,nα), α ∈ N,

is a local homomorphism. Then

A := lim←−(Aα,nα) � {
(bα)α∈N: bα ∈ Aα,φα+1(bα+1) = bα for all α ∈ N

}
is a quasi-local ring.

Proof. It is easily seen that A admits the structure of a commutative ring with identity element
(1)α∈N ∈ A. In order to show the claim it will be enough to show that the set of non-units forms an
ideal.

Let (bα)α∈N ∈ A denote a unit. By definition there exists an element (aα)α∈N ∈ A such that

(aαbα)α∈N = (1)α∈N.

This means aαbα = 1 for all i ∈ N, so that bα is a unit in (Aα,nα) for all i ∈ N. On the other hand let
(bα)α∈N ∈ A denote an element such that for all α ∈ N the element bα ∈ Aα is a unit. Then there is a
sequence aα ∈ Aα,α ∈ N, of elements such that aαbα = 1. We claim that (aα)α∈N ∈ A. To this end we
have to show that φα+1(aα+1) = aα for all α ∈ N. Because φα+1 is a homomorphism of rings

1 = φα+1(aα+1)φα+1(bα+1) = φα+1(aα+1)bα and 1 = aαbα,

so that φα+1(aα+1) = aα because bα is a unit in Aα .
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Now let (bα)α∈N ∈ A be an element such that bβ ∈ Aβ is not a unit for some β ∈ N. Then bβ ∈ nβ

and bα ∈ nα for all α ∈ N as easily seen since φα is a local homomorphism of local rings for all β ∈ N.
Therefore

A \ A� = {
(bα)α∈N ∈ A: bα ∈ nα for all α ∈ N

}
,

where A� denotes the set of units of A. This is an ideal of A. �
Now let (R,m) denote a Gorenstein ring with n = dim R . Let M be a finitely generated R-module

and d = dim M . Define

K i(M) := Extn−i
R (M, R), i ∈ Z,

the i-th module of deficiency. For i = d let

K (M) = K d(M) = Extc
R(M, R), c = n − d,

denote the canonical module of M . Let Hi
m(·) denote the i-th local cohomology functor with sup-

port in m. By the Local Duality Theorem (see e.g. [3] or [17, Theorem 1.8]) there are the functorial
isomorphisms

Hi
m(M) � HomR

(
K i(M), E

)
, i ∈ Z,

where E = E R(R/m) denotes the injective hull of k = R/m, the residue field.
For some basic properties about the modules of deficiency we refer to [3] and [18, Lemma 1.9]. In

particular, AnnR K (M) = (AnnR M)d , the intersection of all the p-primary components of AnnR M such
that dim R/p = d. Moreover K (M) satisfies Serre’s condition S2.

For an R-module M we will consider K (K (M)). To this end we investigate the following construc-
tion which is slightly more general than needed.

Proposition 2.2. Let (R,m) denote a Gorenstein ring. Then there is a canonical isomorphism

K
(

K (M)⊗R M
) � HomR

(
K (M), K (M)

) � HomR
(
M, K

(
K (M)

))
for a finitely generated R-modules M with d = dim M.

Proof. Let R → E · denote a minimal injective resolution of R and c = dim R − dim M . Let X =
ker(Ec → Ec+1) in that resolution. Because HomR(Y , Ei) = 0 for all i < c for each R-module Y with
SuppR Y ⊆ SuppR X , it follows that we can make an identification K (Y ) = HomR(Y , X) for any finitely
generated R-module Y with SuppR Y ⊆ SuppR X . This yields

HomR
(

K (M), K (M)
) = HomR

(
K (M),HomR(M, X)

)
.

By the adjunction formula and the definition it implies the statements of the proposition. �
Of a particular interest of Proposition 2.2 is the case of R/I = A for an ideal I ⊂ R .

Proposition 2.3. Let I denote an ideal in the Gorenstein ring R. For A = R/I there are the following results:

(a) K (K (A)) � Extc
R(Extc

R(A, R), R), c = dim R − dim A.
(b) K (K (A)) is isomorphic to the endomorphism ring HomR(K (A), K (A)) which is commutative.
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(c) There is an injection A/0d ↪→ HomR(K (A), K (A)).
(d) HomR(K (A), K (A)) is the S2-ification of A/0d.

For the proof we refer to [1,10,18] and the previous Proposition 2.2. Next we recall a definition
introduced by Hochster and Huneke (see [10, (3.4)]).

Definition 2.4. Let R denote a commutative Noetherian ring with finite dimension. We denote by GR

the undirected graph whose vertices are primes p of R such that dim R = dim R/p, and two distinct
vertices p, q are joined by an edge if and only if (p,q) is an ideal of height one.

In view of Definition 2.4 observe the following: For a commutative ring R with dim R < ∞ the
variety V (0d) is connected in codimension one if and only if GR is connected. For the notion of
connectedness in codimension one we refer to Hartshorne’s paper [4, Proposition 1.1 and Definition].

As an application here we describe when the endomorphism ring K (K (A)) � HomR(K (A), K (A))

of the canonical module K (A) is a local ring, see [10, 3.6].

Lemma 2.5. With the notation of Proposition 2.3 and assuming that R is complete the following conditions
are equivalent:

(i) K (A) is indecomposable.
(ii) V (0d) is connected in codimension one.

(iii) K (K (A)) is a local ring.

