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We quantize a flat FRW cosmology in the context of the f (R) gravity by Noether symmetry approach. We
explicitly calculate the form of f (R) for which such symmetries exist. It is shown that the existence of a
Noether symmetry yields a general solution of the Wheeler–DeWitt equation where can be expressed as
a superposition of states of the form eiS . In terms of Hartle criterion, this type of wave function exhibits
classical correlations, i.e. the emergent of classical universe is expected due to the oscillating behavior of
the solutions of Wheeler–DeWitt equation. According to this interpretation we also provide the Noether
symmetric classical solutions of our f (R) cosmological model.
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1. Introduction

In recent years, modified theories of gravity constructed by
adding correction terms to the usual Einstein–Hilbert action, have
opened a new window to study the accelerated expansion of the
universe. It has been shown that such correction terms could give
rise to accelerating solutions of the field equations without having
to invoke concepts such as dark energy [1]. In a more general set-
ting, one can use a generic function f (R), instead of the usual Ricci
scalar R as the action of general relativity. Such f (R) gravity the-
ories have been extensively studied in the literature over the past
few years, see [2] for a review. In finding the dynamical equations
of motion one can vary the action with respect to the metric (met-
ric formalism), or view the metric and connections as independent
dynamical variables and vary the action with respect to both inde-
pendently (Palatini formalism) [3]. In this theory, the Palatini form
of the action is shown to be equivalent to a scalar–tensor type
theory from which the scalar field kinetic energy is absent. This is
achieved by introducing a conformal transformation in which the
conformal factor is taken as an auxiliary scalar field [4]. As is well
known, in the usual Einstein–Hilbert action these two approaches
give the same field equations. However, in f (R) gravity the Palatini
formalism leads to different dynamical equations due to nonlinear
terms in the action. There is also a third version of f (R) gravity in
which the Lagrangian of the matter depends on the connections of
the metric (metric-affine formalism) [5].

In a previous work [6], we studied a flat FRW space–time in
the framework of the metric formalism of f (R) gravity. In [6] we
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constructed an effective Lagrangian in the minisuperspace {a, R}
where a and R being the scale factor and Ricci scalar, respectively.
The form of the function f (R) appearing in the modified action is
then found by demanding that the Lagrangian admits the desired
Noether symmetry [7]. A similar study of this issue in the Pala-
tini framework can be found in [8]. By the Noether symmetry of a
given minisuperspace cosmological model we mean that there ex-
ists a vector field X , as the infinitesimal generator of the symmetry
on the tangent space of the configuration space such that the Lie
derivative of the Lagrangian with respect to this vector field van-
ishes. For some applications of the Noether symmetry approach in
various cosmological models see [9].

As mentioned above, although the corrections to the results of
standard general relativity are widely investigated in literature in
the f (R) gravity context, these works are often in the classical
regimes [10]. The cases dealing with quantum f (R) models have
seldom been studied in the literature [11], and it would be of in-
terest to employ such models in this study.

In this Letter we consider the same model as in [6] and try to
quantize it by Noether symmetry approach. In general, the exis-
tence of a symmetry results in appearing of constants of motion
which are related to the existence of cyclic variables in the dy-
namics [12]. This is the key result in our quantization procedure.
Indeed, in terms of the cyclic variables the conserved quantities
are nothing but the corresponding conjugate momenta. We shall
see that applying the quantum version of these symmetries on the
wave function of the universe (which satisfies the Wheeler–DeWitt
equation) yields an oscillatory behavior for the wave function in
the direction of the symmetries. On the other hand, in the semi-
classical approximation for the canonical quantum gravity, one can
show that a wave function with classical correlations is a super-
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position of states of the form eiS , i.e. with oscillatory behavior
[13]. With this interpretation scheme for the solutions of Wheeler–
DeWitt equation, we also obtain the classical trajectory and show
that the cosmological scale factor obeys a power law expansion.

