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SUMMARY

Despite the importance of the discharge frequency in
neuronal communication, little is known about the
firing-rate patterns of cortical populations. Using
large-scale recordings from multiple layers of the
entorhinal-hippocampal loop, we found that the firing
rates of principal neurons showed a lognormal-like
distribution in all brain states. Mean and peak rates
within place fields of hippocampal neurons were
also strongly skewed. Importantly, firing rates of
the same neurons showed reliable correlations in
different brain states and testing situations, as well
as across familiar and novel environments. The frac-
tion of neurons that participated in population oscil-
lations displayed a lognormal pattern. Such skewed
firing rates of individual neurons may be due to a
skewed distribution of synaptic weights, which is
supported by our observation of a lognormal distri-
bution of the efficacy of spike transfer from principal
neurons to interneurons. The persistent skewed
distribution of firing rates implies that a preconfig-
ured, highly active minority dominates information
transmission in cortical networks.

INTRODUCTION

The dominant communication across neurons occurs via spikes.

Yet, despite the central role of spiking activity in transmitting

information, only limited data about the firing rates of unbiased

neuronal populations in intact networks are available (Hromádka

et al., 2008; O’Connor et al., 2010). It is generally assumed that

cortical principal cells fire sparsely, involving only a small per-

centage of spiking neurons in most situations while the majority

of the population remains silent (Levy and Baxter, 1996; Wolfe

et al., 2010). The term ‘‘sparse coding’’ refers to amodel in which

a small fraction of neurons is engaged in any situation, as

opposed to a dense population code in which the firing-rate fluc-

tuations of individual members represent the input (Olshausen

and Field, 1997). In this postulated high signal-to-noise ratio

scheme, slow-firing neurons contribute largely unwanted noise,

which is viewed as an inevitable consequence of brain organiza-
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tion (Lisman, 1997; Shadlen and Newsome, 1998) rather than

information. In one possible solution for sparse coding, a small

fraction of cortical neurons are active under diverse circum-

stances, but the active subset varies flexibly across brain states

and situations. Alternatively, a largely heterogeneous group of

neurons in each cortical layer may form a ‘‘skeleton’’ network

in which firing rates are largely determined by the intrinsic prop-

erties of individual neurons and/or their distinct wiring. Under the

latter scenario, largely the same fraction of cells would be active

under all conditions and the information carried by their spikes

could be represented by the deviation of their firing rate or timing

from an overall default pattern. To determine whether cortical

networks deploy an egalitarian or an inequitable solution, we

must first have quantitative knowledge about the firing-rate dis-

tributions of unbiased populations in different conditions (Barth

and Poulet, 2012).

Firing patterns in the hippocampus and entorhinal cortex (EC)

are affected by a variety of factors. Place cells of the hippocam-

pus fire clusters of spikes in their typically singular place fields

(O’Keefe and Nadel, 1978), whereas grid cells in the EC have

multiple fields that form a periodic triangular array, or grid (Haft-

ing et al., 2005). However, little is known about the mechanisms

that control the firing-rate distribution in the population. A main

reason for this caveat is that definitions of the various spatial

and nonspatial features are typically based on an experi-

menter-determined threshold and, as a consequence, neurons

with low rates are often excluded because, viewed one by

one, they typically do not yield statistically reliable behavioral

correlations (Krupic et al., 2012). Thus, it has remained unclear

whether the ‘‘representative’’ examples reflect the mean

behavior of a homogeneous neuronal population or the high

end of a heterogeneous distribution. It is essential to address

this question in order to understand the nature of communica-

tion across neuron populations (Battaglia et al., 2005; Hromádka

et al., 2008; Barth and Poulet, 2012; Song et al., 2005; Ikegaya

et al., 2012; Yassin et al., 2010). Using a large database of phys-

iologically characterized neurons (Mizuseki et al., 2009, 2011,

2012; Pastalkova et al., 2008; Diba and Buzsáki, 2008), we

examined the firing-rate distributions of principal cells and puta-

tive interneurons in the main layers of the EC and hippocampal

subregions in waking and sleeping rats. The analyses revealed

a strongly skewed distribution of neuronal firing rates in all sub-

regions that remained largely similar across different brain states

and testing environments.
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Figure 1. Lognormal Firing-Rate Distribution of Principal Cells

(A) LFP and spiking activity of CA1 and EC neurons. Dots above the CA1 LFP during SWS represent ripple oscillations. Note trains of spikes followed by long

silence periods in the waking rat and strong population synchrony during ripples. Colored ticks: principal neurons; gray and black ticks (i): interneurons.

(B) Distribution of firing rates of individual CA1 pyramidal cells in different brain states. Note log x axis. Distribution during RUN extends to both left and right

relative to SWS. Dots: data; lines: lognormal fit.

(C) Lorenz plots of the distribution of firing rates. Inset: Illustration of the Gini coefficient, which is determined by dividing A (the area between the line of equity and

the Lorenz curve) by the areas marked with A and B.

(D) Gini coefficients in different hippocampal regions and EC layers in different brain states (mean ± SEM). Brackets indicate significant differences (p < 0.05;

ANOVA, followed by Tukey’s test).

(B–D) The same color codes for brain states are used.

See also Figure S1.
RESULTS

Analyses were performed on a database of 7,327 neurons in the

EC and hippocampus of 11 rats. Local field potentials (LFPs)

and unit firing were recorded by multiple-shank silicon probes

(Mizuseki et al., 2009; Fujisawa et al., 2008) from the hippocam-

pal CA1 and CA3 pyramidal layers and dentate gyrus (DG). In

four animals, recordings were made simultaneously in CA1

and in multiple layers of the medial EC. Histological localization

of the electrodes, criteria for clustering of single units, and sep-

aration of principal neurons and interneurons in these animals

were previously described in detail (Mizuseki et al., 2009; Diba

and Buzsáki, 2008). Recordings were carried out while the ani-

mal ran on various maze configurations (Mizuseki et al., 2009,
Cell Re
2011, 2012; Pastalkova et al., 2008; Diba and Buzsáki, 2008)

and theta periods from all maze behaviors were lumped

together as ‘‘RUN.’’ Periods without theta were concatenated

as immobility or consummatory behaviors (IMMs). Additional

recordings were carried out during sleep, including several

epochs of rapid eye movement (REM) sleep and slow wave

sleep (SWS) in the animal’s home cage (Mizuseki et al., 2011,

2012).

