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ABSTRACT

The expression of det (AB-BA) as a norm in both (Q(Vm ) and Q (Vn ) for 2X2

rational matrices with characteristic roots in Q (Vm ), resp. Q(Vn ), is studied here
further, see [1]. A necessary and sufficient condition for this element to be also a

norm in Q(Vm , Vn ) is obtained.

In a recent note [6] the following fact was proved:

TrEOREM 1. Let A,B be integral 2X2 matrices. Let the characteristic
roots of A be a,a’, assumed irrational. Then the determinant of AB— BA is a
negative norm in Q(a).

This is now complemented by the following result, which concerns
rational matrices. Although Theorem 1 dealt with integral matrices, the norm
obtained is, in general, not the norm of an integer. However, the application
of the whole investigation is of a number theoretic nature. For, expressing a
rational number as a norm in a quadratic field leads to the solution of a
ternary diophantine equation ax®+ by®+ cz*>=0, where a, b, c are integers.

TuEOREM 2. Every negative norm in a quadratic field Q(Vm ) can be
represented as det(AB— BA), where A,B are 2X2 rational matrices and A

has its characteristic roots in Q(Vm ).

This result will be obtained by an extension of another theorem stated
without proof in [6].

*This work was carried out (in part) under an NSF grant. It was presented at the
International Congress in Vancouver, B.C. in August 1974.
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not a square. If Z is expressed in the form Z=XY~— YX, where X,Y are
rational matrices,! then X can be so chosen that its characteristic roots lie in

a field Q(VM ), where M is an arbitrary norm in Q(Vd ).

THEOREM 3. Let Z be the matrix ( ), where d is a rational number,

Proof of Theorem 3. Let

X=( i1 X )’ Y=( Yu Yo )
X31  Xag Y21 Yoo

then
Z=XY—-YX= ( i e )
221 Rgg
where
211 = T 9= Xy9 Y1 T X1 Yi9» (1)
Z19= (%1; — 2g9) Y10 — Yu— yzz)xm: (2)
Ry = — (%)~ Xoo) Yoy + (Y11 — Yao) %y (3)
IfZ=(0 1), then
d 0
211 =0, z=1, 2y =d. (4)

The number z;; can be considered as the negative determinant of the last
two linear equations defined by (4) with x;, — x,5, y,,— 5, as unknowns.
Since z;; =0, we have

—dy;,=Ya1, — dxyy=1xy). (5)

It further follows that both x; — x5, x,, can be chosen arbitrarily. Hence the
characteristic roots of X lie in the field generated by the square root of

(tr X)?— 4det X = (x;, — x55)* —4dx%, which is an arbitrary norm in Q(Vd ).
This proves Theorem 3. |

Proof of Theorem 2. Let d,m be given rational numbers, not squares,

and let d be a norm in Q(Vm ). Express (O 1 ) in the form XY — YX, where
d o0

YThis is possible, by a theorem of Shoda [5].
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by Theorem 3 the characteristic roots of X are arbitrary norms in Q(Vd ).
Since d is a norm in Q(Vm ), it follows that m is a norm in Q(Vd ).2 Hence

the matrix X can be chosen with characteristic roots in Q(Vm ). (The
rational parts of the roots of X are arbitrary too, since a rational scalar matrix
may be added to X without changing x;; — x5, %;,.) Denote this matrix by A,

and any matrix Y which satisfies the equation (0 1 ) =AY - YA by B. By
d o

Eq. (2) there is such a B. We then have

det(AB—BA)= —d.
To summarize: In the equation

C=(AB-BA)

with characteristic roots of A in Q(Vm ), we have: detC is a negative norm
in Q(Vm) and m is a norm in Q(V —detC ). In particular, this also
establishes a link between the fields Q(Vd ) and Q(V—d ), for —d is a
norm in Q(\/E ) [

Theorem 1 as stated here is only part of Theorem 1 in [6]. There it was
shown that det(AB— BA) is simultaneously a negative norm in Q(Vn ) if B
has its characteristic roots in Q(Vn ). The question then arises: if

01
d o

characteristic roots of A lie, how arbitrary is the field Q(Vn ) in which the
roots of B lie?
This question is answered by the following theorem:3

AB—BA=( ) is given, as well as the field Q(Vm ) in which the

THEOREM 4.*  The numbers m,n satisfy the relation
dmn=r*—d, reQ.
®This follows by an easy computation and is expressed in one of the properties of Hilbert’s
norm residue symbol.