It is to be noted that our presentation of quantum cosmology
is applying quantum mechanics to a reduced dynamical system,
the so-called minisuperspace. This is because that the fundamen-
tal equation of quantum cosmology, the Wheeler–DeWitt equation,
is a differential equation on the infinite-dimensional superspace
and dealing with its solutions in such a space is not an easy task.
Therefore, in order to solve this equation and obtain the wave
function of the universe we can use an approximation method in
which one truncates the infinite degrees of freedom to a finite-
dimensional submanifold called minisuperspace. In an alternative
approach to deal with quantum effects in the early universe one
can use the idea of quantum field theory in curved space–time [14]. In
this theory we assume that the matter fields are quantized while
the gravitational field is classical and given by Einstein or any other
modified gravity field equations. In this scheme quantum gravity is
truncated at one-loop level and for computation of the one-loop
corrections quantum fluctuations are imposed on a given classical
background. Our aim in this Letter is to study of quantization pro-
cedure in a Noether symmetric f (R) gravity model in a reduced
phase space framework, i.e. as mentioned above we first fix the
background and then try to quantize it by Wheeler–DeWitt ap-
proach. In [15] the role of quantum effects to the background cos-
mology at one-loop level are investigated in f (R) gravity frame-
work.

2. The Noether symmetric phase space of the model

In this section we consider a spatially flat FRW cosmology
within the framework of f (R) gravity. Since our goal is to study
models which exhibit Noether symmetry, we do not include any
matter contribution in the action. Let us start from the action (we
work in units where c = h̄ = 16πG = 1)

S =
∫

d4x
√−g f (R), (1)

where R is the scalar curvature and f (R) is an arbitrary function
of R . By varying the above action with respect to metric we obtain
the equation of motion as

1

2
gμν f (R) − Rμν f ′(R) + ∇μ∇ν f ′(R) − gμν� f ′(R) = 0, (2)

where a prime represents differentiation with respect to R . We as-
sume that the geometry of space–time is described by the flat FRW
metric which seems to be consistent with the present cosmological
observations

ds2 = −dt2 + a2(t)
3∑

i=1

(
dxi)2

. (3)

With this background geometry the field equations read

2Ḣ + 3H2 = − 1

f ′

[
f ′′′ Ṙ2 + 2H Ṙ f ′′ + f ′′ R̈ + 1

2
( f − R f ′)

]
, (4)

H2 = 1

6 f ′
[
( f ′R − f ) − 6Ṙ H f ′′], (5)

where H = ȧ/a is the Hubble parameter and a dot represents dif-
ferentiation with respect to t . To study the symmetries of the
minisuperspace under consideration, we need an effective point-
like Lagrangian for the model whose variation with respect to its
dynamical variables yields the correct equations of motion. Follow-
ing [16], we consider the action described above as representing a
dynamical system in which the scale factor a and scalar curvature
R play the role of independent dynamical variables. In [6,12,16] it
is shown that such point-like Lagrangian takes the form

L(a, ȧ, R, Ṙ) = 6ȧ2af ′ + 6ȧṘa2 f ′′ + a3( f ′R − f ). (6)

The Hamiltonian corresponding to Lagrangian (6) can then be writ-
ten in terms of a, ȧ, R and Ṙ as

H(a, ȧ, R, Ṙ) = 6ȧ2af ′ + 6ȧṘa2 f ′′ − a3( f ′R − f ). (7)

Therefore, our cosmological setting is equivalent to a dynamical
system where the phase space is spanned by {a, R, pa, pR} with La-
grangian (6) describing the dynamics with respect to time t . Now,
it is easy to see that variation of Lagrangian (6) with respect to R
gives the well-known relation for the scalar curvature, while vari-
ation with respect to a yields the field equation (4). Also, equation
(5) is nothing but the zero energy condition H = 0 (Hamiltonian
constraint).

As is well known, Noether symmetry approach is a powerful
tool in finding the solution to a given Lagrangian, including the
one presented above. In this approach, one is concerned with find-
ing the cyclic variables related to conserved quantities and conse-
quently reducing the dynamics of the system to a manageable one.
The investigation of Noether symmetry in the model presented
above is therefore the goal we shall pursue here. Following [7], we
define the Noether symmetry induced on the model by a vector
field X on the tangent space T Q = (a, R, ȧ, Ṙ) of the configuration
space Q = (a, R) of Lagrangian (6) as

X = α
∂

∂a
+ β

∂

∂ R
+ dα

dt

∂

∂ȧ
+ dβ

dt

∂

∂ Ṙ
, (8)

such that the Lie derivative of the Lagrangian with respect to this
vector field vanishes

L X L = 0. (9)

In (8), α and β are some unknown functions of a and R . Now, it
is easy to see that the constants of motion corresponding to such
a symmetry are [6,12]

Q = αpa + βpR . (10)

