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a b s t r a c t

The concept of λ-statistical convergence was introduced in [M. Mursaleen, λ-statistical
convergence, Math Slovaca, 50 (2000) 111–115] by using the generalized de la Vallée
Poussin mean. In this work we apply this method to prove some Korovkin type
approximation theorems.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction and preliminaries

The concept of statistical convergence for sequences of real numbers was introduced by Fast [1] and Steinhaus [2]
independently in the same year 1951, and since then several generalizations and applications of this notion have been
investigated by various authors.
Let K be a subset of N, the set of natural numbers. Then the asymptotic density of K , denoted by δ(K), is defined as

δ(K) = lim
n

1
n
|{k ≤ n : k ∈ K}|,

where the vertical bars denote the cardinality of the enclosed set.
The number sequence x = (xj) is said to be statistically convergent to the number ` if for each ε > 0,

lim
n

1
n
|{j ≤ n : |xj − `| ≥ ε}| = 0.

In this case, we write st − lim xk = L.

Remark 1.1. It is well known that every statistically convergent sequence is convergent, but the converse is not true. For
example, suppose that the sequence x = (xn) is defined as

x = (xn) =
{√
n, if n is square
0, otherwise.

It is clear that the sequence x = (xn) is statistically convergent to 0, but it is not convergent.

The idea of λ-statistical convergence was introduced in [3] as follows:
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Let λ = (λn) be a non-decreasing sequence of positive numbers tending to∞ such that
λn+1 ≤ λn + 1, λ1 = 0.

The generalized de la Vallée Poussin mean is defined by

tn(x) =:
1
λn

∑
j∈In

xj

where In = [n− λn + 1, n].
A sequence x = (xj) is said to be (V , λ)-summable to a number ` (see [4]) if
tn(x)→ ` as n→∞.

A sequence x = (xj) is said to be strongly (V , λ)-summable to a number ` if
1
λn

∑
j∈In

|xj − `| → 0 as n→∞.

We denote it by xj → `[V , λ] as j→∞.
Let K ⊆ N be a set of positive integers; then

δλ(K) = lim
n

1
λn
|{n− λn + 1 ≤ j ≤ n : j ∈ K}|

is said to be the λ-density of K .
If λn = n, the λ-density reduces to the natural density. Also, since (λn/n) ≤ 1, δ(K) ≤ δλ(K) for every K ⊆ N.
The number sequence x = (xj) is said to be λ-statistically convergent to the number ` if for each ε > 0, δλ(Kε) = 0, where

Kε = {j ∈ In : |xj − `| > ε}, i.e.

lim
n

1
λn
|{j ∈ In : |xj − `| > ε}| = 0.

In this case we write stλ- limj xj = ` and we denote the set of all λ-statistically convergent sequences by Sλ.

Remark 1.2. As inRemark 1.1, it is observed that if a sequence is (V , λ)-summable to a number `, then it is alsoλ-statistically
convergent to the same number ` but the converse need not be true. For example, let the sequence z = (zk) be defined by

zk =
{
k, if n− [

√
λn] + 1 ≤ k ≤ n,

0, otherwise.

Then x is λ-statistically convergent to 0 but not (V , λ)-summable.
Recently some Korovkin type approximation theorems were proved in [5–7] by using statistical convergence, lacunary

statistical convergence and statistical summability (C, 1), respectively. In thiswork,weprove someanalogues of the classical
Korovkin theorem via λ-statistical convergence. The classical Korovkin approximation theorem can be stated as follows
(see [8–10]):
Suppose that (Tn) is a sequence of positive linear operators from C[a, b] into C[a, b]. Then

(i) limn ‖Tn(f , x)− f (x)‖C[a,b] = 0, for all f ∈ C[a, b], if and only if
(ii) limn ‖Tn(fi, x)− fi(x)‖C[a,b] = 0, for i = 0, 1, 2, where f0(x) = 1, f1(x) = x and f2(x) = x2.

2. Main results

Let C[a, b] be the space of all functions f continuous on [a, b]. We know that C[a, b] is a Banach space with norm
‖f ‖∞ := supa≤x≤b |f (x)|, f ∈ C[a, b]. Suppose that Tn : C[a, b] → C[a, b]. We write Tn(f , x) for Tn(f (t), x) and we say
that T is a positive operator if T (f , x) ≥ 0 for all f (x) ≥ 0.

Theorem 2.1. Suppose that Tn : C[a, b] → C[a, b] is a sequence of positive linear operators satisfying the following conditions:

stλ − lim ‖Tn(1, x)− 1‖∞ = 0, (2.1)
stλ − lim ‖Tn(t, x)− x‖∞ = 0, (2.2)

stλ − lim ‖Tn(t2, x)− x2‖∞ = 0. (2.3)

Then for any function f ∈ C[a, b] bounded on the whole real line, we have

stλ − lim ‖Tn(f , x)− f (x)‖∞ = 0.

