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Abstract In required navigation performance (RNP), total system error (TSE) is estimated to pro-

vide a timely warning in the presence of an excessive error. In this paper, by analyzing the under-

lying formation mechanism, the TSE estimation is modeled as the estimation fusion of a fixed bias

and a Gaussian random variable. To address the challenge of high computational load induced by

the accurate numerical method, two efficient methods are proposed for real-time application, which

are called the circle tangent ellipse method (CTEM) and the line tangent ellipse method (LTEM),

respectively. Compared with the accurate numerical method and the traditional scalar quantity

summation method (SQSM), the computational load and accuracy of these four methods are exten-

sively analyzed. The theoretical and experimental results both show that the computing time of the

LTEM is approximately equal to that of the SQSM, while it is only about 1/30 and 1/6 of that of the

numerical method and the CTEM. Moreover, the estimation result of the LTEM is parallel with

that of the numerical method, but is more accurate than those of the SQSM and the CTEM. It

is illustrated that the LTEM is quite appropriate for real-time TSE estimation in RNP application.
ª 2014 Production and hosting by Elsevier Ltd. on behalf of CSAA & BUAA.

Open access under CC BY-NC-ND license.
1. Introduction

With the development of the next generation air transporta-
tion system (NextGen), performance based navigation (PBN)
is required to implement in the next few years by the

International Civil Aviation Organization (ICAO).1 Required
navigation performance (RNP) is a core component of PBN,

which plays an important role in guaranteeing flight efficiency
and safety.2

RNP defines a total of four performance parameters:

accuracy, integrity, continuity and availability. Integrity is
especially important for aviation safety, which indicates the
ability of a timely alert to a user in the presence of a system

failure or an excessive error.3–6 For RNP operation, total sys-
tem error (TSE) is estimated to compare with the navigation
specification to judge whether an aircraft satisfies the RNP
requirement or not. Since the true position is unknown, TSE

obeys a certain probability distribution during a flight. Conse-
quently, real-time TSE should be estimated to compare with
the threshold to provide a timely warning when TSE exceeds
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the bounds. It may cause false alarms if the estimation is con-
servative. Otherwise, it may cause missed warnings, which is
hazardous to flight safety. Moreover, TSE estimation methods

should be efficient to meet the real-time requirement.
Currently, the existing TSE estimation methods include the

root sum square method (RSSM) and the scalar quantity sum-

mation method (SQSM). The RSSM obtains the distribution
of TSE as a Gaussian with a standard deviation equal to the
root sum square of the standard deviations of flight technical

error (FTE) and navigation system error (NSE).7,8 As the dis-
tributional property of TSE cannot accurately reflect the true
TSE of a current moment, it may be unsuitable for real-time
application. The SQSM regards FTE and NSE as scalar quan-

tities and sums them to estimate TSE.9 Nevertheless, the
method does not distinguish the lateral and longitudinal com-
ponents of TSE, which may lead to conservative results when

the true FTE and NSE are in different directions.
In the works above, TSE is estimated as a simple sum of

FTE and NSE, while the formation mechanism of TSE is

rarely discussed. The goal of TSE estimation is to compute a
statistical bound of TSE so as to guarantee that the probability
of the true TSE exceeding the said number is smaller than the

performance requirement. A similar concept is the protection
level (PL), which has been widely used in NSE to describe a
bound of the horizon/vertical positioning error linked to the
integrity risk. In this paper, research on an accurate and

real-time TSE estimation method for RNP application is
presented.

2. TSE estimation model

In this section, the properties of FTE and NSE are analyzed to
obtain the formation mechanism of TSE. Then, the TSE esti-

mation is modeled as the estimation fusion of a fixed bias
and a Gaussian random variable.

