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Abstract

In noncommutative field theories conventional wisdom is that the unitarity is noncompatible with the perturbation analysis
when time is involved in the noncommutative coordinates. However, as suggested by Bahns et al. recently, the root of the
problem lies in the improper definition of the time-ordered product. In this article, functional formaliSrmatrix is explicitly
constructed for the noncommutatiye’ scalar field theory using the field equation in the Heisenberg picture and proper
definition of time-ordering. Thi§-matrix is manifestly unitary. Using the free spectral (Wightmann) function as the free field
propagator, we demonstrate the perturbation obeys the unitarity, and present the exact two particle scattering amplitude for
(1+ 1)-dimensional noncommutative nonlinear Schrédinger model.

0 2003 Elsevier B.V. Open access under CCBY license.

1. Introduction

Quantum field theory on honcommutative spacetimes arises typically in restrictive phase space [1] and has
some applications in condensed matter physics such as in quantum Hall effect [2]. This formalism has much more
interesting features if the noncommuting coordinates involve time, i.e., noncommuting space—time. The framework
of this noncommutative spaces can implement the possible deviations from the smoothness of spacetime at small
distances and results in a modification of uncertainty relations for spacetime coordinates [3].

Despite this facinating possibility in space-time noncommutative field theories, in the perturbative field
theories [4] it is asserted that the theories possess a serious problem, i.e., the lack of unitarity [5] and there are
some attempts to cure this problem such as in the Hamiltonian picture [6].

Contrary to this view, Bahns et al. [7] recently pointed out that this unitarity problem is not inherent in the
noncommutative field theories but rather due to the ill-defined time-ordered product expansion.

In this Letter we elaborate on this view. In Section 2, we presen§itmatrix explicitly in the functional form
and show how unitarity problems are cured. In terms of perturbative loop correction, the same result is presented in
Section 3. As a further concrete example, we present exact 2-particle scattering amplitude for the noncommutative
version of the integrable nonlinear Schrédinger modeldpLdimension.

E-mail addresses: rim@mail.chonbuk.ac.kr (C. Rim), jhyee@phya.yonsei.ac.kr (J.H. Yee).

0370-2693 O 2003 Elsevier B.V. Open access under CC BY license,
doi:10.1016/j.physletb.2003.08.073


https://core.ac.uk/display/82078775?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/npe
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

112 C. Rim, JH. Yee/ Physics Letters B 574 (2003) 111-120

2. S-matrix

Quantum field theory on the noncommutative space—time can be constructed into a nonlocal field theory on a
commutative spacetime, usirgproduct of fields. One of the convenienproduct representations is the Moyal
product,

frg(x) = e £(x)g(y)]ymr, @)

wherea A b = a,0""b,. 6" is an antisymmetrie-number representing the space—time noncommutativeness,
0"V = [x*, xV]. This Moyal product makes the kinetic term of the action the usual field theory, and allows the
conventional perturbation with the proper vertex correction corresponding the nonlocal interaction [4].

We adopt a real scalar field theory for simplicity. The Lagrangian constitutes of the free part and interacting
part. The interaction Lagrangian in — 1 space is given as

Li@t)= —%/dD*lxqﬁf(x,t) (2)
whereg is a coupling constanty! = ¢ x ¢ x --- » ¢ is the noncommutative version @ theory where p is a

positive integer.
To construct thes-matrix, one assumes the out-going field satisfy the in-coming free field commutator relation

[¢in(x). ¢in(0)] =i A(x) (3)
so that the in- and out- fields are related by
Pout = Sil(ﬁinS- (4)

This relation is not, however, automatically satisfied. It is demonstrated in [8] that nonlocal field theories may not
respect the assumption. The out-field commutator relation need be checked to be consistent.

We quantize the field using the Heisenberg picture [9]. The field at arbitrary time can be obtained from the field
equation

(@ +m?)p(x) =E(¢)), (5)
where¢ is the functional of fields, derived from the interaction Lagrangian

é 8 -1
N=—— [ ditLi(t)=— P ) 6
E((i)( )) 5 (x) 1(®) -1 (x) (6)
Its solution is given using the retarded progatdfei(x) = —0(x9A(x) (advanced propagatongg(x) =

0(—x%Ax)),
¢ (x) = ¢in(x) + Areto 5(4)()5))
= ¢out(x) + Aado £(¢ (x)), (7

whereo denotes the convolutioneto £(x) = dey Aret(x — Y)E(Y).
Now the out-field can be put iteratively in terms of the in-field,

Pout(x) = Pin(x) — Ao &(p(x)), (8)

if ¢ is written asp = o+ 1+ P2 + - - - whereg, represents the order gf contribution. A few explicit solutions
of ¢,’s are given as

$o(x) = din(x),
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P1(x) = —ﬁmmo ¢ (),
Pa(x) = —ﬁAreto (1% 082 + poxprx g™ + -+ 62w 1) (x).