Long-Tail, Skewed Distribution of Firing Rates of
Principal Cells and Interneurons
Both hippocampal and EC neurons showed characteristic

population firing patterns during different brain states (Figure 1A;

Csicsvari et al., 1999), but the directions of rate changes differed
ports 4, 1010–1021, September 12, 2013 ª2013 The Authors 1011



RUN
REM

SWS
IMM

0

200

400

N
um

be
r o

f c
el

ls

0

50

100

0

400

800

N
um

be
r o

f c
el

ls

0

100

200

Burst event rate (Hz) Burst index

A B

10.10.010.0010.0001

1AC1AC

CA3CA3

10.10.010.001 11000.0 0.10.010.001

10.10.010.00110.10.010.0010.0001

Figure 2. Spike Bursts of Principal Cells in Different Brain States

(A) Distribution of burst-event rates of individual CA1 and CA3 pyramidal cells

in different brain states (three spikes or more at %8 ms intervals).

(B) Distribution of burst indexes (number of spikes in bursts divided by the

number of all spikes) of individual CA1 and CA3 pyramidal cells in different

brain states.

See also Figure S2.
between the two regions. Whereas the overall rates of hippo-

campal principal neurons were lowest during REM sleep, EC

neurons fired maximally during REM (Figure S1). A comparison

of individual principal neurons revealed a three orders of magni-

tude range of the mean firing rates from 0.001 Hz to 10 Hz (Fig-

ure 1). The firing-rate distribution of CA1 pyramidal cells strongly

deviated from Gaussian and showed an excellent fit to

lognormal pattern during SWS. The distributions of log firing

rate during other brain states were asymmetric, with long and

heavy tails toward lower frequencies (Figure 1B). The right tail

also extended significantly toward higher rates during RUN

(the proportion of >2 Hz neurons is largest during RUN; RUN =

12.3%, REM = 6.0%, IMM = 7.1%, SWS = 5.7%; chi-square

test, p < 0.00001).

Firing-rate inequality among individual neurons can be quanti-

tatively described by Lorenz statistics (O’Connor et al., 2010;

Ikegaya et al., 2012). The Lorenz curve of the firing-rate distribu-

tion characterizes the cumulative spike share of individual neu-

rons of the population, as shown in Figure 1C. In this display,

the diagonal (x = y) indicates that all neurons have the same firing

rate. The magnitude of the deviation from equality is quantified

by the Gini coefficient (Figure 1C, inset); the higher the coeffi-

cient, the more unequal is the share of the number of spikes (Ike-

gaya et al., 2012). For example, during RUN, 70.4% of the

recorded CA1 pyramidal cells had amean rate of <1 Hz, whereas

a small fraction of strongly active pyramidal cells (13.3%)

contributed to 50% of all spikes. Remarkably, the brain-state

dependence of the firing-rate inequality was similar for the prin-

cipal cells in all regions of the hippocampus and all layers of the

EC, i.e., Gini coefficients were higher during awake states (RUN

and IMM) than during sleep states (REM and SWS; Figure 1D).

The firing-rate distributions in all regions and layers across be-

haviors are shown in Figure S1. In summary, the firing rates of
1012 Cell Reports 4, 1010–1021, September 12, 2013 ª2013 The Au
hippocampal and EC principal neurons displayed strongly

skewed firing-rate distributions, with the widest frequency range

of individual neurons in waking animals.

Skewed Distribution of Spike Bursts of Principal Cells
In addition to single spikes, pyramidal neurons also fire complex

spike bursts. It has been suggested that generation of bursts is

enhanced under special conditions (Harris et al., 2001), and

that bursts play a distinct role in plasticity (Magee and Johnston,

1997; Thomas et al., 1998; Pike et al., 1999, Harris et al., 2001)

and computation (Lisman, 1997; Thomson, 2000). Therefore,

revealing the burst-event rate of unbiased neuronal populations

is essential for understanding their role in circuit operations.

Burst is defined here as a series of three or more spikes with

<8 ms interspike intervals (Harris et al., 2001; Mizuseki et al.,

2012). The burst-event rate of individual neurons also showed

a lognormal-like distribution (Figure 2A), as did the distribution

of the burst index, defined as the ratio of spikes within bursts

to all spikes (Mizuseki at al., 2012; Figure 2B). The burst index

was highest during SWS for all EC and hippocampal principal

cells (Figure S2A; p < 0.05 for all brain regions but the DG; Krus-

kal-Wallis ANOVA, followed by Tukey’s honestly significant dif-

ference test). A small fraction of CA1 (RUN = 0.4%, REM =

3.1%, IMM = 0.5%, SWS = 2.9%) and CA3 (RUN = 0.8%,

REM = 2.1%, IMM = 0.9%, SWS = 4.1%) pyramidal cells were

‘‘superbursters,’’ since >50% of the spikes they emitted were

classified as bursts. The burst index was weakly but significantly

correlated with the firing rate (p < 0.011; Figures S2B and S2C).

Essentially identical results were obtained using <6ms or <10ms

interspike intervals for the identification of burst events.

Skewed Distribution of Hippocampal Place Cell Firing
The spontaneous and evoked firing patterns of cortical neurons

are often dramatically different, although these patterns may be

related to each other. Since place-related firing can be

conceived of as a specific, environment-driven activity (O’Keefe

and Nadel, 1978), we examined the place-related activity of

pyramidal cells at increasing levels of criteria. Place fields on

the open field were first defined as a continuous region of at least

225 cm2 (nine bins) in which the firing rate was above 10% (or

20%) of the peak firing rate. Restricted subsets of these groups

included only place fields with spatial coherence (Muller and

Kubie, 1989) greater than 0.7 (Hafting et al., 2008; Mizuseki

et al., 2009). The spatial coherence of each firing field was

defined as the correlation of the firing rate in each bin of the firing

field with the firing rate in its neighboring bins to measure local

smoothness of firing rate in space (Muller and Kubie, 1989).

These two steps of restriction created four subgroups of place

cells with the highest (20% and 0.7 spatial coherence) to lowest

(10% and no spatial coherence restriction) quality of place fields.