TSE is defined as the deviation of a flight true position

away from the desired path, which mainly consists of path def-
inition error (PDE), FTE and NSE, as shown in Fig. 1. On the
assumption that PDE is negligible, TSE is the integration of

FTE and NSE.10

To estimate TSE accurately, it is essential to know the
properties of the two main components, i.e., FTE and NSE.
Recently, FTE has been investigated,11 and can be obtained

from a flight management system (FMS) timely and accu-
rately.12,13 NSE varies with navigation modes. With the devel-
opment of global navigation satellite system (GNSS), the

GNSS-based navigation mode is becoming an inevitable trend
in the future. Consequently, the GNSS-based real-time TSE
Fig. 1 Composition of TSE.
estimation is researched in this section, which can be easily
extended to other navigation modes. The NSE of the GNSS
mode obeys a Gaussian distribution, whose covariance matrix

is decided by the geometrical configuration and the pseudor-
ange errors.14

In this paper, real data of RNP during an approach phase

are utilized to valid the properties of FTE and NSE. As shown
in Fig. 2(a), the figure shows that the difference between FTE
and FMS observations is less than 0.05 m. With FMS observa-

tions, FTE can be obtained as a bias error at each sample time.
The Gaussian assumption is simple and convenient for
calculation, which has been widely used to describe the GNSS
navigation error. As shown in Fig. 2(b), the normal quantile–

quantile (Q–Q) plot of NSE indicates that NSE is close to a
Gaussian distribution, although it does not strictly obey the
distribution as imperfect data. Consequently, the problem of

real-time TSE estimation can be transformed into the
estimation fusing of a bias error and a Gaussian random
variable.

The NSE of GNSS positioning obeys Gaussian distribution
N (0, R), where R is the covariance matrix of the distribution. R

with Ns visual satellites can be obtained as: R ¼ r2
pðHT HÞ�1,

where rp is the standard deviation of pseudorange errors and

H 2 RNs·4 is the observation matrix. As matrix H is calculated
by the Ns directions from the receiver to the visual satellites, it

is usually called the geometrical configuration matrix. To
obtain the parameters of the Gaussian distribution of NSE,
the geometrical configuration and the pseudorange errors

should be applied.
Fig. 2 Properties of FTE and NSE with real data of one

approach phase.



Fig. 3 TSE estimation model.
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The 2-by-2 covariance matrix of the East–North coordi-
nates of the GNSS-based NSE can be obtained as REN

2 R2·2.15 In RNP, TSE of an aircraft is required to be less than

the threshold Th 2 R
+ with the probability PRNP 2 (0,1). To

achieve this, in this paper, the equal probability ellipse of
NSE is applied as16,17

ðxEN � lENÞ
T
R�1ENðxEN � lENÞ ¼ K2 ð1Þ

where xEN 2 R2 and lEN 2 R2 are the true position of the air-
craft and the positioning result of GNSS in the East–North

coordinates, respectively; K 2 R
+ is the constant to be deter-

mined by the probability PRNP.
As shown in Table 1,2 for a given flight phase, the RNP

navigation specification is designated as RNP-xRNP, where
xRNP is a metric in nautical mile, e.g., RNP-1.

In RNP, there are two navigation requirements associated
with TSE, namely:

(1) Accuracy: the true TSE remains equal to or less than
xRNP for 95% of the flight time.

(2) Integrity: the probability that the true TSE of the air-
craft exceeds 2xRNP without annunciation is less than
10�5.

According to the confidence probability of a Gaussian
distribution, in accuracy of RNP-xRNP, Th = xRNP,
PRNP = 95% and K= 1.96, while in integrity of RNP-xRNP,

Th = 2xRNP, PRNP = 99.999% and K= 4.41. The navigation
performance of RNP within a defined airspace is required to
support the navigation specification.

Then, the equal probability ellipse is obtained according to
Eq. (1). Given an estimated position o, the aircraft’s true posi-
tion xEN has a probability of PRNP located in the equal possi-

bility ellipse, whose center, semi-major axis, and semi-minor
axis are o, a 2 R+ and b 2 R+, respectively, as shown in
Fig. 3(a).

The aim of TSE estimation is to calculate the length
between the true position of the aircraft and the desired path
accurately. As discussed above, TSE estimation is equal to
the estimation fusion of a fixed bias and a Gaussian random

variable. To make it convenient to utilize the Gaussian random
variable, the coordinate system must first be rotated to remove
the off-diagonal correlation of the ellipse.18 The covariance

matrix REN can be diagonalized as

REN ¼ VKVT ð2Þ

where K = diag (ka, kb) is diagonal matrix, in which ka and kb
are the eigenvalues of REN; V is orthonormal matrix, which

can be denoted as
cos / � sin /
sin / cos /

� �
, where / 2 (0,2p) is the

corresponding rotation angle from the rotated coordinate to
the East–North coordinates. As shown in Fig. 3(b), in the
rotated coordinate system, the desired path is transformed into
Table 1 Navigation specification in different flight phases.