As an additional tool on homological algebra we need a result on the behavior of inverse limits
and Ext-modules. It seems to the author that this is not well known. Here R denotes an arbitrary
commutative ring. Moreover lim←−

1 denotes the right derived functor of lim←−.

Lemma 2.6. Let {Mα}α∈N be a direct system of R-modules and M = lim−→ Mα . Let N denote an arbitrary R-
module. Then there is a short exact sequence

0 → lim←−
1 Exti−1

R (Mα, N) → Exti
R(M, N) → lim←− Exti

R(Mα, N) → 0

for all i ∈ Z. In particular HomR(M, N) � lim←− HomR(Mα, N).

Proof. By the definition of the direct limit there is a short exact sequence of R-modules 0 →⊕
Mα → ⊕

Mα → M → 0. It induces a long exact cohomology sequence

· · · →
∏

Exti−1
R (Mα, N)

f→
∏

Exti−1
R (Mα, N) → Exti

R(M, N)

→
∏

Exti
R(Mα, N)

g→ Exti
R(Mα, N) → ·· · .

To this end recall that Ext transforms direct sums into direct products in the first variable (see [21]).
Now it is known (see [21]) that

coker f � lim←−
1 Exti−1

R (Mα, N) and ker g � lim←− Exti
R(Mα, N),

which proves the claim. �
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3. On a formal ring extension

For an arbitrary R-module there is the natural map R → HomR(M, M). In general it is neither
injective nor surjective. Let (R,m) again denote an n-dimensional Gorenstein ring.

Definition 3.1. Let I ⊂ R denote an ideal of height c. Then we define

B := HomR
(

Hc
I (R), Hc

I (R)
)
,

the endomorphism ring of the local cohomology module Hc
I (R) (see also the Introduction).

The structure of B as well as the properties of the natural homomorphism R → B are the main
subject of our investigations. Moreover it is well known (see e.g. [5]) that there is a natural homo-
morphism

M → Extc
R

(
Extc

R(M, R), R
)
, c = n − dim M,

for any finitely generated R-module M . Let I ⊂ R denote an ideal of R . So there is a natural homo-
morphism

R/Iα → Extc
R

(
Extc

R

(
R/Iα, R

)
, R

)
, c = n − d.

It is well known (see e.g. [1]) that the kernel coincides with the ideal (Iα)d , that is the intersection
of all primary components of Iα whose dimension is d = dim R/I .

Now let R/Iα+1 → R/Iα , α ∈ N, denote the natural homomorphism. Then there is a commutative
diagram

R/Iα+1 Extc
R(Extc

R(R/Iα+1, R), R)

R/Iα Extc
R(Extc

R(R/Iα, R), R).

In the sequel we investigate the limits of the inverse systems in this commutative diagram. That is
we investigate the homomorphism

φ : R̂ I → lim←− Extc
R

(
Extc

R

(
R/Iα, R

)
, R

)
,

where R̂ I denotes the I-adic completion of R .

Theorem 3.2. Let (R,m) denote an n-dimensional Gorenstein ring. Let I ⊂ R be an ideal with c = height I
and d = dim R/I .

(a) The endomorphism ring B (see Definition 3.1) admits the structure of a commutative ring.
(b) There is a natural isomorphism B � lim←− Extc

R(Extc
R(R/Iα, R), R), with the inverse maps as defined above.

(c) The composition of the natural homomorphism R → R̂ I with φ : R̂ I → B induces a non-zero homomor-
phism k ⊗R R → k ⊗R B. In particular B 
= 0.

(d) kerφ = ⋂
α∈N

(Iα)d = 0S , where S = ⋂
p∈Assh R/I R \ p and Assh denotes the set of associated prime

ideals of R/I that have dimension equal to dim R/I .
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Proof. Let α ∈ N, the set of positive integers. Let R → E · denote a minimal injective resolution of R .
Let X = ker(Ec → Ec+1) in that resolution. As at the beginning of the proof of Proposition 2.2 we can
make identifications

K
(

R/Iα
) = Extc

R

(
R/Iα, R

) = 0 :X Iα and Hc
I (R) = H0

I (X).

Now put Bα = HomR(K (R/Iα), K (R/Iα)). Because K (R/Iα) can be viewed as an R-submodule of
K (R/Iα+1) the embedding K (R/Iα) ⊆ K (R/Iα+1) induces – as easily seen – equalities

Bα = HomR
(

K
(

R/Iα
)
, K

(
R/Iα+1)) and Bα = HomR

(
K

(
R/Iα

)
, Hc

I (R)
)
.

Therefore, the inclusion map K (R/Iα) ⊆ K (R/Iα+1) induces the restriction homomorphism

Bα+1 → HomR
(

K
(

R/Iα
)
, K

(
R/Iα+1)) = Bα,

which maps an endomorphism of K (R/Iα+1) to its restriction to K (R/Iα). It follows that the family
{Bα}α∈N forms an inverse system of commutative semi-local Noetherian rings (see e.g. [1]). Because
Hc

I (R) = ⋃
α∈N

K (R/Iα), the inverse limit can be naturally identified with B = HomR(Hc
I (R), Hc

I (R))

in such a way that the resulting natural projection map

HomR
(

Hc
I (R), Hc

I (R)
) → HomR

(
K

(
R/Iα

)
, K

(
R/Iα

))
is just given by the restriction of endomorphisms. Thus B is – as an inverse limit of commutative
rings – a commutative ring.