In order to obtain the functions α and β we use Eq. (9). In gen-
eral this equation gives a quadratic polynomial in terms of ȧ and Ṙ
with coefficients being partial derivatives of α and β with respect
to the configuration variables a and R . Thus, the resulting expres-
sion is identically equal to zero if and only if these coefficients
are zero. This leads to a system of partial differential equations
for α and β [6–9]. For the model at hand, this system of differ-
ential equations has been investigated carefully in [6] and it has
been shown that in the case where f ′′ �= 0, we have the following
solutions

α(a) = −1

2
a−1, β(a, R) = Ra−2, (11)

and1

f (R) = R3/2. (12)

1 A remark about this form of f (R) function is that it is found only by demand-
ing that the Lagrangian admits the Noether symmetry. Although, we shall see that
this form of f (R) gravity yields a power law inflationary cosmology, (see [17] for
more general f (R) models which lead to the inflationary and late-time accelerat-
ing epochs) but in view of having the correct weak-field limit at Newtonian and
post-Newtonian levels has not a desired form. The conditions under which a modi-
fied gravity model passes the local and astrophysical tests such as Newton law and
solar system tests are investigated in [18]. In these works such f (R) theories are
studied which satisfy the conditions

lim
R→∞ f (R) = const, lim

R→0
f (R) = 0,

and shown that they pass Newton law, stability of Earth-like gravitational solution,
heavy mass for additional scalar degree of freedom, etc. Eq. (12) shows that our
Noether symmetric model does not satisfy the above conditions and hence is not
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Substituting this results into Eq. (6) we obtain the Lagrangian of
the Noether symmetric model as

L = 9ȧ2aR1/2 + 9

2
ȧṘa2 R−1/2 + 1

2
a3 R3/2. (13)

The momenta conjugate to variables a and R are

pa = ∂L
∂ȧ

= 18ȧaR1/2 + 9

2
a2 Ṙ R−1/2, (14)

pR = ∂L
∂ Ṙ

= 9

2
ȧa2 R−1/2. (15)

Therefore, the corresponding Hamiltonian reads

H = 2

9
a−2 R1/2 pa pR − 4

9
a−3 R3/2 p2

R − 1

2
a3 R3/2. (16)

Although, the classical equations of motion resulting from the La-
grangian (13) or Hamiltonian (16) can be solved to give the cor-
responding classical cosmology, Hamiltonian (16) has not the de-
sired form for the construction of the Wheeler–DeWitt equation
describing the relevant quantum cosmology. Furthermore, the La-
grangian (13) does not exhibit the existence of a cyclic variable
corresponded to the Noether symmetry. To be more precise, we
seek a point transformation (a, R) → (u, v) on the vector field (8)
such that in terms of the new variables (u, v), the Lagrangian in-
cludes one cyclic variable. A general discussion of this issue can be
found in [12]. Under such point transformation it is easy to show
that the vector field (8) takes the form

X̃ = (Xu)
∂

∂u
+ (X v)

∂

∂v
+ d

dt
(Xu)

∂

∂ u̇
+ d

dt
(X v)

∂

∂ v̇
. (17)

One can show that if X is a Noether symmetry of the Lagrangian,
X̃ has also this property, that is

X L = 0 ⇒ X̃ L = 0. (18)

Thus, if we demand

Xu = 1, X v = 0, (19)

we get

X̃ = ∂

∂u
⇒ X̃ L = ∂L

∂u
= 0. (20)

This means that u is a cyclic variable and the dynamics can be
reduced. On the other hand, the constant of motion Q becomes

Q = αpa + βpR

= α
∂L
∂ȧ

+ β
∂L
∂ Ṙ

= α

(
∂L
∂u

∂u

∂ȧ
+ ∂L

∂v

∂v

∂ȧ
+ ∂L

∂ u̇

∂ u̇

∂ȧ
+ ∂L

∂ v̇

∂ v̇

∂ȧ

)

+ β

(
∂L
∂u

∂u

∂ Ṙ
+ ∂L

∂v

∂v

∂ Ṙ
+ ∂L

∂ u̇

∂ u̇

∂ Ṙ
+ ∂L

∂ v̇

∂ v̇

∂ Ṙ

)
. (21)

Since (a, R) → (u, v) is a point transformation, we have

∂u

∂ȧ
= ∂v

∂ȧ
= ∂u

∂ Ṙ
= ∂v

∂ Ṙ
= 0,

and

∂ u̇

∂ȧ
= ∂u

∂a
,

∂ u̇

∂ Ṙ
= ∂u

∂ R
,

∂ v̇

∂ȧ
= ∂v

∂a
,

∂ u̇

∂ Ṙ
= ∂v

∂ R
.