As x9 — oo the fieldsg (x) reduces to the out-fieloyt and Aret(x) — — A in consistent with Eq. (8).

We have checked explicitly the commutator relation of the out-figl@(x) in Eq. (8) up to the order of) (g*),
at which order the unitarity problem arises in the nonlocalized QED and Yukawa coupling [8]. It turns out that as
the free commutation relation holds for the out-field of an action without star-product, so does for the out-field of
the action withw-product. All the higher order terms cancel out independent offhduct. We expect the result
holds for all orders. This justifies the assumption of the unigargatrix between in- and out-fields.

With the notations = ¢?, the out-field would be written as

1
dout=S"¢inS = ¢in + [Bin, 18] + E[[(ﬁin, i81,i8]+ - (9)

The first order term iy results in the equatiofigin, i8] = —A o &£(¢gin(x)), and determines to the first order irg
as

o0
5= / dt Li(¢in(1)) + O(g?). (10)
—00
Higher order solutions require the time-ordering as in the ordinary field theory. Howevesptiogluct introduces
a subtlety in the time-ordering and a consistent unitary S-matrix is given as

S=1+ifdlfl(V(¢in(l)))+i2f fdlldlzflz(Gle(¢in(t1))V(¢in(lz)))-~-
+i" / ~-~fdll-~-dlnflz..n(Glz..nV(¢in(t1))-~-V(¢in(tn)))+-~-- (11)

V (¢in(2)) is interaction Lagrangian befokeproduct,

' -1 D-1
Von) =% / dPLx 60 (x. 1),
and the time-ordering is given in terms of the step function,
0120 =01 —12)0(t2 — 13) ... 0(tn—1 — tn).
x-operationfiz_, = F1F2- - - F, introduces the-product to the actions

Fr2.2(VaD)V(t2) -+ V(ta)) = L1 (t1) Ly (t2) - - L1 (1), (12)

whose operation is independent of the permutation of the action. In the presence of the step-function, we assume a
minimal realization. For example, explicitly we put

Fey(0(:° = y0)pP ()P () = Fu Fy (6(x° = yO)p(x1) - - d(x)p (1) - -0 (vp)) |

where

Xi=x,yi=y’

i
Fr= exp(E(ax1 A0+ -+ 3x,,) + 0y A(Oxg+ -+ axp) 4t 3xp_1 A 3x,,))
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andd (x® — y) is put o (x? — y9) in the presence of the spectral functiaiix? — y?). We emphasize that our
minimal realization assumption is that the time-ordering step function is used onfy once between two vertices. So,
in the presence of many spectral functions which connect two vertices we have only one step function,

00—y [[aGi —yp— 02— ) [[AGi — v
i,j iJ
wherea (b) is just one of indices amonidg (j's). This operation is done explicitly in Egs. (16) and (21) below.
Introducing the time-ordering witk-product,

T V() V (12)} = F12(612V (1)) V (12) 4 621V (12) V (11)) (13)
we can put theS-matrix as
s=> ;—, / dry--- f dty TV (¢in (1) - V (in(t))} = Ta exp(i f dt v(¢m(t)))_ (14)
n=0"_" —00 —00

One can check order by order that thismatrix is unitaryS—1 = ST and reproduces the in- and out-field
relation Eq. (8). We present here the sketch of the proof of unitarity oftheatrix up to the order og?. The
higher order proof goes similarly with the ordinary perturbation case since in this proof only the time-ordering
matters irrespective of theoperation. The unitarity of th&-matrix in Eq. (11) is proved if the following identity
is satisfied:A, + AS = ATA; = A2 where

o0 oo 0
A1=/d11f1(V1), A2=/ /dtldtzflz(leVle)-
0 —00 —00

The proof goes as follows:

[ olNe ] o 0
Ar+ Al = / / dydiz Fio(012(ViVa + VaV1)) = / / dtydiz Fio((012+ 621) V1V2)