Navigation specification En route oceanic/remote

RNP-4 4

RNP-1

RNP approach

RNP authorization required approach
line y= kx (where k = cot/ is the slope of the line) from the y

axis. Without loss of generality, it is assumed that k 2 R
+. The

center of the ellipse is transferred by l0EN ¼ ½ x0; y0 �
T
after the

rotation, and the semi-major and semi-minor axes are

a ¼ K
ffiffiffiffiffi
ka

p
and b ¼ K

ffiffiffiffiffi
kb

p
, respectively. Then, the ellipse in

the rotated coordinate system can be obtained as

ðx� x0Þ2

a2
þ ðy� y0Þ

2

b2
¼ 1 ð3Þ

As shown in Fig. 3(b), the true position of the aircraft
should be located between the envelope lines l1: y = kx + d
and l2: y = kx � d (where d 2 R+ is the intercept of the line)

with a probability of PRNP to guarantee that the aircraft is
inside the RNP bounds. The value of 1 � PRNP is defined as
TSE that is outside the envelope lines instead of the bounds.

To achieve this, the probability in the purple zone is applied
to compensate for the probability in the yellow zone of the
ellipse, i.e., Ppurple = Pyellow. According to the property of

the ellipse Pyellow + Pblue = PRNP, we can obtain
Arrive Initial Interm Final Missed Depart

1 1 1 1 1

1 1 0.3 1

0.1–1 0.1–1 0.1–0.3 0.1–1
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Ppurple þ Pblue ¼ PRNP ð4Þ

where Pblue is the probability in the blue zone of the ellipse.

Considering the property of NSE, its Gaussian distribution
in the rotated coordinate system can be denoted as

pðx; yÞ ¼ 1

2prarb

� exp �ðx� x0Þ2

2r2
a

� ðy� y0Þ
2

2r2
b

" #
ð5Þ

where ra ¼
ffiffiffiffiffi
ka

p
, and rb ¼

ffiffiffiffiffi
kb

p
are the standard deviations in

the two axes, respectively.
The region between l1 and l2 is given by:

D ¼ fðx; yÞjðy� kx� dÞ 2 R�; ðy� kxþ dÞ 2 Rþg: ð6Þ

As the slope k can be obtained in the rotation, the probabil-
ity that the aircraft locates in the region D is a function of d:

PDðdÞ ¼
ZZ

D

pðx; yÞdxdy ð7Þ

The distance between the envelope line l1 or l2 to the desired

path is obtained as

L ¼ dffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p ð8Þ

If L is larger than the threshold Th, it means that the two
envelope lines l1 and l2 in Fig. 3(b) are outside bound 1 and
bound 2. In this case, we should give a TSE warning to the

user. We can obtain:

d ¼ L
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p
ð9Þ

Substitute Eq. (9) into Eq. (7), and a function f (n) is defined
as

fðnÞ ¼ PD n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p� �
� PRNP ð10Þ
PD dð Þ ¼ UðvÞ U
kx0 þ kravþ d� y0

rb

� �
�U

kx0 þ krav� d� y0
rb

� �� �				v¼1
v¼�1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

P1ðdÞ

�
Z þ1

�1

kraffiffiffiffiffiffi
2p
p

rb

UðvÞ e
�1

2

kx0þkravþd�y0
rb

� �2

� e
�1

2

kx0þkrav�d�y0
rb

� �2
0
@

1
Adv

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
P2ðdÞ

ð13Þ
where n is the variable of the function.
The evaluated TSE is the solution of f (n) = 0. If the solved

TSE is less than the threshold Th in RNP-xRNP, it is normal

flight at the moment. Otherwise, the envelope would exceed
the bounds of RNP, and a warning should be provided by
the system.