Because SuppR K (R/Iα) ⊆ V (I), we can identify Bα = HomR(K (R/Iα), X), with

Extc
R

(
K

(
R/Iα

)
, R

) = Extc
R

(
Extc

R

(
R/Iα, R

)
, R

)
.

These identifications are such that the natural homomorphisms

Extc
R

(
Extc

R

(
R/Iα+1, R

)
, R

) → Extc
R

(
Extc

R

(
R/Iα, R

)
, R

)
induced by the natural epimorphism R/Iα+1 → R/Iα corresponds to the restriction homomorphism
Bα+1 → Bα . This finishes the proof (b).

For the proof of (c) notice that the homomorphisms R → R̂ I as well as φ : R̂ I → B are ring ho-
momorphisms. That is, they respect the identity. Therefore, the residue class 1 + m does not map to
zero.

For the proof of (d) recall that the kernel of R/Iα → HomR(K (R/Iα), K (R/Iα)) is equal to (Iα)d
(see Proposition 2.3). Then kerφ = ⋂

α∈N
(Iα)d , as follows by elementary properties of the inverse

limit. Moreover kerφ = 0S by the Krull Intersection Theorem. �
Now let us relate the structure of ring B (isomorphic to lim←− Extc

R(Extc
R(R/Iα, R), R)) to the local

cohomology of R with respect to I . Surprisingly the Matlis dual of Hd
m(Hc

I (R)) admits the structure
of a commutative ring. Here let R̂ denote the (m-adic completion) of R .

Theorem 3.3. Let (R,m,k) denote an n-dimensional Gorenstein ring. Let I ⊂ R be an ideal with d = dim R/I
and c = height I .
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(a) There is a natural isomorphism

lim←− Extc
R̂

(
Extc

R̂

(
R̂/Iα R̂, R̂

)
, R̂

) � HomR
(

Hd
m

(
Hc

I (R)
)
, E

)
.

(b) If R is in addition complete, then the endomorphism ring HomR(Hc
I (R), Hc

I (R)) is m-adically complete.
(c) If V (Id) is connected in codimension one, then (B,n) is a quasi-local ring.

Proof. By virtue of the arguments given in the proof of Theorem 3.2 and Proposition 2.3 we have
isomorphisms

Extc
R

(
K

(
R/Iα

)
, R

) = Extc
R

(
Extc

R

(
R/Iα, R

)
, R

)
, α ∈ N,

that commute with the restriction maps of the inverse systems. So there is an isomorphism

Extc
R

(
Hc

I (R), R
) � lim←− Extc

R

(
Extc

R

(
R/Iα, R

)
, R

)
.

This follows since Hc
I (R) � lim−→ Extc

R(R/Iα, R) and Lemma 2.6 because Extc−1
R (X, R) = 0 for any

R-module X with SuppR X ⊂ V (I).
Next we recall that E = E R(k) admits a unique structure of an R̂-module such that the natural

map E ⊗R R̂ → E is an isomorphism. Then it is easily seen that there is an isomorphism

HomR̂

(
Hd

m̂

(
Hc

I R̂
(R̂)

)
, E

) � HomR
(

Hd
m

(
Hc

I (R)
)
, E

)
.

That is, for the proof of (a) we may assume that R = R̂ . So, by the definition of Hc
I (R) there is an

isomorphism

HomR
(

Hd
m

(
Hc

I (R)
)
, E

) � lim←− HomR
(

Hd
m

(
Extc

R

(
R/Iα, R

))
, E

)
and the Local Duality Theorem implies the statement in (a).

By the definition of B there is the natural isomorphism

lim←− B/mα B � lim←−
(

R/mα ⊗R HomR
(

Hd
m

(
Hc

I (R)
)
, E

))
.

Since E is an injective R-module there are the following natural isomorphisms

R/mα ⊗R HomR
(

Hd
m

(
Hc

I (R)
)
, E

) � HomR
(
HomR

(
R/mα, Hd

m

(
Hc

I (R)
))

, E
)

for all α ∈ N. As a consequence there is the isomorphism

lim←− B/mα B � HomR
(

H0
m

(
Hd

m

(
Hc

I (R)
))

, E
)
.

Now Hd
m(Hc

I (R)) is a module whose support is contained in V (m) so that

H0
m

(
Hd

m

(
Hc

I (R)
)) � Hd

m

(
Hc

I (R)
)
.

But this implies lim←− B/mα B � B . So, (b) is true.
For the proof of (c) let α ∈ N be an integer. As before let Bα = HomR(K (R/Iα), K (R/Iα)) the

endomorphism ring of the canonical module of R/Iα . Since V (I) = V (Iα), α ∈ N, is connected in
codimension one we know (see Lemma 2.5) that (Bα,nα), α ∈ N, is a local ring.
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Now we prove that (Bα+1,nα+1) → (Bα,nα) is a local homomorphism for all α ∈ N. This follows
by contracting the maximal ideal nα along the commutative diagram before Theorem 3.2. On the left
it implies an injection k = k ↪→ Bα/nα . Therefore, on the right it yields k ↪→ Bα+1/nα ∩ Bα+1. Because
Bα+1 is finitely generated (in particular integral) over R/Iα+1 it follows that nα ∩ Bα+1 = nα+1. By
virtue of Lemma 2.1 it follows that (B,n) � lim←−(Bα,nα) is a quasi-local ring. �
Problem 3.4. It is a natural question to ask whether the commutative ring B constructed in Theo-
rem 3.2 is a Noetherian ring. We do not know an answer in general. The stronger question whether
B is a finitely generated R-module is not true.