Therefore,

a viable theory with correct Newtonian and post-Newtonian limits. This is not sur-
prising since it is well known that a large class of f (R) theories suffer from this
issue [19].
Q = α

(
∂L
∂ u̇

∂u

∂a
+ ∂L

∂ v̇

∂v

∂a

)
+ β

(
∂L
∂ u̇

∂u

∂ R
+ ∂L

∂ v̇

∂v

∂ R

)

=
(
α

∂u

∂a
+ β

∂u

∂ R

)
∂L
∂ u̇

+
(
α

∂v

∂a
+ β

∂v

∂ R

)
∂L
∂ v̇

= (Xu)
∂L
∂ u̇

+ (X v)
∂L
∂ v̇

= ∂L
∂ u̇

= pu . (22)

Thus, as expected the constant of motion which corresponds to
the Noether symmetry is nothing but the momentum conjugated
to the cyclic variable. To find the explicit form of the above men-
tioned point transformation we should solve Eqs. (19), which give

−1

2
a−1 ∂u

∂a
+ Ra−2 ∂u

∂ R
= 1, (23)

−1

2
a−1 ∂v

∂a
+ Ra−2 ∂v

∂ R
= 0. (24)

These differential equations admit the following general solutions

u(a, R) = −a2 + φ1
(
aR1/2), v(a, R) = φ2

(
aR1/2), (25)

where φ1 and φ2 are two arbitrary functions of aR1/2. As is indi-
cated in [12], “the change of coordinates is not unique and a clever
choice is always important”. With a glance at the Lagrangian (13),
we choose the functions φ1 and φ2 as

φ1
(
aR1/2) = (

aR1/2)μ, φ2
(
aR1/2) = (

aR1/2)ν, (26)

where μ and ν are some constants. With this choice, the La-
grangian (13) takes the form

L = 9

2

μ

ν2
v

μ−2ν+1
ν v̇2 − 9

2ν
v

1−ν
ν u̇ v̇ + 1

2
v3/ν . (27)

It is clear from this Lagrangian that u is cyclic and the Noether
symmetry is given by pu = Q = const. Also, the momenta conju-
gate to u and v are

pu = ∂L
∂ u̇

= − 9

2ν
v

1−ν
ν v̇,

pv = ∂L
∂ v̇

= 9
μ

ν2
v

μ−2ν+1
ν v̇ − 9

2ν
v

1−ν
ν u̇, (28)

which give rise to the following Hamiltonian for our dynamical
system

H = −10

9
μv

μ−1
ν p2

u − 2

3
νv

ν−1
ν pu pv − 1

2
v3/ν . (29)

The preliminary set-up for writing the action is now complete. In
the next section, we shall focus attention on the study of the quan-
tum cosmology of the model described above.

3. Quantization of the model

Standard cosmological models based on classical general rela-
tivity have no convincing precise answer for the presence of the
so-called “Big-Bang” singularity. Any hope of dealing with such
singularities would be in vein unless a reliable quantum theory
of gravity can be constructed. In the absence of a full theory of
quantum gravity, it would be useful to describe the quantum states
of the universe within the context of quantum cosmology [20]. In
this formalism which is based on the canonical quantization pro-
cedure, one first freezes a large number of degrees of freedom
and then quantizes the remaining ones. The quantum state of the
universe is then described by a wave function in the minisuper-
space, a function of the 3-geometry of the model and matter fields
presented in the theory, satisfying the Wheeler–DeWitt equation,
that is, HΨ = 0, where H is the operator form of the Hamiltonian
given by Eq. (29) and Ψ is the wave function of the universe. On
the other hand, the existence of a Noether symmetry in the model
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reduces the dynamics through pu = Q , where its quantum ver-
sion can be considered as a constraint puΨ = Q Ψ . Therefore, the
quantum cosmology of our Noether symmetric f (R) model can be
described by the following equations:

HΨ (u, v) =
[
−10

9
μv

μ−1
ν p2

u − 1

3
ν
(

vr pv vs + vs pv vr)pu − 1

2
v3/ν

]

× Ψ (u, v) = 0, (30)

puΨ (u, v) = Q Ψ (u, v), (31)

where the parameters r and s satisfy r + s = ν−1
ν and denote the

ambiguity in the ordering of factors v and pv in the second term
of (29). With the replacement pu → −i ∂