3. Approaches and comparisons

In this section, the numerical method is firstly proposed to

solve the TSE model. However, it is complex and time-
consuming, which may not meet the real-time requirement.
PD ðdÞ¼P2ðdÞ¼�
Z þ1

�1

kraffiffiffiffiffiffi
2p
p

rb

UðvÞexp �1
2

kx0þkravþd�y0
rb

� �2
 !

d

Then, the traditional SQSM based on the model is also pre-
sented, while it is conservative. Based on the model, two effi-
cient TSE estimation methods, i.e., the circle tangent ellipse

method (CTEM) and the line tangent ellipse method (LTEM),
are proposed for real-time application. Finally, these four
methods are compared in terms of accuracy and computa-

tional load.

3.1. Numerical method for solving the model

To solve the model, it is necessary to get the probability func-
tion PD ðdÞ. Substituting Eqs. (5) and (6) into Eq. (7) yields:

PD ðdÞ ¼
Z þ1

�1

1ffiffiffiffiffiffi
2p
p

ra

exp �ðx� x0Þ2

2r2
a

" #
dx

�
Z kxþd

kx�d

1ffiffiffiffiffiffi
2p
p

rb

exp �ðy� y0Þ
2

2r2
b

" #
dy ð11Þ

Denote the cumulative distribution function of a normal

distribution as UðlÞ ¼ 1ffiffiffiffi
2p
p
R l
�1 exp � q2

2

� �
dq, so Eq. (11) can

be written as

PDðdÞ ¼
Z þ1

�1

1ffiffiffiffiffiffi
2p
p

ra

exp �ðx� x0Þ2

2r2
a

" #
U

kxþ d� y0
rb

� �
dx

�
Z þ1

�1

1ffiffiffiffiffiffi
2p
p

ra

exp �ðx� x0Þ2

2r2
a

" #
U

kx� d� y0
rb

� �
dx

ð12Þ

It is noted that v = (x � x0)/ra. By applying the stepwise
integration, we can obtain:
As shown in Eq. (13), the probability function PD ðdÞ is
composed of P1(d) and P2(d).

(1) If k = 0, then P2(d) = 0, and thus:

PDðdÞ ¼ P1ðdÞ ¼ U
d� y0

rb

� �
� U

�d� y0
rb

� �
ð14Þ

(2) If k „ 0, then P1(d) = 0, and thus:
vþ
Z þ1

�1

kraffiffiffiffiffiffi
2p
p

rb

UðvÞexp �1
2

kx0þkrav�d�y0
rb

� �2
 !

dv ð15Þ
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Define

RðdÞ¼
U d�y0

rb

� �
k¼ 0

�
Rþ1
�1

kraffiffiffiffi
2p
p

rb
UðvÞexp � 1

2

kx0þkravþd�y0
rb

� �2� �
dv k– 0

8><
>:

ð16Þ

Then, we can obtain:

PDðdÞ ¼ RðdÞ � Rð�dÞ ð17Þ
Substituting Eq. (17) into Eq. (10) yields:

f ðnÞ ¼ R n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p� �
� R �n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p� �
� PRNP ð18Þ

To solve f (n) = 0 in Eq. (18), the numerical method is
required.19 The solution is denoted as sNM. The result of
the model is obviously an exact solution, as it exceeds the

true TSE with a probability of PRNP strictly. However, the
solving process is complex and time-consuming, which may
not meet the real-time requirement. Consequently, it is neces-

sary to investigate more efficient approaches for RNP
application.

3.2. Efficient approaches for RNP application

3.2.1. SQSM

The conventional SQSM regards FTE and NSE as scalar

quantities and sums them to estimate TSE,10 as shown in
Fig. 4(a). The calculation time is negligible and the TSE esti-
mation result is obtained as

sSQSM ¼ gþmax fa; bg: ð19Þ

where g is the value of FTE, which can be obtained by calcu-
lating the distance between the center of the ellipse center (x0,

y0) and the desired path y = kx, i.e., g ¼ jy0 � kx0j=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p
.