Lemma 3.5. Fix the notation of Theorem 3.3. Then the following conditions are equivalent:

(i) Extc
R̂
(Hc

I R̂
(R̂), R̂) is a finitely generated R̂-module.

(ii) dimk HomR(k, Hd
m(Hc

I (R))) < ∞.
(iii) Hd

m(Hc
I (R)) is an Artinian R-module.

Proof. By Theorem 3.3 it follows that B � HomR(Hd
m(Hc

I (R)), E). There are isomorphisms (for the
second use that E is an injective R-module)

B/mB � k ⊗ HomR
(

Hd
m

(
Hc

I (R)
)
, E

) � HomR
(
HomR

(
k, Hd

m

(
Hc

I (R)
))

, E
)
.

By virtue of [16, Theorem 8.4] B is a finitely generated R̂-module if and only if dimk B/mB < ∞.
By Matlis duality the finiteness of this dimension is therefore equivalent to the finiteness of the
socle dimension dimk HomR(k, Hd

m(Hc
I (R))). So we have the equivalence of the first two statements.

Because of Supp Hd
m(Hc

I (R)) ⊆ V (m) it follows that (ii) is equivalent to (iii). �
In the following there is an example of an ideal I ⊂ R in a local complete Gorenstein ring R such

that B is not a finitely generated R-module.

Example 3.6. Let k be a field and let A = k[|u, v, x, y|] be the formal power series ring in four vari-
ables. Put R = A/ f A, where f = xv − yu. Let I = (x, y)R . We will show that

B = lim←− Ext1
R

(
Ext1

R

(
R/Iα, R

)
, R

)
is not a finitely generated R-module, while it admits the structure of a Noetherian ring.

To this end put Aα = R/Iα � A/((x, y)α, f ) and Bα = k[|u, v|][a]/(aα), where a denotes a variable
over k[|u, v|]. Consider the ring homomorphism A → Bα induced by x �→ ua, y �→ va. As it is easily
seen it induces an injection Aα → Bα,α ∈ N. Clearly Bα , α ∈ N, is a two-dimensional Cohen–Macaulay
ring. The cokernel of this embedding is

k
[|u, v|][a]/(k

[|u, v|][ua, va] + aαk
[|u, v|][a]),

which is a finite dimensional k-vector space. Whence the dimension of Bα/Aα as an R-module is
zero. Therefore Bα is the S2-ification of Aα , that is Bα � Ext1

R(Ext1
R(R/Iα, R), R) (see Proposition 2.3).

So there are short exact sequences

0 → Aα → Bα → H1
m(Aα) → 0

for all α ∈ N. By passing to the inverse limit it induces a short exact sequence

0 → R → B → lim H1
m

(
R/Iα

) → 0.
←−
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Moreover it yields that B � k[|u, v,a|], which is clearly a Noetherian ring. Moreover B is not a finitely
generated R-module as easily seen.

Furthermore, by the local duality theorem there is the isomorphism

lim←− H1
m

(
R/Iα

) � HomR
(

H2
I (R), E

)
.

Therefore, HomR(H2
I (R), E) is not a finitely generated R-module. By Matlis duality it follows that

H2
I (R) is not an Artinian R-module and therefore the socle HomR(k, H2

I (R)) is not of finite dimension.
Originally this was shown by Hartshorne (see [7, Section 3]). In fact, the analysis of Hartshorne’s
example inspired the above construction.

In the following sections we shall discuss some particular cases in which B is a finitely generated
R-module.

Proof of Theorem 1.1(a). The statement (a) follows by Theorem 3.2(a) and Theorem 3.3(b). �
4. The case of regular local rings

In this section let (R,m) denote a regular local ring. Let I ⊂ R be an ideal of R . Huneke and
Sharp (cf. [12]) in the case of prime characteristic p > 0 resp. Lyubeznik (see [14]) in the case of
characteristic zero proved the following result:

Theorem 4.1. (See [12] and [14].) Let (R,m) be a regular local ring containing a field. Let I ⊂ R be an ideal.
For all i, j ∈ Z the following hold:

(a) H j
m(Hi

I (R)) is an injective R-module.
(b) injdimR Hi

I (R) � dimR Hi
I (R) � dim R − i.

(c) Ext j
R(k, Hi

I (R)) � HomR(k, H j
m(Hi

I (R))) and dimk Ext j
R(k, Hi

I (R)) < ∞.

As we shall see the previous result applies in an essential way in order to describe properties of
the ring

B = lim←− Extc
R

(
Extc

R

(
R/I i, R

)
, R

)
, c = dim R − dim R/I,

introduced in Definition 3.1. But before let us recall the Bass numbers in Theorem 4.1(c) were intro-
duced by Lyubeznik (cf. [14, 4.1]). In fact Lyubeznik has shown that they only depend upon R/I . With
the above results in mind we shall describe the structure of the ring B in case (R,m) is a complete
regular local ring containing a field.