—00 —00 —00 —00
o0 o0

= f dry F1(V1) f dia F1(Vo) = Al A1, (15)
—00 —00

where we use the change of variables to get the second identity and the idgntitgo1 = 1 for the last identity.
On the other hand, the out field is obtained from Shmatrix relation:

SThin()S = do(x) + i / dy ($o() A1L(y) — AL()do(x))
+i2 f dyrdyz (po(x)A2(y1, y2) — A1(y1) TpoA1(y2) + A2(»)Tpo(x)) + O (g3)

=o+i / dy1 F1([¢o(x), V(y»)]) +i? / dyrdyz F1a(012[[do(x), V(yD1, V(32)]) + O0(g°).

(16)

Itis clear that the out field relation in Eq. (8) up to the orgléis reproduced in Eq. (16) if one uses the commutation
of the fields[[¢o(x), V (y1)], V (y2)] and the time-ordering step functiém, before performing the-operation.

We give some comments on other approaches of finding the usitargtrix. First, one may start with the time-
ordering outside the-operation as in [7], then one may add higher derivatives in order to reproduce the above
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S-matrix Eq. (11). For example, we pdb = az + icp at the ordeg?,

oo 0 1 o o0
a2=/ /912}'12(V1V2), icz=—§/ /(912}"12—7:12912)([%, Val). (17)
—00 —00 —00 —00

az is the ordinary time-ordered one angl+ a; = A%. The correction terna; satisfies the relation, = c; (note

that the T operation is applied to the figldhot the time-ordering of-operation) and provides the higher derivative
terms if one evaluates the commutator of the step function ane-ghieduct, which leaves the time derivatives of

the fields as well as of the spectral functions. One sees the similar behavior for higher order terms, which will be
published elsewhere.

Second, given thé-matrix of Eq. (11), the scattering amplitudes can be constructed as a perturbative series in
the coupling constant. ThiS-matrix is obtained using the Lagrangian formalism in the Heisenberg picture. The
equivalence of the Hamiltonian formalism such as in [6] is not easy to see since the symplectic structure is not
simply tractable due to the explicit time dependence of fields in the interaction Lagrangian.

Third, suppose one tries to obtain an interaction field at tinfrem the in-field. In the ordinary interaction
picture one defines the unitary transformation,

o1(t) = U0 pin()U (1) (18)

with S = lim;_ oo U (). _Requiring the dynamical evolution both for the in and interaction fieltis(r) =
[—iLo(¢in), ¢in(1)] and ¢; (1) = [—iL(¢1), ¢1(1)], one would obtain the dynamical equation for the unitary
operatorlU (1) =i L;(¢in(t))U(t), on the condition that

UL(¢)UT = L(¢in). (19)

However, this condition is not compatible with the Eq. (18) due to the space—time noncommHatoauct of

the action. The unitary operatéf(¢) does not transform the in-field action to interaction field action. The same
conclusion also goes for Heisenberg picture. Nevertheless, the difficulty of constructing the unitary operator does
not mean that one cannot constr§ematrix. The transformation between in- and out-field Eq. (4) is enough for
the existence of-matrix Eq. (11).

3. Propagator and unitarity
To illustrate the point described in Section 2 more concretely, we will congitigreory,

1
Li(t)= _% / dP1x é(¢f(x, 1)+ h.c) (20)

and calculate the one-loop contribution to the propagator in momentum space. The momentum space calculation
will be complementary with the coordinate space representation given in Section 2.

The connected one loop contribution to the self-energy with external momeniwand p, is given from the
second term of-matrix in Eq. (11), denoted & in the following:

1
(p1lS2|p2)c =p14©72= 3 // dPx dDy (P1|T*(V(¢in(ll))v(¢in(12)))|P2)c,

Where(. --). refers to the one-particle irreducible function. Using the one particle representatiomn,(x)|0) =
Ne'P* with N a proper normalization constant, and the integration representation of the step function

o0
0(1) = dw e
- 2ni w+ie
—00

—iwt
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we have
g 2
(p1lSalp2)e = — (5) / / dPx dPy(p1lFey (0(x° = yO) o303 ()) 1 p2)e

2
(& /.../dedDydeled‘”eix(m—k—l—w)—iy<pz—k—l—w>
3! ri)(2n)2P(w +i€)

- - A bo A b
X INPAL 0 A+() Y cos(“2 2“3) cos( 2 > 3) + p1o o (1)
(al(b)