Then, TSE estimation of the SQSM is obtained as

sSQSM ¼
y0 � kx0j jffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p þmax fa; bg ð20Þ

TSE is inherently the combination of the FTE vector and

the NSE vector, which will be less than the sum of the corre-
sponding scalar quantities if FTE and NSE are in different
directions. Thus, the result of the SQSM is conservative, and
may cause false alarms.
Fig. 4 Three kinds of efficient
3.2.2. CTEM

In this section, the CTEM is proposed to obtain real-time TSE

estimation. Inspired by the model, a circle O(r) with the
expected point as the center which is tangent to the ellipse is
applied to obtain the envelope of TSE with a probability of

PRNP, as shown in Fig. 4(b). The farthest point on the ellipse
from the expected point should be tangent on the circle, and
thus we consider the following problem:

max
ðxf ;yfÞ

r2 ¼ x2
f þ y2f

s:t:
ðxf � x0Þ2

a2
þ ðyf � y0Þ

2

b2
¼ 1

ð21Þ

where r 2 R+ is the radius of the circle O(r). Denote xf = -
x0 + a cos h, yf = y0 + b sinh, and h 2 (0, 2p). Substituting
them into Eq. (21) yields:

max
h

r2ðhÞ ¼ ðx0 þ a cos hÞ2 þ ðy0 þ b sin hÞ2 ð22Þ

The farthest point is required to satisfy or(h)/oh = 0, so
that

orðhÞ
oh
¼ ðb2 � a2Þ cos h sin h� ax0 sin hþ by0 cos h ¼ 0 ð23Þ

(1) If a = b, the ellipse degenerates into a circle, and Eq.
(23) can be written as

�x0 sin hþ y0 cos h ¼ 0 ð24Þ

then sin h ¼ y0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
0 þ y20

p
and cos h ¼ x0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
0 þ y20

p
.

Substituting Eq. (24) into Eq. (22) yields:

rðhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
0 þ y20 þ 2aðx0 cos hþ y0 sin hÞ þ a2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
0 þ y20

q
þ a

ð25Þ

(2) If a „ b, denote t= tan(h/2), and then sinh = 2t/

(1 + t2) and cosh = (1 � t2)/(1 + t2). We have:

orðhÞ 2 2 2tð1� t2Þ 2t 1� t2
TSE e
oh
¼ðb �a Þ

ð1þ t2Þ2
�ax0

1þ t2
þby0 1þ t2

¼ 0

ð26Þ

Eq. (26) can be transformed into a 4-order equation:
by0t
4 þ 2ðax0 � a2 þ b2Þt3 þ 2ðax0 þ a2 � b2Þt� by0 ¼ 0

ð27Þ
stimation approaches.
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a. If y0 = 0, Eq. (27) is degenerated into a 3-order

equation:

ðax0 � a2 þ b2Þt3 þ ðax0 þ a2 � b2Þt ¼ 0 ð28Þ
whose three solutions are t1 = 0 and t2;3 ¼ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq

ð�ax0 � a2 þ b2Þ=ðax0 � a2 þ b2Þ.
b. If y0 „ 0, transform the first coefficient of Eq. (27) into 1
to obtain:

4 2ðax0�a2þb2Þ 3 2ðax0þa2�b2Þ

t þ

by0
t þ

by0
t�1¼ 0 ð29Þ
The solutions of Eq. (29) are also the eigenvalues of the

matrix as follows:

A ¼

� 2ðax0�a2þb2Þ
by0

0 � 2ðax0þa2�b2Þ
by0

�1
1 0 0 0

0 1 0 0

0 0 1 0

2
66664

3
77775 ð30Þ

Considering that there are two extreme points on the
ellipse, i.e., the maximum and the minimum, the matrix A
has and only has two real eigenvalues t1 = k1 and t2 = k2.

Thus, the solution of the Eq. (23) can be obtained as

hi ¼ 2 arctan ti ði ¼ 1; 2; . . . ;NsÞ ð31Þ

where Ns is the total number of real solutions of Eq. (23).
Then, the parameters hi are substituted into Eq. (21) to obtain
the maximum solution:

sCTEM ¼ max
i
rðhiÞ ð32Þ

As discussed above, it is illustrated that TSE estimation of
the CTEM is simpler than that of the numerical method.
According to the definition of TSE, the points on the same line
parallel with the desired path have the same TSE. However,

when (x0, y0) and (x0, y0) ((x0, y0) „ (x0, y0)), which are the
points on line l3: y= kx + y0 � kx0, are substituted into Eq.
(30), respectively, the solutions of the CTEM are obviously dif-

ferent. Thus, the TSE estimation result of the CTEM is nega-
tively impacted by the positioning result.

