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The Knowlton�Graham Partition Problem
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A set partition technique that is useful for identifying wires in cables can be recast
in the language of 0�1 matrices, thereby resolving an open problem stated by
R. L. Graham in Volume 1 of this journal. The proof involves a construction of
0�1 matrices having row and column sums without gaps. � 1996 Academic Press, Inc.

A long cable contains n indistinguishable wires. Two people, one at each
end, want to label the wires consistently so that both ends of each wire
receive the same label. An interesting way to achieve this was proposed by
Knowlton [3]: Partition [1, ..., n] into disjoint sets in two ways A1 , ..., Ap

and B1 , ..., Bq , subject to the condition that at most one element appears
both in an A set of cardinality j and in a B set of cardinality k, for each
j and k. We can then use the coordinates ( j, k) to identify each element.
Graham [2] proved that such partitioning schemes exist if and only if
n{2, 5, or 9.

By restating the problem in terms of 0�1 matrices, it is possible to prove
Graham's theorem more simply and to sharpen the result of [2].

Lemma 1. Knowlton�Graham partitions for n exist if and only if there
is a matrix of 0s and 1s having row sums (r1 , ..., rm) and column sums
(c1 , ..., cm) such that rj and cj are multiples of j and r1+ } } } +rm=
c1+ } } } +cm=n.

Proof. If A1 , ..., Ap and B1 , ..., Bq are partitions of [1, ..., n] with the
Knowlton�Graham property, let ajk be the number of elements that appear
in an A set of cardinality j and a B set of cardinality k. Then ajk is 0 or 1;
and rj=�k ajk is j times the number of A sets of cardinality j, while
ck=�j ajk is k times the number of B sets of cardinality k.
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Conversely, given such a matrix, we can use its rows to define A1 , ..., Ap

such that each 1 in row j is in an A set of cardinality j ; similarly, its
columns define B1 , ..., Bq such that each 1 in column k is in a B set of
cardinality k. K

For example, the symmetric matrix

0 1 0 0 0 1
1 1 1 1 1 1
0 1 0 0 1 1
0 1 0 1 1 1
0 1 1 1 1 1
1 1 1 1 1 1

has row and column sums (2, 6, 3, 4, 5, 6) that satisfy the divisibility condi-
tion and sum to 26. To identify 26 wires, we can associate the 1s with
arbitrary labels [a, ..., z],

} a } } } b
c d e f g h
} i } } j k
} l } m n o
} p q r s t
u v w x y z

The person at one end of the cable labels the wires with [a, ..., z] arbitrarily
and makes connections so that each element of row j is connected to
exactly j&1 other elements of its row; for example, the connected com-
ponents might be A1 , ..., A9=[a], [b], [c, d], [e, f ], [g, h],
[i, j, k], [l, m, n, o], [p, q, r, s], [u, v, w, x, y, z]. The
person at the other end now uses properties of conductivity to tell what
row each wire belongs to. The wires at that end can then be labeled
[A, ..., Z] in such a way that [A, B]=[a, b], [C, D, E, F, G, H]
=[c, d, e, f, g, h], etc. Now the wires at the first end are discon-
nected, while at the other end they are connected so that each element of
column k is connected to exactly k&1 other elements of its column. For
example, the connected components might now be B1 , ..., B9=[C], [U],
[A, D], [I, L], [P, V], [E, Q, W], [F, M, R, X], [G, J, N, S, Y],
[B, H, K, O, T, Z]. Once this has been done, the people at both ends of
the cable can give unique coordinates ( j, k) to each wire, knowing its row
and column.

Knowlton�Graham partitions are said to have order m if the largest
cardinality of A1 , ..., Ap , B1 , ..., Bq is m.
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Theorem 1. (Graham). Knowlton�Graham partitions of n having order
m are possible only if ( m+1

2 )�n�J(m), where

J(m)= :
m

j=1

jwm�jx.

Proof. By Lemma 1, Knowlton�Graham partitions of order m imply the
existence of an m_m matrix of 0s and 1s having row sums (r1 , ..., rm) and
column sums (c1 , ..., cm), where both rj and cj are multiples of j for 1� j�m
and where rm+cm>0. Clearly rj�m; so rj is at most j wm�jx , the largest
multiple of j that does not exceed m. This establishes the upper bound J(m).

If rm>0, we must have rm=m; this implies cj>0 for all j ; hence cm=m.
Similarly, cm>0 implies that rm=cm=m. So we must have rj>0 for all j ;
hence rj� j for all j ; hence n=�m

j=1 rj��m
j=1 j=( m+1

2 ). K

When m=1, 2, 3, 4, Theorem 1 says that 1�n�1, 3�n�4, 6�n�8,
and 10�n�15, respectively; this explains why the values n=2, 5, 9 are
impossible. For m�4 we have J(m)�( m+2

2 ), so there are no more gaps. In
fact, as m � � we have

J(m)=m2& :
m

j=1

(m mod j )=
?2

12
m2+O(m log m)

(see [4, Eq. 4.5.3�21]); therefore J(m)�( m+2
2 ) approaches the limiting value

?2�6r1.64.
The main purpose of this note is to prove the converse of Theorem 1,

namely that Knowlton�Graham partitions of order m do exist for all n in
the range ( m+1

2 )�n�J(m). This question was left open in [2], where
Graham observed that it was not sufficient simply to represent n in the
form r1+ } } } +rm , where each rj is a positive multiple of j. For example,
there is no appropriate 0�1 matrix having row sums (1, 6, 6, 4, 5, 6). If
there were, we would necessarily have c1�5, c2=4, c3=3, c4=4, c5=5,
c6=6, and c1+ } } } +c6<r1+ } } } +r6 .