Irrespective of how we defined the place fields, the mean within-

field firing rates of CA1 and CA3 pyramidal cells showed a

skewed distribution (Figures 3A and S3). Only 4.6% of CA1 pyra-

midal cells (8.4% CA3) sustained R10 Hz within-field rates,

whereas the majority (89.6% CA1; 71.4% CA3) fired below the

mean theta frequency (�8 Hz). Within-place field peak firing

rates also displayed a skewed rate distribution (Figures 3B and

S3). Within-field and peak rates were strongly correlated (CA1,
thors
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Figure 3. Distribution of Firing Rates in Place Cells

(A) Distribution of mean within-field firing rates of CA1 and CA3 pyramidal cells

on the square maze.

(B) Distribution of peak firing rates in field.

R values in panels, correlation coefficients between session (RUN) firing rate,

and mean within-field rate or peak rate. Place fields were defined by >10%

peak firing rate and >0.7 spatial coherence.

See also Figure S3.
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(A) Relationship between log firing rate (RUN) and stability index (pixel-by-pixel

correlation of rate between the first and second halves of a session in the

square maze).

(B) Relationship between log firing rate (RUN) and spatial coherence.

(C) Relationship between log firing rate (RUN) and information rate.

Black circles: place cells (10%, 0.7 coherence criteria); gray circles: other

neurons. Color lines indicate median values for original and downsampled

rates. Only medians are shown for downsampled rates.

See also Figure S4.
R = 0.85; CA3, R = 0.78; Ps < 0.00001), as were the within-field

versus session mean (CA1, R = 0.66; CA3, R = 0.50; Ps <

0.00001) and peak rate versus session mean (CA1, R = 0.66;

CA3, R = 0.48; Ps < 0.00001) rates. Therefore, a skewed distribu-

tion of the firing rate is a fundamental feature of hippocampal

neurons.

Since firing rates may be related to several features of place

cells, we next examined the relationship between log rate and

place features on the square maze. Cell firing stability, defined

as the pixel-by-pixel correlation of firing rates in the first and sec-

ond parts of a session, showed a significant and sigmoid-like

relationship with the log firing rate (Figure 4A; CA1, R = 0.62;

CA3, R = 0.75, Ps < 0.00001). Similarly, the spatial coherence

of firing also displayed a sigmoid-like relationship with the log

firing rate (Figure 4B; CA1, R = 0.71; CA3, R = 0.82; Ps <

0.00001). Another frequently used index, the information rate

(bits per second) of spiking activity (Skaggs et al., 1993), a quan-

tity that defines the relationship between spikes and the rat’s

position on the maze, was also strongly correlated with the log

firing rate (Figure 4C; CA1, R = 0.73; CA3, R = 0.76; Ps <

0.00001). Figure 4 shows both place cells (using the 10% and

0.7 spatial coherence definition; black circles) and other neurons

(gray circles). As expected, very few neurons with low firing rates

met the criteria of place cell definition. On the other hand, not all

fast neurons were classified as place cells either. The correlation

between the log rate of place cells and the information rate was

also significant (CA1, R = 0.77; CA3, R = 0.76; Ps < 0.00001). The

correlation between the log rate of bona fide place cells and the
Cell Re
stability of CA1 place cells was weaker but still significant (r =

0.16, p < 0.001).

Fast-firing neurons may acquire their advantage for spatial

representation simply from their high rates. To test this possibil-

ity, we randomly thinned spikes for each fast-firing neuron so

that the reduced rate was equal to 0.05 Hz to 1 Hz (Figure 4).

Recomputing the analyses described above with the down-

sampled rates dramatically reduced the stability, spatial coher-

ence, and information rate measures to or below the levels of

the neurons that naturally fired at such frequencies (Figure 4).

The magnitude of the loss from downsampling was proportional

to the original frequency. Thus, fast-discharging neurons gain

their efficacy from the high frequency of spikes they emit.

The firing rate was also correlated with the number of place

fields (CA1, R = 0.22; CA3, R = 0.39; Ps < 0.00001), place field

size (CA1, R = 0.41; p < 0.00001; CA3, R = 0.25; p < 0.001),

and phase precession (O’Keefe and Recce, 1993) slope (CA1,

R = 0.11; p < 0.05; Figure S4), adding further support for the

computational advantage of high rates of activity.
ports 4, 1010–1021, September 12, 2013 ª2013 The Authors 1013
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See also Figure S5.
Skewed Distribution of Population Synchrony
Another major network pattern in the EC-hippocampus is the

self-organized sharp wave ripple (SPW-R, 140–180 Hz; Buzsáki

et al., 1992; Csicsvari et al., 2000). We used three indexes to

examine the SPW-R-related firing patterns for each CA1 neuron

during SWS or IMM: (1) the proportion of spikes during SPW-Rs,

defined as the number of spikes during SPW-Rs divided by the

number of all the spikes in that session; (2) the proportion of

SPWs in which each neuron fired, calculated as the fraction of

SPW-Rs in which the neuron fired at least once; and (3) the

mean number of spikes per SPW-R. The number of spikes within

SPW-Rs was divided by the total number of SPW-Rs in that ses-

sion. Each of these indexes showed a lognormal-like distribution

during both IMM and SWS (Figure S5). A small fraction (SWS =

1.4%, IMM = 1.5%) of CA1 pyramidal cells dominated by partici-

pating in 50% of SPW-R events, whereas half of all neurons fired

in <10.6% (SWS; IMM < 9.1%) of SPW-Rs. The proportion of

spikes during SPW-Rs was negatively correlated with the overall

spike rate (SWS R = –0.12; IMM R = –0.56; Ps < 0.00001), indi-

cating that slow-firing CA1 pyramidal cells emitted action poten-

tials predominantly during SPW-R events, when the overall excit-

ability of the EC-hippocampal networks is high (Csicsvari et al.,

2000). The proportion of SPWs in which each neuron fired and

the mean number of spikes per SPW-R were positively corre-

lated with firing rates in both pyramidal cells and interneurons

(R > 0.70; Ps < 0.00001). These results were essentially the

same when the threshold for SPW-R selection was decreased

from >7 SD amplitude to >6, >5, >4, or >3 SD above the mean.

Because SPW-Rs are self-organized events, they provided us

the opportunity to examine how neurons with lognormal-like

firing-rate statistics interact with each other at the population

level. To that end, we computed the fraction of principal neurons
1014 Cell Reports 4, 1010–1021, September 12, 2013 ª2013 The Au
that fired at least one spike in each SPW-R (Figure 5), using five

different groups of SPW-R magnitude (thresholds of >7, >6, >5,

>4, or >3 SD above the mean). Only sessions withR50 simulta-

neously recorded CA1 pyramidal cells were included in these

analyses (15 sessions with five animals). Independently of the

applied threshold, themagnitude of SPW-R synchrony displayed

a skewed distribution during both SWS and IMM (Figure 5B).