Proof. Since f ∈ C[a, b] and f is bounded on the whole real line, we have

|f (x)| ≤ M, −∞ < x <∞.

Therefore,
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|f (t)− f (x)| ≤ 2M, −∞ < t, x <∞. (2.4)

Also, since f ∈ C[a, b]we have that f is continuous on [a, b], i.e.

|f (t)− f (x)| < ε, ∀|t − x| < δ. (2.5)

Using (2.4), (2.5) and putting ψ(t) = (t − x)2, we get

|f (t)− f (x)| < ε +
2M
δ2
ψ, ∀|t − x| < δ.

This means that

−ε −
2M
δ2
ψ < f (t)− f (x) < ε +

2M
δ2
ψ.

Now we can apply Tn(1, x) to this inequality since Tn(f , x) is monotone and linear. Hence,

Tn(1, x)
(
−ε −

2M
δ2
ψ

)
< Tn(1, x) (f (t)− f (x)) < Tn(1, x)

(
ε +

2M
δ2
ψ

)
.

Note that x is fixed and so f (x) is a constant number. Therefore,

− εTn(1, x)−
2M
δ2
Tn(ψ, x) < Tn(f , x)− f (x)Tn(1, x) < εTn(1, x)+

2M
δ2
Tn(ψ, x). (2.6)

But,

Tn(f , x)− f (x) = Tn(f , x)− f (x)Tn(1, x)+ f (x)Tn(1, x)− f (x)
= [Tn(f , x)− f (x)Tn(1, x)] + f (x)[Tn(1, x)− 1]. (2.7)

Using (2.6) and (2.7), we have

Tn(f , x)− f (x) < εTn(1, x)+
2M
δ2
Tn(ψ, x)+ f (x)(Tn(1, x)− 1). (2.8)

Now, let us estimate Tn(ψ, x):

Tn(ψ, x) = Tn((t − x)2, x) = Tn(t2 − 2tx+ x2, x)
= Tn(t2, x)− 2xTn(t, x)+ x2Tn(1, x)
= [Tn(t2, x)− x2] − 2x[Tn(t, x)− x] + x2[Tn(1, x)− 1].

Using (2.8), we get

Tn(f , x)− f (x) < εTn(1, x)+
2M
δ2
{[Tn(t2, x)− x2] − 2x[Tn(t, x)− x] + x2[Tn(1, x)− 1]} + f (x)(Tn(1, x)− 1)

= ε[Tn(1, x)− 1] + ε +
2M
δ2
{[Tn(t2, x)− x2] − 2x[Tn(t, x)− x] + x2[Tn(1, x)− 1]}

+ f (x)(Tn(1, x)− 1).

Since ε is arbitrary we can write

‖Tn(f , x)− f (x)‖∞ ≤
(
ε +

2Mb2

δ2
+M

)
‖Tn(1, x)− 1‖∞ +

4Mb
δ2
‖Tn(t, x)− x‖∞ +

2M
δ2
‖Tn(t2, x)− x2‖∞

≤ K
(
‖Tn(1, x)− 1‖∞ + ‖Tn(t, x)− x‖∞ + ‖Tn(t2, x)− x2‖∞

)
, (2.9)

where K = max
(
ε + 2Mb2

δ2
+M, 4Mb

δ2

)
. For ε′ > 0, write

D =
{
n ∈ Im : ‖Tn(1, x)− 1‖∞ + ‖Tn(t, x)− x‖∞ + ‖Tn(t2, x)− x2‖∞ ≥

ε′

K

}
,

D1 =
{
n ∈ Im : ‖Tn(1, x)− 1‖∞ ≥

ε′

3K

}
,

D2 =
{
n ∈ Im : ‖Tn(t, x)− x‖∞ ≥

ε′

3K

}
,

D3 =
{
n ∈ Im : ‖Tn(t2, x)− x2‖∞ ≥

ε′

3K

}
.
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Then D ⊂ D1 ∪ D2 ∪ D3, and so δλ(D) ≤ δλ(D1)+ δλ(D2)+ δλ(D3).
Therefore, using conditions (2.1)–(2.3), we get

stλ − lim ‖Tn(f , x)− f (x)‖∞ = 0.

This completes the proof of the theorem. �

Remark 2.1. (i) We get the classical Korovkin theorem by letting n→∞ in (2.9). (ii) By taking λn = n in our theorem, we
get Theorem 1 of [5].

In the following we give an example of a sequence of positive linear operators satisfying the conditions of Theorem 2.1
but not satisfying the conditions of the Korovkin theorem.

Example 2.1. Consider the sequence of classical Bernstein polynomials

Bn(f , x) :=
n∑
k=0

f
(
k
n

)(n
k

)
xk(1− x)n−k; 0 ≤ x ≤ 1.

Let the sequence (Pn) be defined by Pn : C[0, 1] → C[0, 1]with Pn(f , x) = (1+ zn)Bn(f , x), where zn is defined as above.
Then

Bn(1, x) = 1, Bn(t, x) = x, Bn(t2, x) = x2 +
x− x2

n
,

and the sequence (Pn) satisfies the conditions (2.1)–(2.3). Hence we have

stλ − lim ‖Pn(f , x)− f (x)‖∞ = 0.