∂u and similarly for pv the
above equations read
[

10

9
μv

μ−1
ν

∂2

∂u2
+ ν − 1

3
v−1/ν ∂

∂u
+ 2

3
νv

ν−1
ν

∂2

∂u∂v
− 1

2
v3/ν

]

× Ψ (u, v) = 0, (32)

−i
∂

∂u
Ψ (u, v) = Q Ψ (u, v). (33)

The solutions of the above differential equations are separable and
may be written in the form Ψ (u, v) = U (u)V (v). Eq. (33) can be
immediately integrated leading to a oscillatory behavior for the
wave function in u direction, i.e. in the direction of symmetry, that
is

Ψ (u, v) = ei Q u V (v). (34)

Substitution this result into relation (32) yields the following equa-
tion for the function V (v)

dV

dv
=

[
−5

3
i
μ

ν
Q v

μ−ν
ν − 3

4νQ
iv

4−ν
ν − ν − 1

2ν
v−1

]
V (v), (35)

with solution

V (v) = v
1−ν
2ν e−i( 5

3 Q vμ/ν+ 3
16Q v4/ν )

. (36)

Thus, the eigenfunctions of the equations (32) and (33) can be
written as

Ψμν(u, v) = v
1−ν
2ν ei(Q u− 5

3 Q vμ/ν− 3
16Q v4/ν )

. (37)

We may now write the general solutions to the Wheeler–DeWitt
equation as a superposition of the eigenfunctions with shifted
Gaussian weight functions

Ψ (u, v) =
+∞∫

−∞

+∞∫
−∞

e−ς(μ−μ0)2
e−σ(ν−ν0)2

v
1−ν
2ν

× ei(Q u− 5
3 Q vμ/ν− 3

16Q v4/ν ) dμdν. (38)

We see that the wave function is a superposition of states of the
form eiS . In semiclassical approximation for quantum gravity [13],
this type of state represents the correlations between classical tra-
jectories and the peaks of the wave function [12]. Inserting Ψ ∼ eiS

into Wheeler–DeWitt equation, we are led to the Hamilton–Jacobi
equation for S . Thus, the classical trajectories can be obtained by
rewriting the momenta as derivative of S with respect to the cor-
responding variables, that is, pq = ∂ S

∂q . Therefore, in semiclassical
limit, by identifying the exponential factor of (37) with S , we can
recover the corresponding classical cosmology

S = Q u − 5

3
vμ/ν − 3

16Q
v4/ν . (39)

The classical trajectories, which determine the behavior of the
scale factor and Ricci scalar are given by

pu = ∂ S
, pv = ∂ S

.

∂u ∂v
Using the definition of pu and pv in (28), the equations for the
classical trajectories become

− 9

2ν
v

1−ν
ν v̇ = Q , (40)

9
μ

ν2
v

μ−2ν+1
ν v̇ − 9

2ν
v

1−ν
ν u̇ = −5

3

μ

ν
Q v

μ−ν
ν − 3

4Q ν
v

4−ν
ν . (41)

Eq. (40) can be easily integrated leading to

v(t) = (Qt − t0)
ν , (42)

where Q = − 2
9 Q and t0 is an integrating constant. Substituting

the above results into Eq. (41) yields

u(t) = 1

3
(Qt − t0)

μ − 1

108Q2
(Qt − t0)

4 + C, (43)

where C is another integrating constant which we can choose it
to be zero. Going back to the variables a and R , we obtain the
corresponding classical cosmology as

a(t) =
[

2

3
(Qt − t0)

μ + 1

108Q2
(Qt − t0)

4
]1/2

, (44)

R(t) = (Qt − t0)
2

2
3 (Qt − t0)μ + 1

108Q2 (Qt − t0)4
. (45)

For t → t0/Q, we have an initial singularity in which the scale
factor goes to zero while the Ricci scalar has a large value. On the
other hand, in the late time, the universe evolves with a power
law expansion (a(t) ∼ t2 for 0 < μ � 4 and a(t) ∼ tμ/2 for μ > 4)
and the scalar curvature goes to zero in this limit.