Gale [1] and Ryser [5] independently found an elegant necessary and
sufficient condition for the existence of 0�1 matrices having given row and
column sums, but their theorem does not seem to lead easily to the result
needed here. Instead, we can use a direct recursive construction.

Lemma 2. Let (r1 , ..., rm) and (c1 , ..., cm) be integers satisfying the conditions

r1+ } } } +rm=c1+ } } } +cm ,

m�r1� } } } �rm�0, m�c1� } } } �cm�0,

rj+1�rj&1, cj+1�cj&1 for 1� j<m.
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Then there exists an m_m matrix of 0s and 1s having row sums (r1 , ..., rm)
and column sums (c1 , ..., cm).

Proof. This is obvious when m=1, so we may assume inductively that
m>1. Let p=r1 and q=c1 and consider the numbers

(r$1 , ..., r$m&1)=(r2&1, ..., rq&1, rq+1 , ..., rm)

(c$1 , ..., c$m&1)=(c2&1, ..., cp&1, cp+1 , ..., cm).

The lemma will be proved if we construct an (m&1)_(m&1) matrix of 0s
and 1s having row sums (r$1 , ..., r$m&1) and column sums (c$1 , ..., c$m&1),
because we can achieve the desired result by appending a new first row and
a new first column. In fact it suffices, by row and column permutations, to
construct a 0�1 matrix with row and column sums equal to the numbers
(r1", ..., r"m&1) and (c1", ..., c"m&1) obtained by sorting (r$1 , ..., r$m&1) and
(c$1 , ..., c$m&1) into nonincreasing order.

Since r1"+ } } } +r"m&1=r1+ } } } +rm& p&q+1=c1+ } } } +cm& p&
q+1=c1"+ } } } +c"m&1, we can use the induction hypothesis if we verify
that r1"�m&1, r"m&1�0, r"j+1�rj"&1; the similar inequalities for
(c1", ..., c"m&1) follow by symmetry.

Suppose r1"=m; this implies rq+1=m and q<m. Therefore, rq= } } } =
r2=r1=m and we have (q+1)m�r1+ } } } +rm=c1+ } } } +cm�
mc1=qm, a contradiction.

Suppose r"m&1<0; this implies rq=0. Therefore (q&1)+ } } } +1+0�
r1+ } } } +rm=c1+ } } } +cm�q+(q&1)+ } } } +1, another contradiction.

Suppose finally that r"j+1<rj"&1. This could happen only if rj"=rk and
r"j+1=rl&1 for some k and l with rk>rl . But we would not decrease rl

unless we had also decreased rk . K

The construction of Lemma 2 produces a symmetric matrix when
(r1 , ..., rm)=(c1 , ..., cm). Let us say that Knowlton�Graham partitions are
symmetric if they correspond to a symmetric matrix. We are now ready to
prove the main result.

Theorem 2. Symmetric Knowlton�Graham partitions of n having order
m exist whenever ( m+1

2 )�n�J(m).

Proof. When n is in the stated range but not equal to ( m+1
2 ), there is

a number s�m�2 such that we can write n=t1+ } } } +tm , where

tj= j, for s< j�m;

ts=ks for some k, 1<k�wm�sx,

tj= jwm�jx, for 1< j<s;

m&s<t1�m, if s>1.
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When n=J(m), this is true with s=wm�2x, k=wm�sx, and t1=m.
Otherwise we can find such a representation by first representing n+1 and
subtracting 1 from t1 ; then if s>1 and t1=m&s, we replace t1 by m and
subtract s from ts ; finally, if ts=s, we decrease s by 1.

The remaining case n=( m+1
2 ) is simpler because we can write n=

t1+ } } } +tm , where tj= j for all j. This is a representation of essentially the
same form but with s=0.

Notice that tj is a multiple of j, for 1� j�m. We can also verify that the
set [t1 , ..., tm] consists simply of the consecutive elements [ts+1 , ..., tm]=
[s+1, ..., m]. For we have ts>s and tj>m&s�s for all j<s, because
jwm�jx=m&(m mod j ).

Let (r1 , ..., rm) and (c1 , ..., cm) be the numbers (t1 , ..., tm) sorted into non-
increasing order. Lemma 2 tells us how to construct a symmetric 0�1
matrix having these row and column sums. After an appropriate permuta-
tion of rows and columns, the row and column sums can be made equal
to (t1 , ..., tm); this yields Knowlton�Graham partitions, by Lemma 1. K
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