On the other hand, we get Pn(f , 0) = (1+ zn)f (0), since Bn(f , 0) = f (0), and hence

‖Pn(f , x)− f (x)‖∞ ≥ |Pn(f , 0)− f (0)| = zn|f (0)|.

We see that (Pn) does not satisfy the classical Korovkin theorem, since lim supn→∞ zn does not exist.
Next we study a Korovkin type theorem for a sequence of positive linear operators on Lp[a, b] via λ-statistical

convergence.

Theorem 2.2. Let (An) be the sequence of positive linear operators An : Lp[a, b] → Lp[a, b] and let the sequence {‖An‖} be
uniformly bounded. Suppose that

stλ − lim ‖An(1, x)− 1‖Lp = 0,
stλ − lim ‖An(t, x)− x‖Lp = 0,

and

stλ − lim ‖An(t2, x)− x2‖Lp = 0.

Then for any function f ∈ Lp[a, b], we have

stλ − lim ‖An(f , x)− f (x)‖Lp = 0.

Remark 2.2. We can reformulate the above theorem under the same hypothesis as follows; that is, if

st − lim ‖Bn(1, x)− 1‖Lp = 0,
st − lim ‖Bn(t, x)− x‖Lp = 0,

and

st − lim ‖Bn(t2, x)− x2‖Lp = 0,

hold. Then for any function f ∈ Lp[a, b], we have

st − lim ‖Bn(f , x)− f (x)‖Lp = 0,

where Bn = 1
λn

∑
k∈In Ak.

Remark 2.3. By Theorem 2.1 of [4], we have (i) xk → L[V , λ] ⇒ xk → L(Sλ) but not the converse, (ii) if x = (xk) is bounded
and xk → L(Sλ), then xk → L[V , λ] and hence xk → L(C, 1) provided x is not eventually constant. We use this observation
to prove the following result.
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Theorem 2.3. Let Tn : C[a, b] → C[a, b] be a sequence of positive linear operators satisfying the conditions (2.2) and
(2.3) of Theorem 2.1 and

lim
n
‖Tn(1, x)− 1‖∞ = 0. (2.1

′

)

Then for any f ∈ C[a, b], we have

lim
m

1
λm

∑
n∈Im

‖Tn(f , x)− f (x)‖∞ = 0.

Proof. From the condition (2.1′), it follows that ‖Tn(1, x)‖∞ ≤ M ′, for some constant M > 0 and for all n = 1, 2, 3, . . . .
Hence, for f ∈ C[a, b], we have

‖Tn(f , x)− f (x)‖∞ ≤ ‖f ‖∞‖Tn(1, x)‖∞ + ‖f ‖∞ ≤ M(M ′ + 1). (2.10)

Since (2.1′) implies (2.1), by Theorem 2.1 we get

stλ − lim ‖Tn(f , x)− f (x)‖∞ = 0. (2.11)

By Remark 2.3, (2.10) and (2.11) together give the desired result.
This completes the proof of the theorem. �

3. λ-statistical order

In this section we deal with the order of λ-statistical convergence of a sequence of positive linear operators.

Definition 3.1. The number sequence x = (xk) is λ-statistically convergent to the number L with degree 0 < β < 1 if for each
ε > 0,

lim
n

1
(λn)1−β

|{j ∈ In : |xj − `| > ε}| = 0.

In this case, we write

xk − L = (stλ)-o(k−β), as k→∞.

Theorem 3.1. Suppose that Tn : C[a, b] → C[a, b] is a sequence of positive linear operators satisfying the following conditions:

‖Tn(1, x)− 1‖∞ = stλ-o(n−β1),
‖Tn(t, x)− x‖∞ = stλ-o(n−β2),
‖Tn(t2, x)− x2‖∞ = stλ-o(n−β3).

Then for any function f ∈ C[a, b], we have

‖Tn(f , x)− f (x)‖∞ = stλ-o(n−β), as n→∞,

where β = min{β1, β2, β3}.

Proof. We can rewrite the inequality (2.9) as follows:

‖Tn(f , x)− f (x)‖∞
(λk)1−β

≤

(
ε +

2Mb2

δ2
+M

)
‖Tn(1, x)− 1‖∞

(λk)1−β1

(
(λk)

1−β1

(λk)1−β

)
+
4Mb
δ2

‖Tn(t, x)− x‖∞
(λk)1−β2

(
(λk)

1−β2

(λk)1−β

)
+
2M
δ2

‖Tn(t2, x)− x2‖∞
(λk)1−β3

(
(λk)

1−β3

(λk)1−β

)
.

Hence,

‖Tn(f , x)− f (x)‖∞ = stλ-o(n−β), as n→∞,

where β = min{β1, β2, β3}.
This completes the proof of the theorem. �
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