Population synchrony of neurons was strongly correlated with

the peak power (for >3 SD events, SWS R = 0.45, IMM R =

0.49; Ps < 0.00001) or the mean power of the SPW-Rs (SWS

R = 0.41, IMM R = 0.49; Ps < 0.00001).

To examine the distribution of population synchrony outside

SPW-Rs, we plotted the proportion of principal neurons of CA1

and CA3 pyramidal cells that fired together in 10, 20, 50, 100,

or 200 ms time bins. Similar to the analysis of synchrony during

SPW-R events, the magnitude of population synchrony showed

lognormal-like distribution in all brain states (data not shown).

These findings demonstrate that the magnitude of neuronal

synchrony during self-organized SPW-R and theta oscillations

also follows lognormal statistics.

Firing-Rate Correlations across Brain States and
Testing Conditions
The small fraction of highly active neurons can vary from state to

state, or the rate distributionmay reflect a relatively ‘‘fixed’’ prop-

erty of neurons (Barth and Poulet, 2012). To differentiate be-

tween these possibilities, we first compared the firing rates

across different brain states. The firing rates of individual prin-

cipal cells were robustly correlated between SWS and REM (Fig-

ure 6A; RSWS-REM, CA1 = 0.78, CA3 = 0.82, DG = 0.67, EC2 =

0.89, EC3 = 0.87, EC5 = 0.67; Ps < 0.00001, t test; Csicsvari

et al., 1999; Hirase et al., 2001) as well as across other states

in all regions (RSWS-RUN, CA1 = 0.57; CA3 = 0.65, DG = 0.74,

EC2 = 0.23, EC3 = 0.28, EC5 = 0.33; RSWS-IMM, CA1 = 0.58,

CA3 = 0.66, DG = 0.82, EC2 = 0.23, EC3 = 0.33, EC5 = 0.37,

RREM-RUN, CA1 = 0.49, CA3 = 0.60, DG = 0.82, EC2 = 0.30,

EC3 = 0.37, EC5 = 0.32; RREM-IMM, CA1 = 0.50, CA3 = 0.57,

DG = 0.82, EC2 = 0.26, EC3 = 0.39, EC5 = 0.31, RRUN-IMM,

CA1 = 0.90, CA3 = 0.89, DG = 0.88, EC2 = 0.94, EC3 = 0.94,

EC5 = 0.89; Ps < 0.00001). In a second comparison, we tested

the rate changes of CA1 and CA3 pyramidal cells while the ani-

mal successively performed in two different familiar mazes in

the same room (Figures 6B and S6; n = 6 rats; ‘‘rate remapping’’;

Leutgeb et al., 2005) or ran in opposite directions on a linear-

track maze (Figures 6D and S6; ‘‘global remapping’’; Leutgeb

et al., 2005). Again, we found that log firing rates of the neurons

across the different testing situations were robustly conserved

(CA1, RMaze A-Maze B = 0.65; CA3, RMaze A-Maze B = 0.59, Ps <

0.00001) and between two directions of linear maze runs (CA1,

RLeft-Right = 0.62; CA3, RLeft-Right = 0.51, Ps < 0.00001). Even

the correlation between linear firing rates was significant (CA1,

RMaze A-Maze B = 0.59, CA3, RMaze A-Maze B = 0.26, Ps <

0.00001; CA1, RLeft-Right = 0.48, CA3, RLeft-Right = 0.20, Ps <

0.00001). In addition to firing rates, the burst index of neurons

was also preserved across two different mazes (Figure 6C;

CA1, RMaze A-Maze B = 0.63; CA3, RMaze A-Maze B = 0.57; Ps <

0.00001). Finally, we compared log firing rates between familiar

and novel environments. Log firing rates during RUN in familiar
thors
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Figure 6. Preserved Firing Rates of Principal Neurons across Brain States and Distinct Environments

(A) Comparison of firing rates of the same neurons during SWS and REM in different hippocampal regions and EC layers.

(B) Comparison of firing rates of the same neurons in different mazes.

(C) Comparison of burst indexes in different mazes.

(D) Comparison of firing rates during left and right runs on the linear track (‘‘global remapping’’).

(E) Firing-rate comparison between RUN in familiar maze and SWS in the home cage either before or after the maze session.

(F) Comparison of firing rates of the same neurons in familiar and novel mazes.

(G) Comparison between firing rates during exploration of a novel maze (RUN) and SWS in the home cage either before or after the maze session.

(A–G) Each dot represents a single principal neuron. R values are correlation coefficients of log firing rates. All correlations were significant (p < 0.00001).

See also Figure S6.
and novel mazes were significantly correlated (Figure 6F; CA1,

Rfamiliar-novel = 0.68, p < 0.00001; linear rate Rfamiliar-novel = 0.32,

p < 0.002, four sessions). A comparison between RUN and

SWS both before and after the behavioral performance in the

familiar maze (Figure 6E) also yielded significant log rate correla-

tions (CA1, RSWS before-RUN = 0.55, RSWS after-RUN = 0.53; CA3,

RSWS before-RUN = 0.59, RSWS after-RUN = 0.61; Ps < 0.00001). Simi-

larly, log firing rates were highly correlated between RUN and

pre-RUN SWS or post-RUN SWS when exploration took place

in a novel environment (Figure 6G; ten sessions with four ani-

mals, CA1 RSWS before-RUN = 0.46, RSWS after-RUN = 0.52, Ps <

0.00001; CA3 RSWS before-RUN = 0.59, RSWS after-RUN = 0.65,

Ps < 0.0005). The largest variability across brain states occurred

in the slow-firing population, since many of the slow-firing neu-

rons during SWS became silent during RUN (Thompson and
Cell Re
Best, 1989). The significant rate correlations across states and

testing environments, and especially between SWS before the

novel experience and exploration of the novel environment,

imply that the firing rate of individual neurons is relatively ‘‘fixed.’’