3.2.3. LTEM

To obtain TSE accurately and avoid the impact of the posi-
tioning result, the LTEM is proposed in this paper. As shown
in Fig. 4(c), based on the TSE model, the distance between the

envelope lines is properly enlarged to make one of the lines
tangent to the circle. The distance between the new parallel
lines is calculated to meet the real-time requirement. As the

lines are parallel to the desired path, TSE is not impacted by
the positioning result.

The tangent point (xt, yt) is on the ellipse and should satisfy:

ðxt � x0Þ2

a2
þ ðyt � y0Þ

2

b2
¼ 1 ð33Þ

The differential of Eq. (33) is given by:

xt � x0

a2
dxt þ

yt � y0

b2
dyt ¼ 0 ð34Þ

As the tangent line is parallel to the desired path, the slope
is obtained as
dyt
dxt

¼ k ð35Þ

(1) If k = 0 or k=1, i.e., the axis of the ellipse is parallel

or perpendicularity to the desired line, TSE can be obtained as
sLTEM ¼ bþ y0; or sLTEM ¼ aþ x0 ð36Þ

which is the same as the result of the SQSM.

(2) If k „ 0 and k „1, the farther solutions are obtained by
solving the combination of Eq. (33)–(35):
yt ¼ y0 � b2ffiffiffiffiffiffiffiffiffiffiffiffi
k2a2þb2
p

xt ¼ x0 � ka2ffiffiffiffiffiffiffiffiffiffiffiffi
k2a2þb2
p

8><
>: ð37Þ

TSE can be obtained by calculating the distance from the
tangent point to the desired path:

sLTEM ¼
jy0 � kx0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2a2 þ b2

p
jffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2
p ð38Þ

To obtain the envelope, the larger solution of the LTEM is

selected as the final TSE estimation result. As shown in
Fig. 4(c), we have y0 � kx0 6 0, and thus TSE estimation can
be obtained as

sLTEM ¼
kx0 � y0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2a2 þ b2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p ð39Þ

Since the difference between the LTEM and the numerical

method is just a fraction of the ellipse, the LTEM result is very
close to the numerical method result. The advantage of the
LTEM is that it can obtain TSE with much less computing.

3.3. Approaches comparison

In this section, the accuracies and computational loads of the

numerical method, the SQSM, the CTEM, and the LTEM are
deducted and compared to assess which method is most appro-
priate for RNP application.
3.3.1. Accuracy

(1) sNM < sLTEM

As shown in Fig. 3(c), during the process of the numerical

method, the probability in the purple region is applied to com-
pensate the probability in the yellow region of the ellipse.
Thus, sNM should be the distance between a secant of the

ellipse and the desired path. The result of the LTEM is the far-
ther tangent of the ellipse. Thus, the conclusion can be
obtained easily as

sNM < sLTEM ð40Þ

(2) sSQSM P sLTEM

When compared with Eq. (20) and Eq. (39),



Table 2 Comparison between the four TSE estimation

methods.

Method TSE estimation Accuracy Computing load

Numerical method Eq. (18) Very accurate Large

SQSM Eq. (20) Conservative Small

CTEM Eq. (32) Conservative Medial

LTEM Eq. (39) Accuracy Small
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sSQSM � sLTEM ¼
kx0 � y0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p þmaxfa; bg

� kx0 � y0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2a2 þ b2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p ð41Þ

Then, we can obtain:

sSQSM � sLTEM ¼ maxfa; bg �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2a2 þ b2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p � 0 ð42Þ

If and only if a = b or k =1, a> b or k= 0, a < b, the
equality holds.

(3) sCTEM P sLTEM

According to the property of the CTEM, we can obtain

sCTEM �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
t þ y2t

p
, and when combining it with Eq. (38) and

the Cauchy inequality, we can obtain:

sLTEM ¼
jyt � kxtjffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2
p 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
t þ y2t

q
	 sCTEM ð43Þ

If and only if yt/xt = �1/k and the tangent point (xt,
yt) = (xf, yf), the equality holds.