In general, one of the most important features in quantum cos-
mology is the recovery of classical cosmology from the correspond-
ing quantum model, or in other words, how can the Wheeler–
DeWitt wave functions predict a classical universe. We see that
the oscillatory solutions of the form Ψ ∼ eiS for Wheeler–DeWitt
equation yield the classical solution (44) which for positive values
of μ can be viewed as an accelerating cosmology. Since the quan-
tum effects in cosmology are important in the very early times of
cosmic evolution, we immediately see that, in this limit, the scale
factor has the behavior a(t) ∼ tμ/2 for 0 < μ � 4 and a(t) ∼ t2 for
μ > 4, which for μ > 2 describe a power law inflationary behav-
ior. The universe then undergoes to a late-time accelerating phase,
also with a power law expansion behavior. An important question
in inflationary models is how much inflation do the model pre-
dict or in other words, what is the mechanism through which the
universe exits from the inflationary epoch and undergoes into ra-
diation or matter-dominated eras. As is well known, this largely
depends on the behavior of a scalar field with which the universe
nucleates [21]. In f (R) gravity models some of such mechanisms
describing the transition between different epochs of cosmic evo-
lution are proposed in [22] by introducing a scalar field φ. Indeed,
it is easy to verify that the metric f (R) gravity action (1) is dy-
namically equivalent to [2]

S =
∫

d4x
√−g

[
φR − V (φ)

]
, (46)

where φ = f ′(R) and V (φ) = φR(φ)− f (R(φ)). In our f (R) ∼ R3/2

model we have R(φ) ∼ φ2 and hence V (φ) ∼ φ3. The dynamics
of this scalar field may show the possibility of the transition be-
tween different eras of cosmic evolution. But as is indicated in [22]
“we should note that in this case, there is no matter and f (R)-
terms contribution plays the role of the matter instead of the real
matter”. Therefore, it is to be noted that our presentation does
not claim to clear the role of inflation scenario in a fundamental
way because we just study the problem in a special simple model.
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Fig. 1. The square of wave function. The figure is plotted for numerical values ς =
10, σ = 5, μ0 = 3, ν0 = 0 and Q = 3.

However, this may reflect realistic scenarios in similar investiga-
tions which deal with this problem in a more fundamental way
[22].

From Eqs. (42) and (43) we see that the classical trajectories
obey the relation

u = 1

3
vμ/ν − 1

108Q2
v4/ν . (47)

As we have mentioned above (see (38)), we are looking for a
coherent wave function with a good asymptotic behavior in the
minisuperspace and peaking in the vicinity of the classical loci
(47) in the configuration space spanned by {u, v}. It is well known
that the general solution of Wheeler–DeWitt equation may be con-
structed by superposition of its eigenfunctions which in our prob-
lem at hand are labeled by μ and ν . Therefore, the wavepacket
(38) is what we need. We take the solution as being represented
by Eq. (38) with the integrals to be truncated at suitable values
of μ and ν displaying this peak. Fig. 1 shows the square of wave
function for typical values of the parameters where we have taken
the integrals from 0 to 2 for μ and from −15 to 15 for ν . It is seen
that almost a good correlation exists between this pattern and the
classical trajectories.

4. Conclusions

In this Letter we have studied a generic f (R) cosmological
model by Noether symmetry approach. For the background geome-
try, we have considered a flat FRW metric and derived the general
equations of motion in this background. The phase space was then
constructed by taking the scale factor a and Ricci scalar R as the
independent dynamical variables. The Lagrangian of the model in
the configuration space spanned by {a, R} is so constructed such
that its variation with respect to these dynamical variables yields
the correct field equations. The existence of Noether symmetry
implies that the Lie derivative of this Lagrangian with respect to
the infinitesimal generator of the desired symmetry vanishes. In
[6] we have shown that by applying this condition to the La-
grangian of the model, one can obtain the explicit form of the
corresponding f (R) function which has led us to the Lagrangian
(13) and Hamiltonian (16) of the Noether symmetric model. Since
the Lagrangian (13) does not exhibit the existence of a cyclic vari-
able corresponded to the Noether symmetry, we have provided a
point transformation (a, R) → (u, v) such that in terms of the new
variables (u, v), the Lagrangian includes one cyclic variable. We
have then quantized the model and shown that the correspond-
ing quantum cosmology and the ensuing Wheeler–DeWitt equation
are amenable to exact solutions in terms of a superposition of
states of the form eiS due to the existence of Noether symme-
try. In semiclassical approximation for quantum gravity, this type
of state represents the correlations between classical trajectories
and the peaks of the wave function. Using this interpretation we
have shown that the corresponding classical cosmology results in
a power law accelerated expansion for the scale factor of the uni-
verse either in its early or late time evolution.
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