Spike Transmission between Principal Neurons and
Interneurons
Several computational models suggest that the lognormal distri-

bution of synaptic strengths observed between neurons in vitro

(Song et al., 2005) should give rise to skewed distributions of

firing rates in vivo (Ikegaya et al., 2012; Koulakov et al., 2009;

Roxin et al., 2011). Unfortunately, to date, no method exists for

the direct measurement of synaptic strengths in a behaving

animal. An indirect estimation can be obtained by quantifying

the spike transmission probability between neuron pairs under
ports 4, 1010–1021, September 12, 2013 ª2013 The Authors 1015
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Figure 7. Spike Transmission Probability

Distributions in Different Brain States

(A)Monosynaptic drive of a putative interneuron by

a pyramidal cell. Left: superimposed filtered

waveforms (800 Hz to 5 kHz) of a pyramidal cell

(pyr) and an interneuron (int) triggered by spiking of

a pyramidal cell. The two neurons were recorded

from different silicon probe shanks. Right: three

example cross-correlograms showing short-

latency, putative monosynaptic interactions be-

tween CA1 pyramidal-interneuron pairs (recorded

from two different electrodes). The first example

corresponds to the left filtered waveforms. Dashed

red lines indicate 0.1% and 99.9% global confi-

dence intervals estimated by spike jittering at a

uniform interval of [�5, 5] ms (Fujisawa et al.,

2008); blue, mean. Note the different magnitude

probability scales. Bottom row: shuffling corrected

histograms of the same neuron pairs.

(B) Distribution of spike transmission probability

values (note log scale) between CA1 pyramidal

cells and putative interneurons in different brain

states. Circled numbers indicate the probability

values shown in (A).

(C) Comparison of spike transmission probability

between RUN and SWS. Note larger values during

RUN. Each dot represents a single cell pair.

(D) Spike transmission probability between prin-

cipal cells and putative interneurons in the CA1,

CA3 regions and EC (neuron pairs from EC layers

were combined) in different brain states. Median,

lower, and upper quartiles are shown. Brackets

indicate significant differences (p < 0.05, Kruskal-

Wallis ANOVA, followed by Tukey’s honestly sig-

nificant difference test).

See also Figure S7.
the assumption that the magnitude of spike transmission, as

measured in short-time spike cross-correlations, is proportional

to the synaptic weight between them (Figure 7A; Experimental

Procedures; Mizuseki et al., 2009; Fujisawa et al., 2008; Marshall

et al., 2002; Barthó et al., 2004; Maurer et al., 2006; Dupret et al.,

2013). Of the 32,406 principal neuron-interneuron cell pairs

examined, 2,163 showed significant peaks within <4 ms

(CA1 = 1,183 of 17,234; CA 3 = 368 of 6,412; EC = 612 of

8,760 cell pairs). The magnitude of the peak (i.e., the excess

numbers of postsynaptic spikes divided by the number of pre-

synaptic spikes, reflecting the efficacy of spike transmission

probability) of the cross-correlogram was taken as a proxy for

the synaptic strength between the neurons (Figure 7A).

Spike transmission efficacy showed a large variability across

pairs, with the majority of pairs weakly coupled and a small

minority strongly coupled, as quantified by the lognormal-like
1016 Cell Reports 4, 1010–1021, September 12, 2013 ª2013 The Authors
distribution of efficacy values (Figures

7B and S7A). Spike transmission efficacy

was brain-state dependent, with the

strongest efficacy during RUN and REM,

and the weakest efficacy during SWS in

CA1 (Figures 7C, 7D, and S7B; p < 0.05,

Kruskal-Wallis ANOVA, followed by

Tukey’s honestly significant difference
test). Overall, these findings support the hypothesis that synaptic

weight distribution is strongly skewed in the cortex (Song et al.,

2005; Sayer et al., 1990; Mitra et al., 2012).

DISCUSSION

We have found that the distribution of firing rates, burst dis-

charges, and spike transmission probability between principal

cells and interneurons have an approximately lognormal distri-

bution in the EC and hippocampus. In all regions and layers

examined, the firing-rate distribution was skewed in all brain

states. Firing rates and bursts were correlated across brain

states, between familiar environments, and even between

familiar and novel environments. The magnitude of population

synchrony during ripple events, reflecting the network-level

cooperation of many individual neurons, was also strongly



skewed. These findings suggest that a preconfigured, skewed

firing-rate distribution of the population is a robust and important

aspect of cortical computation.

A Preserved Minority of Neurons Is Active in All Brain
States and Environments
Hippocampal neurons in different environments typically

‘‘remap,’’ and thus the firing-rate population vectors in each sit-

uation are unique (Leutgeb et al., 2005; Muller and Kubie, 1987;

Samsonovich andMcNaughton, 1997). Against this background,

the highly conserved firing rates across brain states and testing

situations are surprising but not exclusive. Our findings thus indi-

cate that such environment-induced changes are superimposed

on relatively stable discharge rates of individual neurons.

An unexpected finding of our experiments is that a minority of

highly active and bursting neurons are responsible for nearly half

of the spikes in any time window. This highly active subgroup

may be responsible for a reliable propagation of activity in multi-

ple layers of the feed-forward EC-hippocampal network (Mizu-

seki et al., 2009). Equally important is our observation that the

remaining half of the action potentials in a given time window

is contributed by a very large fraction of slow-discharging

neurons. The activity of this majority may be critical for optimal

performance. In addition, the slow-firing majority may serve to

provide excitation to interneurons and thereby secure a sufficient

level of inhibition to counter the effects of the fast-firing minority.

Such a balance mechanism may be essential to maintain a self-

organized, sustained activity in large-scale networks. In support

of this hypothesis, a skewed distribution of synaptic weights has

been shown to be critical for stabilizing neuronal circuits in tissue

cultures (Mitra et al., 2012), and elimination of either a large frac-

tion of weakly coupled and slow-firing neurons or a minority of

very active cells was sufficient to abort ongoing network activity

in computer models (Ikegaya et al., 2012; Izhikevich et al., 2004).

In the present experiments, brain state and environmental influ-

ences affected mostly slow-firing neurons, in line with previous

observations (Dragoi et al., 2003). Sleep may be a critical state

to differentially affect slow-firing neurons and weak synaptic

connections while preserving the strongly firing minority ‘‘core’’

(Tononi and Cirelli, 2006; Grosmark et al., 2012). It remains for

future research to identify the conditions that may convert slowly

discharging neurons to highly active ones and vice versa (Hirase

et al., 2001; Battaglia et al., 2005; Mankin et al., 2012; Ziv et al.,

2013).