Lemma 4.2. With the notation as above assume that (R,m) is a complete regular local ring containing a field.
There is an isomorphism

B = lim←− Extc
R

(
Extc

R

(
R/Iα, R

)
, R

) � Rl,

where l = dim Extd
R(k, Hc

I (R)),d = dim R/I, c = dim R − dim R/I .

Proof. By virtue of Theorem 4.1 it turns out that l is a finite number. As a consequence of Lemma 3.5
it follows that B is a finitely generated R-module. Moreover, by virtue of Theorem 4.1(a) and the def-
inition of B as the Matlis dual of Hd

m(Hc
I (R)) (see Theorem 3.3) we see that B is flat as an R-module.

Therefore B is a free R-module and B � Rl , the direct sum of l copies of R . �
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In the following we will give an interpretation of the rank l in topological terms. To this end we
use results of Lyubeznik (see [15]) and Zhang (see [22]).

Theorem 4.3. (See [15] and [22].) Let (R,m) be an n-dimensional regular local ring containing a field. Let
I ⊂ R denote an ideal with c = height I and d = dim R/I . Let A denote the completion of the strict Henseliza-
tion of the completion of R/I . Let t denote the number of connected components of the graph GA . Then

dimk HomR
(
k, Hd

m

(
Hc

I (R)
)) = dimk Extd

R

(
k, Hc

I (R)
) = t.

It was pointed out by Lyubeznik (see [15]) that the graph GA , where A is the completion of the
strict Henselization of the completion of R/I , is realized by a smaller ring. Namely, let k ⊂ Â denote
a coefficient field. It follows (see [11, Theorem 4.2]) that there exists a finite separable field extension
k ⊂ K such that the graphs GK⊗k R̂/I and GA are isomorphic.

Here we want to give another description of the invariant t = dimk Extd
R(k, Hc

I (R)). As a first step
in this direction there is the following result:

Theorem 4.4. Let (R,m) denote an n-dimensional complete regular ring containing a field. Let I be an ideal of
R and c = height I . Then the following are equivalent:

(i) V (Id) is connected in codimension one.
(ii) B = HomR(Hc

I (R), Hc
I (R)) is a local ring.

Proof. Because Hc
I (R) � Hc

Id
(R) we may replace I by Id . The implication (i) ⇒ (ii) follows by the

results shown in Theorem 3.3(c) and Lemma 4.2.
In order to prove (ii) ⇒ (i) suppose that V (I) is not connected in codimension one. Let G1, . . . ,Gt ,

t > 1, denote the connected components of GR/I . Moreover, let Ii , i = 1, . . . , t , denote the intersection
of all minimal primes of V (I) that are vertices of Gi . Then

Hc
I (R) �

t⊕
i=1

Hc
Ii
(R)

as is a consequence of the Mayer–Vietoris sequence for local cohomology (see [15, Proposition 2.1]
for the details). Clearly c = height Ii , i = 1, . . . , t , and Hc

Ii
(R) 
= 0. Moreover

Extc
R

(
Hc

I (R), R
) �

t⊕
i=1

Extc
R

(
Hc

Ii
(R), R

)

and therefore B � B1 × · · · × Bt , where

Bi = Extc
R

(
Hc

Ii
(R), R

) � HomR
(

Hc
Ii
, Hc

Ii
(R)

)
, i = 1, . . . , t,

are local rings as shown by (i) ⇒ (ii). That B � B1 × · · · × Bt is indeed a decomposition as a direct
product of rings follows e.g. since

HomR
(

Hc
Ii
(R), Hc

I j
(R)

) � lim←− Hom
(
Extc

R

(
R/Iαi , R

)
, Hc

I j
(R)

) = 0 for all i 
= j.

This holds because Hom(K (R/Iαi ), Hc
I j
(R)) = 0 since AssR K (R/Iαi ) ∩ V (I j) = ∅ for i 
= j as follows by

the definition of Ii , i = 1, . . . , t . Because t > 1 it yields that B is not a local ring. �
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As a corollary of the previous statement we are able to describe the number of connected compo-
nents of GR/I in terms of the ring structure of B = Extc

R(Hc
I (R), R).

Corollary 4.5. With the notation of Theorem 4.4 the ring B is a semi-local ring. The number of maximal ideals
of B is equal to the number of connected components of GR/I .

Proof. First B is a semi-local ring as follows because it is a finitely generated R-module. If GR/I is
connected in codimension one, then B is a local ring (see Theorem 4.4). Then the claim follows as in
the proof of Theorem 4.4 by Hc

I (R) � ⊕t
i=1 Hc

Ii
(R). Here Ii , i = 1, . . . , t , denotes the intersection of all

minimal primes of V (I) that are vertices of Gi , the connected components of GR/I . �
Proof of Theorem 1.1. The proof of the statements (b) and (c) of Theorem 1.1 follow by Lemma 4.2
and Theorem 4.3. The claim (d) of Theorem 1.1 is shown in Theorem 4.4. Finally (e) is a consequence
of the results by Lyubeznik (see [15]) and Zhang (see [22]). �
5. On Lyubeznik numbers

In this section let (R,m) be a regular local ring containing a field. Let I ⊂ R be an ideal of R . We
will add a few results concerning the Lyubeznik numbers

dimk HomR
(
k, H j

m

(
Hi

I (R)
)) = dimk Ext j

R

(
k, Hi

I (R)
)

in general. That means, we are interested in them for all pairs ( j, i) not necessary for ( j, i) = (d, c)
where d is the dimension of R/I and c is the height of I . As a first step towards this direction we
improve the estimate in Theorem 4.1(b). To this end we use the Hartshorne–Lichtenbaum Vanishing
Theorem. It yields that Hn

I (R) = 0, n = dim R , whenever (R,m) is a complete local domain and I is an
ideal with dim R/I > 0 (see [6, Theorem 3.1] or [17, Theorem 2.20]).