The summation is over the set of momerjtg, and{b},

{(al’ az, 613)} = {(plv _kv _l - C()), (_kv plv _l - C()), (_kv _l’ pl)}v
{(blv b2v b3)} = {(_va kv l + Cl)), (kv —Pp2, l +(1)), (kv l +(1), _pZ), k <> l}

and A, (k) = 2r8(k2 — m?)0(k°) is the Fourier transform of the free spectral function,

dPk . -
P e AL (k). (22)

Integrating over coordinatasandy, we are left with the momentum representation,

A4 () = (Ol¢in(¥)in(0)[0) = /

p—k-w 2 Dy D
(p11S21p2)e = = 5@ [[ G,
p1 2P2c—p14©; pP2=" p1—p2 (27)2P (27i)(w + i€)
k

x (2m)°8% (pr—k —1 —w)|N|ZA+<k>A”+<z>co§<plel).

(23)
This result shows that the external energy-momentum is manifestly conserved. However, the internal momentum
need not be conserved; there appears the spurious momeniarthe internal vertex, which traces back to the
noncommutativeness of space and time coordinates. One may avoid this unpleasant feature by introducing the
retarded positive spectral function,

dPk iy = . i 1
T ARK), A =—-—
@np¢  ArK). AR = T

60 A (x) = /

wherewy = vk2 +m2. Interms of this retarded function, we have Eq. (23) as

2 D
d”k ~ ~ 1Ak
(p1IS2lp2)e = 5 (2m) P8P (p1— p2) f S INPARK) AL (p— k) cod( L : (24)
2 (2m) 2
The real part of th&-matrix is given as
(p11S2+ 83| p2)e = —(21)P5P (p1 — p2) Fy (po), (25)
where

dPk - - k
Fy(p)= ng 20D INI2AL (k) Ay (pr—k) cosz(plzA )
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due to the identity—L-— = P () — iw8(w). On the other handi ST of the orderg? comes from the first term in the
S-matrix Eq. (11):

+ dPxdPydPkdPl .. .
(P1lS154|p2)c T em®D IN|“AL (k)AL ()

. . ANk
% ¥ (P1=k=D=iy(pa=k=]) COg(%) L prop2

= (21)P8" (p1— p2) F+(po). (26)
This demonstrates the unitarity relation up to the one-loop order:

(p11S2+ 531 pa)e + (p11S15] | pa)e =0, 27)
In other words, the one-loop correctidn (p) is written in terms of on-shell particles only,
2

k
Fr(py= Y. |P < . (28)

PI0>0,12=m2 l
k00, k2=m?

F.(p) gives a finite contribution whep? > 4m?. In CM (p° = E, p = 0), this gives

2 4. 2\(D—=3)/2
Fo(p) = (dy>-D o= 4m”) /dgcos2(”7”). (29)

2E
One might think that using the property of the Feynman propagaitptx) = 0 (x%) A, (x) + 0(—x0)A_(x);

—(Ar(x))* =0(x%)(A1(x))% +6(—x0) (A_())>, (30)
the one-loop contribution Eqg. (21) can be rewritten in terms of the Feynman propagator instead of the spectral
function used in Eq. (23),

p—1

G =LA}

l
2
=—%5D(p1— p2) ffd”kd”la%l—k—l>|N|2AF<k>AF<l>co§(k—gl)

T g0 T (p —1)2—m?2 +zs)(12—m2+i8)’
as has been carried out in [5]. The two approaches are equivalent if the noncommutativeness involves in the space
coordinates onlyd% = 0). In this case the-operation and the time-ordering commutes with each other and
Eq. (30) is allowed.

However, for the problematic space—time noncommutative o@¥e40), two approaches are not the same
anymore. In this case, the time ordering need to be done befoperation and Eq. (30) is not justified since

(31)

—Ap(x1—yDAF(x2—y2)
#0(x =y A4 (1 — yD AL (x2 — y2) +0(=x0 4+ yD) A_(x1 — yD) A_(x2 — y2),
—Ap(x1—y1)Ap(x2—y2)
#6(x) — y))0(x9 — ¥9) As(x1 — yD Ar(x2 — y2)
+60(=x2 4+ y)0 (=23 + 1) A_(x1 — yD A_(x2 — 2.
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and there are cross terms. Some of this step functions are ill-defined one®pieeation is performed and the

x;'s (y;'s) are identified as (y), and some of the step functions provide additional contribution to the final result.
From this behavior, it is not surprising to see that the Feynamn rule will not be the naive generalization such as in
Eqg. (31). In contrast to this, the use of the spectral functlgnwith the appropriate time-ordering takes care of

the subtleties and results in the correct unitarity condition.