Skewed Distribution of Spike Transmission Probability
How does the lognormal pattern of firing rates arise? A

suggested possibility is that many highly efficient synapses

converge on aminority of cells (Barth and Poulet, 2012; Koulakov

et al., 2009; Loewenstein et al., 2011). Indeed, the distribution of

synaptic strengths between cortical cells is strongly skewed

(Song et al., 2005; Ikegaya et al., 2012; Sayer et al., 1990; Feld-

meyer et al., 2002; Arellano et al., 2007). Such a large variation of

synaptic efficacy can be structurally related to the lognormal

distribution of dendritic spine sizes of cortical neurons (Loewen-

stein et al., 2011). Our findings regarding the skewed distribution

of spike transmission probability between pyramidal cells and

interneurons provide further support for this idea. A second
Cell Re
possibility is a disproportional distribution of excitatory and

inhibitory inputs to neurons (Yassin et al., 2010). An additional

source of rate variability may be the skewed distribution of mem-

brane conductances across neurons (Narayanan and Johnston,

2012). The lognormal-like distribution of burst rates supports the

latter hypothesis since burst occurrence depends largely on the

intrinsic properties of neurons (Harris et al., 2001; Jarsky et al.,

2008). In light of previous observations (Yassin et al., 2010),

our findings suggest that the rate distribution of principal neu-

rons may also indicate how neurons are embedded in cortical

circuits. Targeted recordings from fosGFP transgenic mice

in vivo showed that neurons that had previously expressed

c-fos, and thus were labeled byGFP, fired faster than nonlabeled

neurons in layer 2/3 of primary sensory cortex. Importantly, the

highly active fosGFP+ neurons were connected to each other

more frequently than fosGFP� neurons (Yassin et al., 2010), sug-

gesting that the high-firing and strongly bursting minority may

form special highly active subnetworks.

CONCLUSIONS

The skewed distribution of the discharge rate of cortical neurons

has important consequences for the interpretation of neuronal

interactions. First, lumped models of cortical operations using

neurons with ‘‘representative’’ activity cannot adequately

describe network functions because there is no physiologically

meaningful ‘‘mean’’ or ‘‘typical’’ rate for cortical neurons. Sec-

ond, hypotheses about sparse and energy-efficient coding

mechanisms should be supported by recordings from large pop-

ulations of neurons because the mean rates of a small group of

cells cannot describe the true population behavior of neurons

or predict the mechanisms that bring about the activation of their

targets (Mizuseki et al., 2009). Third, comparisons of mean rate

distributions across testing conditions should not use statistics

that require Gaussian distribution as a precondition. Fourth,

high-firing-rate neurons are important because they carry more

information. Reducing the spike rates of fast-firing neurons led

to a loss of their advantage in spatial coherence, stability, and

spatial information rate, indicating that the source of their gain

is their high-frequency firing. The highly active minority and the

slow-firing majority may be wired differently or possess highly

distinct intrinsic biophysical properties (Barth and Poulet,

2012; Dragoi and Tonegawa, 2011; Lee et al., 2012). An impor-

tant goal for future research is to explore the physiological

mechanisms that underlie the continuum of the lognormal rule

of synaptic efficacy and firing-rate distributions, and to elucidate

how gene expression and molecular, morphological, and circuit

properties interact with the firing rate of each neuron.

EXPERIMENTAL PROCEDURES

Animals and Surgery

Eleven male Long-Evans rats (250–400 g) were implanted with a four- or eight-

shank silicon probe in the right dorsal hippocampus under isoflurane anes-

thesia (1%–1.5%) and recorded from dorsal CA1 pyramidal layers. In four of

the rats, another four-shank silicon probe was also implanted in the right

dorsocaudal medial EC (Mizuseki et al., 2009). The silicon probes were

attached to micromanipulators and moved slowly to the target. Each shank

had eight recording sites (160 mm2 each site, 1–3 MU impedance) and the
ports 4, 1010–1021, September 12, 2013 ª2013 The Authors 1017



intershank distance was 200 mm. The recording sites were staggered to

provide a two-dimensional arrangement (20 mm vertical separation). The EC

probe was positioned so that the different shanks were recorded from different

layers (Mizuseki et al., 2009). At the end of the physiological recordings, a small

anodal DC current (2–5 mA, 10 s) was applied to the recording sites 1 or 2 days

before the animals were sacrificed. The rats were deeply anesthetized and

perfused with 10% formalin solution. The position of the electrodes was

confirmed histologically as previously described (Mizuseki et al., 2009; Diba

and Buzsáki, 2008). Two stainless-steel screws inserted above the cerebellum

were used as indifferent and ground electrodes during recordings. All proto-

cols were approved by the institutional animal care and use committees of

Rutgers University and New York University.

Behavioral Testing

After the animals recovered from surgery (�1 week), physiological signals

were recorded during six different types of active waking behaviors: (1) On

an elevated linear track (250 cm 3 7 cm), the animals were required to run

back and forth to obtain a 30 ml water reward at both ends (Mizuseki et al.,

2009). (2) In the open field task, the rats chased randomly dispersed drops

of water or pieces of Froot Loops (�25 mg; Kellogg’s) on an elevated square

platform (180 cm 3 180 cm, or 120 cm 3 120 cm; Mizuseki et al., 2009). (3)

The rewarded wheel-running task and (4) the alternation task in the T-maze

(100 cm 3 120 cm) with wheel running delay were described previously

(Mizuseki et al., 2009; Pastalkova et al., 2008). The tasks on (5) an elevated

plus maze (100 cm 3 100 cm) and (6) a zigzag maze (100 cm 3 200 cm)

with 11 corridors were described previously (Mizuseki et al., 2009, 2012). Theta

periods from all maze behaviors were lumped together as ‘‘RUN’’. Recordings

were also carried out during sleep, typically both before and after tasks, in the

animal’s home cage. The maze was regarded as ‘‘novel’’ when the animal per-

formed the task on it for the first time and ‘‘familiar’’ after at least three testing

sessions.