Lemma 5.1. Let (R,m) denote a regular local ring with dim R = n. Let I be an ideal of R and pure height c < n.
Then

dim Hi
I (R) � n − i − 1

for all c < i � n and dim Hc
I (R) = n − c.

Proof. First we prove the second statement dim Hc
I (R) = n − c. Let p ∈ V (I) denote a prime ideal such

that dim Rp = c. Then

0 
= Hc
I Rp

(Rp) � Hc
I (R)⊗R Rp

because c = dim Rp and Rad I Rp = pRp . Recall that p ∈ V (I) is a minimal prime ideal. Therefore
dim Hc

I (R) � dim R/p = n − c. The equality is true since Supp Hc
I (R) ⊆ V (I).

Now let c < i � n. First of all note that Hn
I (R) = 0 as follows by the Hartshorne–Lichtenbaum

Vanishing Theorem (cf. [6] or [17, Theorem 2.20]). Now suppose the contrary to the claim. Then
there is a minimal prime ideal p ∈ Supp Hi

I (R) such that dim Hi
I (R) = dim R/p � n − i, and therefore

i � dim Rp . But 0 
= Hi
I (R) ⊗ Rp � Hi

I Rp
(Rp), and therefore i = dim Rp by the Grothendieck Vanish-

ing Theorem. Moreover height I Rp = c because I is of pure height c. Therefore Hi
I Rp

(Rp) 
= 0 for
height I Rp < i = dim Rp , and this is a contradiction to the Hartshorne–Lichtenbaum Vanishing Theo-
rem. �
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For a better understanding of the Lyubeznik numbers we need an auxiliary construction of a cer-
tain complex C ·(I) for an ideal I of R . Let R

∼→ E · denote a minimal injective resolution of R . Because
ΓI (E ·)i = 0 for all i < c = height I < n there is a homomorphism of complexes

0 → Hc
I (R)[−c] → ΓI (E ·),

where Hc
I (R) is considered as a complex concentrated in homological degree zero.

Definition 5.2. The cokernel of the embedding Hc
I (R)[−c] → ΓI (E ·) is defined as C ·

R(I), the truncation
complex with respect to I . So there is a short exact sequence of complexes of R-modules

0 → Hc
I (R)[−c] → ΓI

(
E ·) → C ·

R(I) → 0.

We observe that Hi(C ·
R(I)) � Hi

I (R) for all i 
= c while Hc(C ·
R(I)) = 0.

By applying the derived functor RΓm of the section functor it induces (in the derived category) an
exact triple of complexes

RΓm

(
Hc

I (R)
)[−c] → E[−n] → RΓm

(
C ·(I)

) → RΓm

(
Hc

I (R)
)[−c][+1].

Recall that RΓm(ΓI (E ·)) � Γm(ΓI (E ·)) � Γm(E ·) � E[−n], where E = E R(R/m) denotes the injective
hull of the residue field.

In order to compute the hyper cohomology Hi
m(C ·(I)) there is the following E2-term spectral

sequence (see [21] for the details)

E p,q
2 = H p

m

(
Hq(C ·(I)

)) ⇒ E p+q∞ = H p+q
m

(
C ·(I)

)
.

Now recall that Hq(C ·(I)) = Hq
I (R) for c < q < n, and Hq(C ·(I)) = 0 for q � c resp. q � n. We notice

that Hn
I (R) = 0 as a consequence of the Hartshorne–Lichtenbaum Vanishing Theorem.

Proposition 5.3. With notation of Lemma 5.1 and Definition 5.2 there is a short exact sequence

0 → Hn−1
m

(
C ·(I)

) → Hd
m

(
Hc

I (R)
) → E → 0

and isomorphisms H j−1
m (C ·(I)) � H j−c

m (Hc
I (R)) for all j < n and all j > n = dim R.

Proof. The proof follows by the long exact cohomology sequence induced by the above exact triple
of complexes in the derived category. The only claim we have to show is the vanishing of Hn

m(C ·(I)).
To this end we apply the previous spectral sequence. By virtue of Lemma 5.1 we know that
dim Hq

I (R) < n − q for all q 
= c. Therefore En−q,q
2 = Hn−q

m (Hq
I (R)) = 0 for all q 
= c. That is, in the

above spectral sequence all the initial terms of level n vanish. Therefore the limit term vanishes also,
that is Hn

m(C ·(I)) = 0, as required. �
As an application of our investigations we prove a slight improvement of a duality result shown

by Blickle (cf. [2, Theorem 1.1]).

Corollary 5.4. Let I ⊂ R denote an ideal of pure height c of a regular local ring (R,m) containing a field.
Suppose that c < n and Supp Hi

I (R) ⊆ V (m) for all i 
= c. Then the following are true:
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(a) There is a short exact sequence

0 → Hn−1
I (R) → Hd

m

(
Hc

I (R)
) → E → 0.