3In connection with Theorems 4 and 5 advice by J. Carroll, H. Kisilevsky, H. Zassenhaus
and E. C. Dade was helpful.

“Here we have to be careful about the meaning of m and n. For when talking about Q(Vm ),
the number m is given up to a square factor. What we need for m here is the discriminant of the
characteristic polynomial of the matrix in question.
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Hence mn is a norm in Q(Vd) of a special nature, and d is a norm in
Q(Vmn).
Proof of Theorem 4. In the proof of Theorem 3 it is shown that

Am=(x); — xp) —4dx%,=norm(a)  witha€Q(Vd), (6)

dn=(y;,—yp) —4dyh=nom(B) withBeQ(Vd).  (7)

Further, via (4):

af=[(x1— %e0) Yro— (Y11 — yzz)"m}‘]'m/z +r=2Vd +r, (8)

where a, 8 are each chosen as one of the two conjugates of the two elements
in (6), (7), and r is a rational number. Taking norms in (8) leads to the result.
The number r can be obtained by using (6) and (7) again, leading to

r={x;— %) (Y1 — yzz) —4dx,5 3o 9)
|

Among problems that remain is a more detailed study of the quadratic

fields Q(Vm ), Q(Vn ) in which d can be norm simultaneously. It is known
that such a number need not be a norm of the biquadratic field Q(Vm ,Vn )
with respect to Q; for an example see [2]. See also [3] and [4] for a general
study of such questions,

Here the following result will be obtained in the special case under
consideration.

THEOREM 5. Let d= —det(AB— BA), where A,B are 2X2 integral
matrices, and where the characteristic polynomial of A is x>~ m and that of
B is x>—n, m,n € Z, and neither a square. Then d is a norm in Q(Vm ,Vn)

if and only if there is an ideal in the ideal class in Z[Vm | corresponding to

the matrix A and an ideal in the ideal class in Z[Vn ] corresponding to the
matrix B such that the quotient of their norms is a relative norm of an

element of Q(Vm ,Vn) with respect to Q(Vm ).

Proof. For the definition of matrix classes and their correspondence with
ideal classes see [7]. There it is shown that the principal class in Z[Vm ]
corresponds to the class of the companion matrix of x>—m. Further it is
shown that the matrix class corresponding to any ideal class is obtained from
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a similarity carried out on the companion matrix via an ideal matrix of an
ideal in the ideal class in question. The determinant (later called A in this
proof) of an ideal matrix is the norm of the ideal. (Since multiplication by
unimodular matrices is permitted for ideal matrices, this determinant may
actually be assumed positive.) Let M be the ideal matrix with determinant
A,, which transforms A into its companion matrix, and let N be the ideal
matrix with determinant A,, which transforms B into its companion matrix.
Replace A by M ~'AM and B by N ~'BN and then apply a similarity via M to
AB-BA leading to

(0 l)MN“l(O I)NM_I—MN_l(O I)NM‘I(O 1).
m 0 n 0 n 0 m 0

Let NM~1=(9 b].
c d

A straightforward computation gives
d= —det(AB—BA)= X(AM/AN)z{ [na®—c®—m(—nb®+ d2)]2

—m(2nab —2cd)2} = X(AM/AN)znorm}\,

where “norm” here means from Q(Vm ) to Q, and where

A=c?+md®—-na®— mnb®+Vm (2cd —2abn).
Put

a=c+dVm +aVn +bVmn ,

a=c+dVm —avVn —bVmn .

Then aa@=A. Hence d is a norm in Q(Vm ,Vn ) with respect to Q if and
only if A or —A is a relative norm from this field with respect to Q. This
proves Theorem 5. |

An analogous fact holds for Q (Vn ), Q (Vmn).

Remark. If Z=XY— YX and X has rational roots, then these roots can
be chosen arbitrarily. This is a special case of a theorem proved in [1].
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