Data Collection and Cell-Type Classification

Detailed information about the recording system and spike sorting is available

elsewhere (Mizuseki et al., 2009; Diba and Buzsáki, 2008; Csicsvari et al.,

1999). Briefly, signals were amplified (1,0003), band-pass filtered (1 Hz to

5 kHz), and acquired continuously at 20 kHz (DataMax system; RCElectronics)

or 32 kHz (NeuraLynx, MT) at 16-bit resolution. After recording, the signals

were downsampled to 1,250 Hz for the LFP analysis. Positive polarity is up

in all illustrations. To maximize the detection of very slowly discharging

(‘‘silent’’) neurons (Thompson and Best, 1989), clustering was performed on

concatenated files of several behavioral and sleep sessions recorded at the

same electrode position on the same day. Spike sorting was performed auto-

matically using KlustaKwik (http://klustakwik.sourceforge.net), followed by

manual adjustment of the clusters (Klusters software package, http://

klusters.sourceforge.net). After spike sorting, the spike features of units as a

function of time were plotted, and the units and sessions with signs of signif-

icant drift over the period of recording were discarded. For the remaining

data, only units with clear refractory periods and well-defined cluster bound-

aries were included in the analyses (Harris et al., 2000, 2001).

Classification of principal neurons and interneurons of hippocampal and EC

neurons was described previously (Mizuseki et al., 2009). A total of 3,541

(CA1), 962 (CA3), 66 (DG), 491 (EC2), 576 (EC3), and 559 (EC5) principal neu-

rons, and 468 (CA1), 216 (CA3), 52 (DG), 85 (EC2), 217 (EC3), and 94 (EC5)

interneurons were identified and used for analyses. The tip of the probe either

moved spontaneously or was moved by the experimenter between recording

days. However, we cannot exclude the possibility that some neurons recorded

on different days were identical because spikes recorded on each day were

clustered separately.

Detection of Brain States

Theta periods during task performance (RUN), IMM, REM epochs (REM), and

SWS were detected using the ratio of the power in the theta band (6–10 Hz) to

the delta band (1–4 Hz) of LFP, followed by manual adjustment with the aid of

visual inspection of whitened power spectra and the raw traces (Mizuseki

et al., 2011, 2012). The manual adjustment was necessary to remove falsely

detected short segments of data and epochs containing movement artifacts.
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REM periods were cross-validated with notes taken by the experimenter while

observing theta activity online in a sleep session and verifying that the rat was

sleeping. The total recording times were 57.4 ± 36.1 min for RUN, 20.8 ±

13.2 min for REM, 40.0 ± 23.2 min for IMM, and 114.7 ± 59.5 min for SWS

(mean ± SD).

Spiking Activity during Sharp Wave Ripples

To detect ripple events, LFP in CA1 pyramidal layer during nontheta periods

was band-pass filtered (140–230Hz), and the power (root-mean-square) was

calculated in 17 ms sliding time windows. A ripple epoch was defined as a

period during which the ripple power was continuously greater than the

mean + 3 SD, and the peak of power in the period was greater than the

mean + 7 SD. Results were similar when we used five different thresholds

(mean + 7, 6, 5, 4, or 3 SD for peak of power, and mean + 3, 2.5, 2, 1.8, or

1.5 SD for the start and end of the epochs, respectively). Events shorter than

15 ms were discarded. The mean rates of detected ripple events (number of

events per minute, mean ± SD) were 16.1 ± 3.4, 20.3 ± 4.1, 25.5 ± 4.8,

32.5 ± 5.6, and 43.8 ± 6.9 during SWS, and 4.7 ± 3.5, 6.6 ± 4.2, 9.5 ± 4.9,

14.6 ± 6.2, and 24.5 ± 10.9 during IMM (mean + 7, 6, 5, 4, or 3 SD for peak

power threshold).

To quantify the spiking activity of individual CA1 neurons during SPW-Rs, we

used the following three measurements for SWS and IMM separately: (1) the

proportion of spikes during SWP-Rs, defined as the number of spikes during

SPW-Rs divided by the number of all the spikes; (2) the proportion of SPW-

Rs in which a neuron fired, defined as the number of SPW-Rs in which the

neuron fired at least once, divided by the total number of SPW-Rs; and (3)

the mean number of spikes per SPW-R, which was obtained by dividing the

number of spikes during SPW-Rs by the total number of SPW-Rs.

To quantify the magnitude of the CA1 pyramidal neurons’ synchrony during

SPW-Rs, only sessions with >50 simultaneously recorded CA1 pyramidal

neurons were used. To calculate the proportion of CA1 pyramidal cells that

fired at least once during a ripple, the number of neurons that fired during a rip-

ple epochwas divided by the number of simultaneously recorded neurons dur-

ing the session.

To quantify the magnitude of the CA1 (or CA3) pyramidal neurons’ syn-

chrony in each brain state, only sessions with >40 simultaneously recorded

CA1 (or CA3) pyramidal neurons were used. To calculate the proportion of

CA1 (or CA3) pyramidal cells that fired at least once in 10, 20, 50, 100, or

200 ms bins, the number of neurons that fired in each time bin was divided

by the number of simultaneously recorded neurons during the session.

Bursts and Firing Rate

A burst event was defined as a series of three or more spikes with <8 ms inter-

spike intervals. A burst index was defined as the ratio of spikes in bursts to all

spikes. To calculate the burst-event rate, the number of burst events was

divided by the recording time for each brain state. To fit the firing rate to the

lognormal distribution, the maximum-likelihood method was used.

Spatial Tuning of Spiking Activity

Data recorded on the open field (180 cm 3 180 cm or 120 cm 3 120 cm) and

linear track (250 cm) were used to analyze the spatial tuning of spiking activity.

Only the data obtained during theta epochs were used. The position of the

animal was estimated by recording LEDs on the head stage at 30 Hz. For

the linear track, the positions were projected onto the track axis. The position

and spiking data were sorted into 5 cm3 5 cm (open field) or 5 cm (linear track)

bins, generating the raw maps of spike number and occupancy. A raw rate

map was constructed by dividing a raw spike map by a raw occupancy

map, and used to compute spatial coherence. Gaussian kernel (SD = 5 cm)

was applied for both raw maps of spike and occupancy, and then a smoothed

rate map was constructed by dividing the smoothed spike map by the

smoothed occupancy map. The peak and mean firing rates in the place field,

number of place fields, stability, and spatial information rate were computed

from the smoothed rate map.

A place field was defined as a contiguous region of at least 225 cm2 (nine

bins) for the open field and 15 cm (three bins) for the linear track where the firing

rate was >10% of the peak rate in the maze and the peak firing rate of the area

was >2 Hz, and the special coherence of the region was >0.7. Using a
thors
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threshold of 20% of the peak rate and omitting the special coherence criteria

gave similar results (Figure S3).