(b) For j < n there are isomorphisms H j−1
I (R) � H j−c

m (Hc
I (R)).

Proof. Because Supp Hi
I (R) ⊆ V (m) for all i 
= c it follows that H p

m(Hq(C ·(I))) = 0 for all p 
= 0. So the
previous spectral sequence degenerates to isomorphisms

Hq
m

(
C ·(I)

) � H0
m

(
Hq(C ·(I)

))
for all q ∈ Z. Then the claim is a consequence of the statements in Proposition 5.3. Recall that
H0

m(Hq(C ·(I))) � Hq(C ·(I)) for all q ∈ Z because Supp Hi
I (R) ⊆ V (m) for all i 
= c by the assump-

tion. �
Under the assumption of Corollary 5.4 Blickle (cf. [2, Theorem 1.1]) proved the following equalities

dimk HomR
(
k, H0

m

(
H j−1

I (R)
)) = dimk HomR

(
k, H j−c

m

(
Hc

I (R)
)) − δ j−c,d

for all j ∈ N. In fact, this is a consequence of the present Corollary 5.4. The assumption Supp Hi
I (R) ⊆

V (m) for all i 
= c is fulfilled for instance whenever cd I Rp = height I for all p ∈ V (I) \ {m}.

Corollary 5.5. With the notation of Corollary 5.4 let I denote an ideal of R. Suppose there is an integer c <

a < n such that Hi
I (R) = 0 for all i 
= c,a.

(a) There is a short exact sequence

0 → Hn−a−1
m

(
Ha

I (R)
) → Hd

m

(
Hc

I (R)
) → E → 0.

(b) For j < n there are isomorphisms H j−a−1
m (Ha

I (R)) � H j−c
m (Hc

I (R)).

Proof. By the assumption on the vanishing of Hi
I (R) it follows that C ·(I)

∼→ Ha
I (R)[−a] in the derived

category. Thus, the statement is an immediate consequence of Proposition 5.3. �
It would be of some interest to get an understanding of the Lyubeznik numbers in general.

6. On a trace map

Let (R,m) denote a Gorenstein ring and n = dim R . Let I ⊂ R denote an ideal of height I = c and
dim R/I = d. Moreover we remark that Hc

I (R) � Hc
I1

(R), where I1 is the intersection of the primary
components of I of pure height c. This is an easy consequence of the Mayer–Vietoris sequence. There-
fore, we may always assume that I is of pure height c.

Lemma 6.1. With the previous notation there is a natural homomorphism

φ : Extd
R

(
k, Hc

I (R)
) → k, k = R/m.
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Proof. Apply the derived functor R HomR(k, ·) to the short exact sequence as it is considered in the
definition of the truncation complex (see Definition 5.2). The resulting exact triple in the derived
category induces a long exact cohomology sequence

· · · → Exti−c
R

(
k, Hc

I (R)
) → Exti

R

(
k,Γm

(
E ·)) → Exti

R

(
k, C ·

R(I)
) → ·· · .

Now consider the complex R HomR(k,Γm(E ·)). Since Γm(E ·) is a complex of injective modules the
following isomorphic complexes

HomR
(
k,Γm

(
E ·)) � HomR

(
k, E ·) � k[−n],

represent R HomR(k,Γm(E ·)) in the derived category. By virtue of the long exact cohomology se-
quence it yields the natural homomorphism of the statement. �

In [8, Conjecture 2.7] Hellus and the author conjectured that the homomorphism in Lemma 6.1 is
in general non-zero. In the next we shall confirm this question in the case of (R,m) a regular local
ring containing a field. To this end we need a few auxiliary constructions.

By virtue of Proposition 5.3 and Lemma 6.1 there is the commutative diagram

Extd
R(k, Hc

I (R))

λ

φ

k

Hd
m(Hc

I (R))
ψ

E.

Here the vertical homomorphism k → E is – by construction – the natural inclusion. Therefore, λ is
not zero, provided φ is not zero.

Theorem 6.2. Let (R,m) denote a regular local ring containing a field with dim R = n. Let I ⊂ R denote an
ideal of height I = c and dim R/I = d. Then the homomorphism

φ : Extd
R

(
k, Hc

I (R)
) → k

is non-zero.

Proof. We may assume that R is a complete local ring. By applying HomR(k, ·) to the above diagram
it implies the commutative diagram

Extd
R(k, Hc

I (R))
φ

λ̄

k

HomR(k, Hd
m(Hc

I (R)))
ψ̄

k.

By virtue of Theorem 4.1 the vertical homomorphism λ̄ is an isomorphism. Therefore it will be enough
to show that ψ̄ is not zero. By Matlis duality it follows that

B = Extc
R

(
Hc

I (R), R
) � HomR

(
Hd

m

(
Hc

I (R)
)
, E

)
.
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So, ψ̄ is the Matlis dual of the natural homomorphism k ⊗R R → k ⊗R B which is non-zero as shown
in Theorem 3.2(c). This proves that ψ̄ is non-zero. By the previous observation it follows that φ is
non-zero too. �
Remark 6.3. Let (R,m) be a local ring that is the factor ring of a Gorenstein ring. Let M be a finitely
generated R-module with d = dimR M . In connection to his canonical element conjecture (see [9, Sec-
tion 4]) Hochster has studied the natural homomorphism Extd

R(k, K (M)) → Hd
m(K (M)), where K (M)

denotes the canonical module of M . In particular, he considered the problem whether this map is
non-zero.

