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ABSTRACT 

The expression of det (A&BA) as a norm in both (Q (Viii ) and Q (G ) for 2 X 2 

rational matrices with characteristic roots in Q (6 ), resp. Q (G ), is studied here 

further, see [l]. A necessary and sufficient condition for this element to be also a 

norm in Q (6 , G ) is obtained. 

In a recent note [6] the following fact was proved: 

THEOREM 1. Let A,B be integral 2 X2 matrices. Let the characteristic 
roots of A be a, a’, assum-ed irrational. Then the determinant of AB - BA is a 
negative norm in Q(a). 

This is now complemented by the following result, which concerns 
rational matrices. Although Theorem 1 dealt with integral matrices, the norm 
obtained is, in general, not the norm of an integer. However, the application 
of the whole investigation is of a number theoretic nature. For, expressing a 
rational number as a norm in a quadratic field leads to the solution of a 
ternary diophantine equation ax2+ by2+ cz2 =O, where a, b, c are integers. 

THEOREM 2. Every negative rwrm in a quadratic field Q( 6 ) can be 
represented as det(AB - BA), where A,B are 2X2 rational matrices and A 

ha-s its characteristic roots in Q( 6 ). 

This result will be obtained by an extension of another theorem stated 
without proof in [S]. 

*This work wax car&d out (in part) under an NSF grant. It was presented at the 
International Congress in Vancouver, B.C. in August 1974. 
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THEOREM 3. Let Z be the matrix 0 1 

( 1 
, where d is a rational number, 

d 0 
not a square. If Z is expressed in the form Z = XY - YX, where X, Y are 
rational matrices,’ then X can be so chosen that its characteristic roots lie in 

a field Q(a ), where M is an arbitray nom in Q(a). 

Proof of Theorem 3. Let 

then 

, 

where 

211= - 32 = x12 Yz1- x21 Y 123 (1) 

%2=hl-4Y12-(Yll-Y22h2~ (2) 

221= - (%1-x22)Y2,+ ( Y11- Y22b21. 

IfZ= O ’ ,then 
( ) d 0 

(3) 

Zll =o, ,742 = 1, z21 = d. (4) 

The number zri can be considered as the negative determinant of the last 
two linear equations defined by (4) with xi1 - x2,,, yrr - yz2 as unknowns. 
Since zii = 0, we have 

- dY 12 = Y217 - dx,, = xzl. (5) 

It further follows that both xri - xas, xi2 can be chosen arbitrarily. Hence the 
characteristic roots of X lie in the field generated by the square root of 

(trX)2- 4detX= (xi1 - ~~)~-4dxF~, which is an arbitrary norm in Q(a). 
This proves Theorem 3. n 

Proof of Theorem 2. Let d,m be given rational numbers, not squares, 

and let d be a norm in Q( G ). Express 0 1 

( ) 
in the form XY - YX, where 

d 0 

‘This is possible, by a theorem of Shoda [5]. 
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by Theorem 3 the characteristic roots of X are arbitrary norms in Q( a). 

Since d is a norm in Q( vim ), it follows that m is a norm in Q( a ).” Hence 

the matrix X can be chosen with characteristic roots in Q(G ). (The 
rational parts of the roots of X are arbitrary too, since a rational scalar matrix 
may be added to X without changing xii - %22,x12.) Denote this matrix by A, 

and any matrix Y which satisfies the equation =AY- YA by B. By 

Eq. (2) there is such a B. We then have 

det(AB - BA) = - d. 

To summarize: In the equation 

C=(AB-BA) 

with characteristic roots of A in Q( v% ), we have: det C is a negative norm 

in Q( 6 ) and m is a norm in Q( m ). In particular, this also 

establishes a link between the fields Q(a ) and Q(m ), for - d is a 

norm in Q( v/d ). n 

Theorem 1 as stated here is only part of Theorem 1 in [6]. There it was 

shown that det(AB - BA) is simultaneously a negative norm in Q(d/n ) if B 

has its characteristic roots in Q(“n ). The question then arises: if 

is given, as well as the field Q(G ) in which the 

characteristic roots of A lie, how arbitrary is the field Q( fi ) in which the 
roots of B lie? 