It can be obtained from Eq. (37) that yt/xt = �1/k is
equivalent to the center of the ellipse (x0, y0) which satisfies:

x0 þ ky0 ¼
kðb2 � a2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2a2 þ b2

p ð44Þ

Combined with Eq. (22), (xt, yt) = (xf, yf) is equivalent to

ðb2 � a2Þkþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2a2 þ b2

p
ðx0 þ ky0Þ ¼ 0 ð45Þ

Substituting Eq. (44) into Eq. (45) yields:

2ðb2 � a2Þk ¼ 0 ð46Þ

Thus, the solution of Eq. (45) is k = 0 or a = b. Substitut-
ing them into Eq. (44) yields:

x0 þ ky0 ¼ 0 ð47Þ

If k = 0, we can obtain x0 = 0, and if a = b, then

x0 + ky0 = 0. Thus, if and only if k = 0, x0 = 0 or a = b,
x0 + ky0 = 0, the equality in sCTEM P sLTEM holds.

(4) sSQSM and sCTEM

From Eqs. (20)–(22), sSQSM = sCTEM if and only if:

jy0�kx0 jffiffiffiffiffiffiffiffi
1þk2
p þmaxfa; bg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0 þ a cos hÞ2 þ ðy0 þ b sin hÞ2

q
ðb2 � a2Þ cos h sin h� ax0 sin hþ by0 cos h ¼ 0

8<
:

ð48Þ

As the format of the parameter h is very complex, it is dif-

ficult to know the relationship between sSQSM and sCTEM.
Thus, a simple case is considered, i.e., y0 = 0. Substituting
y0 = 0 into Eq. (20) and Eq. (32) yields:

sSQSM ¼
kx0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p þmaxfa; bg ð49Þ

sCTEM ¼ x0 þ a ð50Þ
If b > aþ x0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p
� kÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p
, sSQSM > sCTEM.

Else, sSQSM 6 sCTEM. It is illustrated that the relation between

sSQSM and sCTEM is uncertain which is affected by the
parameters.

Conclusively, the relationship between the estimated TSEs

of the four methods is:

sNM < sLTEM 	 sCTEM; sSQSM ð51Þ

As sNM is the solution of the TSE estimation model, it is the

exact TSE estimation. Eq. (51) shows that sLTEM is much closer
to sNM when compared with sCTEM and sSQSM. It is illustrated
that sCTEM and sSQSM are more conservative than sLTEM.

3.3.2. Computational load

Considering the real-time requirement, the computational
load is another indicator to evaluate the performances of

these methods. The numerical method is complex and may
not meet the real-time requirement. The CTEM may also
suffer from complex calculation due to the matrix decom-

posing. Compared with these two methods, the conventional
SQSM and the proposed LTEM are quite simpler and more
efficient.

To generalize the discussion above, the comparison

between these TSE estimation methods is shown in Table 2.
The most accurate TSE estimation result can be obtained by
the numerical method, while it is very time-consuming.

Although the SQSM is fast, it is conservative, which may cause
false alarms. The CTEM is medial when compared with the
two methods above, while it is negatively affected by the posi-

tioning result. The LTEM is accurate and efficient, which is
relatively suitable for real-time TSE estimation in RNP.

4. Experimental results and discussions

With simulated data and real data, three separate experiments
are designed to evaluate the performances of these TSE estima-

tion methods. The first experiment is to assess the computing
time of these four methods by statistical analysis. The second
experiment is to test the accuracy of these methods with simu-
lated data. Finally, real data is applied to test the practical util-

ity of these methods.
Our experiments are conducted using Matlab software in

PC with a Core i7 CPU (2.93 GHz with 2 GB memory). The

real data and simulated data are described as follows.
(1) Real data
The real test data were collected with a GNSS receiver

(NovAtel DL-V3) during the approach phase of an aircraft
at an airport in Chengdu, Sichuan Province in January 2013.
The approach phase started from point (103.4352�,
30.38138�, 1100 m) in the longitude, latitude and height
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(LLH) coordinate system and ended at point (103.46196�,
30.47895�, 547 m) in the LLH coordinate system. The total
length of the flight phase was 11100 m.

The aircraft processed RNP-0.3 during the approach phase.
For statistical evaluation, the dataset is utilized to test the
accuracy performance of RNP (PRNP = 95%), which has the

length of 3063 s (composed by 19 sorties and about 160 s for
each sortie). The real-time kinematic (RTK) technology is
applied to provide positioning results up to centimeter-level

accuracy,20 which can be regarded as the true position of the
aircraft.