The similar one-loop result can be used to check the unitarity of the scattering magfitfieory. And one can
perform higher loop calculation without any conceptual difficulty. We back up this idea further using an integrable
field theory. In 11 dimension, nonrelativistic nonlinear Schrédinger model is known to be integrable and its exact
S-matrix is known [10]. Here, we give the exact two-particle scattering matrix for the noncommutative version of
the model with9%1 = 9<°1. This model is th&1 + 1)-dimensional version of the nonrelativisti¢ theory [11].

4. Non-relativistic nonlinear Schrodinger model in 1+ 1 dimension

The free Lagrangian of this model is the conventional Schrodinger one and the interaction Lagrangian is given
as

LI(t):—%fdwa*wT*w*W(t,x), (32)

where we use the bold-face letter for spatial vector to distinguish from the 2-vector. The ig4fjeddtisfies the
commutation relationyin (X, 1), wiL(y, t)] = 8(x —y) and is given in momentum space,

2
dnl;zb+(k)aT(k)eikx, (33)

. — dk Do ()a(k)e kx t _
llfm(X)—/W +(k)ak)e ™™, wmm—/ 2

with [a(k),aT(D] =278k — ) and D4 (p) = 278(p° — p?/2). In this noncommutative case also, the particle
number operatol' = fdwaw is conserved and this simplifies the perturbative calculation greatly. The
propagator is given in terms of the positive spectral function,

d? L
Dy(x)= (OIWin(X)wiT](O)IO) =/ anjz e '’ Dy(p). (34)

(
The time-ordering in th&-matrix is simplified due to the absence of anti-particles in this nonrelativistic case,

D (x) = 0(x%)(01¥in(x) ¥, (0)|0)

o0
dw e

—iwxO 2 2
d<p —ipx f d°p _;,. =
_ D = I22)) 35
2mi w+ie / @m)2° +(p) @m)2° &(P) (35)

—00

with Dr(p) =i/(p® — p?/2+ie).
The four point vertex is given as

b1 D3
. 1A P2 3A P4
o(p1, pa; p3, pa) = >< = —iv(2m)%8%(p1+ p2 — p3 — pa) COS(p > b ) COS(p > b )
P2 Pa

(36)

One-loop correction to the vertex is given as
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D1 p3
I'(p1, p2; p3. pa) = >©<
b2 P4

v2 A A
= —?(271)282(191 + p2 — p3— pa)é(p1, p2) COS( P > pz) COS( rs > p4>, (37)

where¢ is defined as

&(p1, p2) =/

with p = p1 + p2 = p3 + ps. Whenp1 and p; are on-shell, its value is given by

1 9||01|||02||p1—p2|) i91pylIplIpL ~Pl
, = co ) .
&(p1, p2) P1 =3l S( ) e

Higher loop corrections are given in chained bubble diagrams and the complete loop corrections to the vertex
are given in the geometric sum,

. B . —ivE(p1, p2) —ivE(p1, p2) 2
I'(p1, p2; p3, pa) = T'o(p1, p2; p3, pa)| 1+ — + — )

P1 A D2 P3N p4 —iv
= (21)252(p1 + p2 — p3 — )cos( )cos< ) - . (39
p1+p2—p3—ps4 > 2 J1+i5&(p1, p2) 9

d3l - - IAp
(ZN)ZDR<I>D+<p—1)cos?(T)

(38)

From this one obtains the on-shell 2-particle scattering amplitude,

(p3, palS|p1, p2) 2,2 = (8(P1 — P3)8(P2 — P4) + 8(P1 — P43 (P2 — P3))S2,2).

S 14 (é(pl, p2) +E*(p1, pz))( —iv ) _1-i58%(p1 p2)
@2 2 1+i%E(prp2)  1+i56(p1 p2)

(40)

This exact scattering matrix is manifestly unitaﬁ%’z) = S(‘Z’lz), and smoothly reduces to the commutative field
theoretical value if we put the noncommutative paramgterO.

To summarize, we have demonstrated how the perturbative analysis in the space—-time noncommutative field
theories respects the unitaritySfmatrix is defined with the proper time-ordering and the free spectral function is
used instead of the Feynman propagator.
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