In our situation here the natural homomorphism λ : Extd
R(k, Hc

I (R)) → Hd
m(Hc

I (R)) is the di-
rect limit of the natural homomorphisms λα : Extd

R(k, K (R/Iα)) → Hd
m(K (R/Iα)), α ∈ N. Recall that

Hc
I (R) � lim−→ K (R/Iα) and that local cohomology commutes with direct limits. So in a certain sense,

λ is the stable value of all of the λα . It would be of some interest to relate the non-vanishing of λ to
other problems in commutative algebra.

7. Examples

Let I ⊂ R denote an ideal with c = height I . The following example shows that the isomorphism
HomR(Hc

I (R), Hc
I (R)) � R is not preserved by passing to the localization with respect to a prime ideal.

Example 7.1. Let k denote an algebraically closed field. Let R = k[|a,b, c,d, e|] denote the formal power
series ring in five variables. Let I ⊂ R denote the prime ideal with the parametrization

a = su2, b = stu, c = tu(t − u), d = t2(t − u), e = u3.

It is easy to see that I = (ad−bc,a2c+abe−b2e, c3 +cde−d2e,ade−bde+ac2). Moreover dim R/I = 3,
n = 5 and Hi

I (R) = 0 for all i 
= 2,3 as follows from the Second Vanishing Theorem (see [6]). Clearly
V (I) is connected in codimension one because I is a prime ideal. So it follows (cf. Theorem 4.3)
dimk Ext3

R(k, H2
I (R)) = 1. Therefore the endomorphism ring HomR(H2

I (R), H2
I (R)) is isomorphic to R

(see Lemma 4.2).
Let p = (a,b, c,d)R . Then dim Rp/I Rp = 2. The ideal I Rp corresponds to the parametrization

(x, xy, y(y − 1), y2(y − 1)). It follows that V (I Rp) \ {pRp} is not formally connected (see [4, 3.4.2]).

Therefore V (I R̂p) has two connected components. Whence HomRp
(H2

I Rp
(Rp), H2

I Rp
(Rp)) � R̂p

2
, be-

cause dimk(p) Ext2
Rp

(k(p), H2
I Rp

(Rp)) = 2.

The next example (invented by Hochster) shows that the Bass numbers dimk Exti
R(k, Hc

I (R)) de-
pend upon the characteristic of the ground field k.

Example 7.2. Let R = k[|x1, . . . , x6|] denote the formal power series rings in six variables over the
basic field k. Let I denote the ideal generated by the two-by-two minors of the matrix

M =
(

x1 x2 x3

x4 x5 x6

)
.

Then R/I is a four-dimensional Cohen–Macaulay ring and c = height I = 2. It follows that Hi
I (R) = 0

for all i 
= 2 provided k is a field of characteristic p > 0. Furthermore Hi
I (R) = 0 for all i 
= 2,3 and

H3
I (R) 
= 0 in the case of k a field of characteristic zero. This is shown via the Reynolds operator.

Clearly R/I has an isolated singularity, so that Supp H3
I (R) ⊆ {m}. By virtue of Corollary 5.4 and

Theorem 4.1 it follows that Exti
R(k, H2

I (R)) = 0 for all i < 4 if k is of positive characteristic, while
Ext2

R(k, H2
I (R)) 
= 0 if k is of characteristic zero.
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Clearly H0
m(H3

I (R)) � H3
I (R), and therefore H3

I (R) is an injective R-module (see Theorem 4.1). Now
we apply the derived functor R HomR(k, ·) to the short exact sequence of the truncation complex (see
Definition 5.2). Because H3(C ·

R(I)) � H3
I (R) and Hi(C ·

R(I)) = 0 for all i 
= 3 it induces an isomorphism
Ext2

R(k, H2
I (R)) � HomR(k, H3

I (R)).
Finally Uli Walther (see [20, Example 6.1]) has computed that H3

I (R) � E R(k). Therefore
dim Ext2

R(k, H2
I (R)) = 1 in the case of characteristic zero.

Example 7.3 shows that the number of maximal ideals of B = HomR(Hc
I (R), Hc

I (R)) does not coin-
cide with the rank of B as R-module.

Example 7.3. Let Q denote the field of rational numbers. Consider Q(i) denote the field extension of Q

by the imaginary unit. Let R = Q[|w, x, y, z|] and S = Q(i)[|w, x, y, z|] denote the formal power series
ring in four variables over Q and Q(i) respectively. Let J = (w − ix, y − iz) ∩ (w + ix, y + iz) ⊂ S and
I = J ∩ R . Then I = (w2 + x2, y2 + z2, wy + xz, wz − xy) is a two-dimensional prime ideal. Therefore
(cf. Theorem 4.4) B R = HomR(H2

I (R), H2
I (R)) is a local ring. Moreover

B S = HomS
(

H2
J (S), H2

J (S)
) � S/(w − ix, y − iz) ⊕ S/(w + ix, y + iz)

as it follows by the Mayer–Vietoris sequence for local cohomology. It is easily seen that B R �
Q[a]/(a2 + 1)[|w, x, y, z|]. In fact, dim Ext2

R(R/m, Hc
I (R)) = 2.
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