(1) Simulated data

As it is difficult to obtain enough amount of real data to
test the integrity performance of RNP (PRNP = 99.999%),

simulated data is set according to the process of the approach
phase.
Fig. 5 Calculating times of four methods with real data during

one approach phase.

Table 3 Performances of these four methods with simulated

data.

Method Exceed rate in

RNP accuracy (%)

Exceed rate in

RNP integrity (%)

Numerical method 95.03 99.99901

SQSM 97.75 99.99966

CTEM 97.16 99.99959

LTEM 95.32 99.99909

Fig. 6 TSE estimation resul
The simulated aircraft position is set to be the same as the
real data. The GNSS data is simulated by using the broadcast
ephemeris received by the GNSS monitor stations at the air-

port. The standard deviation of the pseudorange Gaussian
noise is set as 12.5 m. To test the integrity performance of
RNP, a total of 107 s of data is simulated.

4.1. Simulated data result

The calculating times of these four methods with the real data

during one approach phase are shown in Fig. 5. It indicates
that the mean calculating times of the LTEM and the SQSM
are only 0.15 s, which is about 1/30 and 1/6 of those of the

numerical method (4.6 s) and the CTEM (0.87 s), respectively.
The LTEM and the SQSM are simple and their computing
times can be neglected. The CTEM is slower due to the matrix
decomposing. As the numerical method is complex, it is most

time-consuming.
The accuracies of these four methods with the simulated

data are shown in Table 3. The exceed rate is defined as the

percentage of the estimated TSE that is larger than the real
TSE. The result of the numerical method exceeds the real
TSE with probabilities of 95.03% and 99.99901% in RNP

accuracy and RNP integrity, respectively, which can be consid-
ered as the exact TSE estimation result. The reason is that the
numerical method is the solution of the TSE estimation model.
The result of the LTEM is approximately equal to that of the

numerical method. However, as the exceed rates are much lar-
ger, the results of the SQSM and the CTEM are relatively
conservative.

4.2. Real data results

The real data during the approach phase are applied to com-

pare these four methods. With the amount limitation of the
real data, PRNP is only set to 95% to test these methods in
RNP accuracy. As the curves of each sortie are almost the
ts in the approach phase.

Table 4 Performances of these four methods with real data.

Method Computing time (s) Exceed rate (%)

Numerical method 3.86 95.05

SQSM 0.13 97.25

CTEM 0.75 97.89

LTEM 0.16 95.06
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same, we show only one of them for illustration. As shown in
Fig. 6(a), the ascending order of the TSE estimation results of
the four methods is the numerical method, the LTEM, the

CTEM or the SQSM, which is consistent with the conclusion
in Eq. (51). TSE estimation errors of these methods in the sam-
ple time are shown in Fig. 6(b), whose partial enlarged view is

shown in Fig. 6(c). These results indicate that the error of the
numerical method is the least, and the result of the LTEM is
very approximate to that of the numerical method. However,

the results of the SQSM and the CTEM are relatively more
conservative.

The statistical results of the methods on the whole real data
are shown in Table 4. The mean computing time of the LTEM

is 0.16 s, almost the same as that of the SQSM (0.13 s), while it
is about 1/30 and 1/6 of those of the numerical method (3.96 s)
and the CTEM (0.75 s), respectively. The results of the numer-

ical method and the LTEM are accurate and very close to each
other, whose exceed rates are 95.05% and 95.06%, respec-
tively. The results of the CTEM and the SQSM are relatively

more conservative, whose exceed rates are 97.25% and
97.89%, respectively.

Conclusively, the LTEM is appropriate for real-time TSE

estimation in RNP, since it is more accurate and efficient when
compared with the other methods.

5. Conclusions

(1) By analyzing the formation mechanism of TSE, the real-
time TSE estimation for RNP operation i modeled as
the estimation fusion of fixed biases and Gaussian ran-

dom variables.
(2) The CTEM and the LTEM are proposed for efficient

TSE estimation to address the challenge of high compu-

tational load induced by the numerical method.
(3) Simulated data and real data during a RNP approach

phase are utilized to evaluate the performances of these
methods.

(4) The theoretical and experimental results show that the
LTEM is more efficient and accurate when compared
with the other methods, thereby is more appropriate

for real-time TSE estimation in RNP application.
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