This question is answered by the following theorem:3 

THEOREM 4.4 The numbers m,n satisfy the relation 

4mn=r2-d, TEQ. 

%is follows by an easy computation and is expressed in one of the properties of Hilbert’s 
norm residue symbol. 

%n connection with Theorems 4 and 5 advice by J. Carroll, I-I. Kisilevsky . H. Zassenhaus 
and E. C. Dade was helpful. 

‘Here we have to be careful about the meaning of m and n. For when talking about Q( G ), 
the number m is given up to a square factor. What we need for m here is the discriminant of the 
characteristic polynomial of the matrix in question. 
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Hence mn is a rwrm in Q( a ) of a special nature, and d is a norm in 

QP’mn )a 

Proof of Theorem 4. In the proof of Theorem 3 it is shown that 

4m=(x,, - x2,,)’ - 4dxtz = norm(a) withaEQ(fl), (6) 

4n=(y,,-y,)‘-4dy&=norm(j3) withpEe( (7) 

Further, via (4): 

“P=[(x,,-X22)y12-(yll-y22)xl2h].2~ +r=2* +r, (8) 

where cu,p are each chosen as one of the two conjugates of the two elements 
in (6), (7), and r is a rational number. Taking norms in (8) leads to the result. 
The number r can be obtained by using (6) and (7) again, leading to 

r= (x11- +A( yll- ~22) - 442 ~12. (9) 

Among problems that remain is a more detailed study of the quadratic 

fields Q( d/m ). Q( fi ) in which d can be norm simultaneously. It is known 
that such a number need not be a norm of the biquadratic field Q( G , Vii ) 

with respect to Q; for an example see [2]. See also [3] and [4] for a general 
study of such questions. 

Here the following result will be obtained in the special case under 
consideration. 

THEOREM 5. Let d= -det(AB- BA), where A,B are 2X2 integral 
matrices, and where the characteristic polynomial of A is x2- m and that of 
B is x2 - n, m, n E Z, and neither a squure. Then d is a norm in Q(G , fi ) 

if and only if there is an ideal in the ideal class in Z [G ] corresponding to 

the matrix A and an ideal in the ideal class in Z [v% ] corresponding to the 
matrix B such that the quotient of their norms is a relative norm of an 

element of Q (G ,6 ) with respect to Q (G ). 

Proof. For the definition of matrix classes and their correspondence with 
ideal classes see [7]. There it is shown that the principal class in Z[G ] 

corresponds to the class of the companion matrix of x2- m. Further it is 
shown that the matrix class corresponding to any ideal class is obtained from 
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a similarity carried out on the companion matrix via an ideal matrix of an 
ideal in the ideal class in question. The determinant (later called A in this 
proof) of an ideal matrix is the norm of the ideal. (Since multiplication by 
unimodular matrices is permitted for ideal matrices, this determinant may 
actually be assumed positive.) Let M be the ideal matrix with determinant 
AM which transforms A into its companion matrix, and let N be the ideal 
matrix with determinant AN, which transforms B into its companion matrix. 
Replace A by M - ‘AM and I3 by N - ‘BN and then apply a similarity via M to 
AB-BA leading to 

(i :)--I( H ~)NM-~-MN-( i :)NM-l( z :). 

. 

A straightforward computation gives 

d= -det(AB-BA)=X(A,/AN)Z([na”-c2-m(-nb2+d2)]2 

-m(2n~b-2cd)~] =X(A,/A,)2normX, 

where “norm” here means from Q( 6 ) to Q, and where 

Put 
A=c2+md2-nu2-mnb2+6 (2cd-2ah). 

cu=c+dG +afi +b%, 

??=c+dG -a6 -bG. 

Then aZ =X. Hence d is a norm in Q( 6 ,6 ) with respect to Q if and 
only if A or -A is a relative norm from this field with respect to Q. This 
proves Theorem 5. W 

An analogous fact holds for Q (fi ), Q (G ). 

REMARK. If 2 = XY - YX and X has rational roots, then these roots can 
be chosen arbitrarily. This is a special case of a theorem proved in [l]. 
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