Spatial coherence (Muller and Kubie, 1989) was defined as the correlation

between a list of firing rates in each pixel and a corresponding list of firing rates

averaged over the adjacent pixels of each pixel, and measures the local

smoothness of the firing rate in space (Muller and Kubie, 1989; Hafting et al.,

2008; Mizuseki et al., 2009) (eight adjacent pixels for the open fields, two adja-

cent pixels for the linear track). Spatial coherence of each candidate place field

was calculated using the firing rate map of the region and used to define a

place field. Spatial coherence of each neuron was calculated using the entire

firing rate map in the maze and used in Figure 4B. Place map stability was

defined by the pixel-by-pixel correlation coefficient between the firing-rate

maps of the first and second halves of the recording session.

For the linear track, spatial representation (rate map, spatial coherence, and

phase precession) was analyzed for each direction separately. The area at

0–25 cm (the starting point) was excluded from the analysis to exclude the ef-

fect of behavioral variability. To quantify the degree of phase precession, place

fields were identified on the linear track using >2 Hz peak firing rate, >10%

peak firing rate, and >0.7 spatial coherence as criteria (Hafting et al., 2008;

Mizuseki et al., 2009). Place fields with fewer than 50 spikes and fields that

included the turning position of the track were discarded (Hafting et al.,

2008; Mizuseki et al., 2009). The theta phases of spikes were displayed as a

function of the distance from the start of the place field, and the theta

phase-position correlation was determined by parametrically rotating the

phase by the position matrix for each place field. Phase rows were shifted

by 1� steps from 0� to 360�. For each rotation, a linear regression curve was

fitted. The slope of the regression line at the phase rotation that gave the

largest explained variance R2 was used as the degree of phase precession

(degree per centimeter). In some cases, this objective and automatic method

gives a spurious positive slope value even when visual inspection suggests a

negative slope (Hafting et al., 2008; Mizuseki et al., 2009).

The spatial information rate (bits per second) (Skaggs et al., 1993) was

calculated according to the following formula:

Information rate=
XN

i = 1

pili log2

li

l

where i = 1,., N represents pixel identification number, pi is the probability of

occupancy of pixel i, li is themean firing rate of pixel i, and l is the overall mean

firing rate of the cell on the maze.

Probability of Spike Transmission

First, the principal cell-interneuron pairs with putative monosynaptic excitation

were identified by cross-correlogram analysis (Fujisawa et al., 2008) using all

spikes recorded during all brain states. Although the validity of this method

should be strengthened by rigorous experiments, the available evidence,

obtained by intracellular recordings and optogenetic activation of principal

cells, supports its use (Marshall et al., 2002; Quilichini et al., 2010; Stark

et al., 2012). Cross-correlation histograms were normalized by dividing the

spike count in each bin by the number of reference spikes, yielding the prob-

ability of the referred neurons’ spikes given the reference event. Monosynaptic

excitation between cell pairs was detected by a nonparametric significance

test based on jittering of spike trains as described previously in detail (Fujisawa

et al., 2008). Briefly, for each cell pair, each spike from each neuron in the orig-

inal data set was randomly and independently jittered at a uniform interval of

[�5, +5] ms to form a surrogate data set. The process was repeated indepen-

dently 1,000 times to form 1,000 such surrogate data sets. Then, the cross-

correlograms were constructed for surrogate data sets as a function of latency

across an interval of [�20, +20] ms (Fujisawa et al., 2008). Global bands at an

acceptance level of 99.9% were constructed for the cross-correlogram from

the maximum and minimum of each jitter surrogate cross-correlogram across

the interval [�20, +20] ms. The short-latency peak bin(s) in the original cross-

correlogram was determined to be statistically significant (at p < 0.001) when

the probabilities in the bin(s) in the cross-correlogram were atypical with

respect to the global bands anywhere at the latency [1, 4] ms. For cell pairs

recorded from the same electrode, the 0–1 ms bin was not considered,
Cell Re
because our clustering program cannot resolve superimposed spikes. After

using the jittering method, we visually inspected all cell pairs that were identi-

fied as monosynaptically connected pairs and excluded spurious cell pairs

(e.g., an erroneously identified pair caused by potential contamination of

spikes between units of the pair recorded from the same silicon probe shank)

from further analysis.

To estimate the spike transmission probability for each brain state, we used

only cell pairs in which both neurons fired more than 20 times and the number

of events in the interval [�20, +20] ms in the original cross-correlogram was

larger than 100 in that brain state. For each cell pair with significant monosyn-

aptic excitation, the same jitter method described above was applied 1,000

times and the mean cross-correlogram of surrogate data sets was calculated

for each brain state. The excess of probabilities in the original cross-correlo-

gram over the mean of the surrogate cross-correlogram in the short-latency

significant peak bin(s) was taken as the probability of monosynaptic

transmission.

Data analysis was carried out using custom-written MATLAB-based

software.
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Quilichini, P., Sirota, A., and Buzsáki, G. (2010). Intrinsic circuit organization

and theta-gamma oscillation dynamics in the entorhinal cortex of the rat.

J. Neurosci. 30, 11128–11142.

Roxin, A., Brunel, N., Hansel, D., Mongillo, G., and van Vreeswijk, C. (2011). On

the distribution of firing rates in networks of cortical neurons. J. Neurosci. 31,

16217–16226.

Samsonovich, A., andMcNaughton, B.L. (1997). Path integration and cognitive

mapping in a continuous attractor neural network model. J. Neurosci. 17,

5900–5920.

Sayer, R.J., Friedlander, M.J., and Redman, S.J. (1990). The time course and

amplitude of EPSPs evoked at synapses between pairs of CA3/CA1 neurons in

the hippocampal slice. J. Neurosci. 10, 826–836.

Shadlen, M.N., and Newsome, W.T. (1998). The variable discharge of cortical

neurons: implications for connectivity, computation, and information coding.

J. Neurosci. 18, 3870–3896.

Skaggs, W.E., McNaughton, B.L., Gothard, K.M., and Markus, E.J. (1993). An

information-theoretic approach to deciphering the hippocampal code. In

Advances in Neural Information Processing Systems, Volume 5, S.J. Hanson,

J.D. Cowan, and C.L. Giles, eds. (Burlington, MA: Morgan Kaufmann),

pp. 1030–1037.

Song, S., Sjöström, P.J., Reigl, M., Nelson, S., and Chklovskii, D.B. (2005).

Highly nonrandom features of synaptic connectivity in local cortical circuits.

PLoS Biol. 3, e68.
thors
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