
Operations Research Perspectives 3 (2016) 43–58

Contents lists available at ScienceDirect

Operations Research Perspectives

journal homepage: www.elsevier.com/locate/orp

The irace package: Iterated racing for automatic algorithm

configuration

Manuel López-Ibáñez

a , ∗, Jérémie Dubois-Lacoste

b , Leslie Pérez Cáceres b , Mauro Birattari b ,
Thomas Stützle

b

a Alliance Manchester Business School, University of Manchester, UK
b IRIDIA, Université Libre de Bruxelles (ULB), CP 194/6, Av. F. Roosevelt 50 – B-1050 Brussels, Belgium

a r t i c l e i n f o

Article history:

Available online 21 September 2016

Keywords:

Automatic algorithm configuration

Racing

Parameter tuning

a b s t r a c t

Modern optimization algorithms typically require the setting of a large number of parameters to optimize

their performance. The immediate goal of automatic algorithm configuration is to find, automatically, the

best parameter settings of an optimizer. Ultimately, automatic algorithm configuration has the potential

to lead to new design paradigms for optimization software. The irace package is a software package

that implements a number of automatic configuration procedures. In particular, it offers iterated racing

procedures, which have been used successfully to automatically configure various state-of-the-art algo-

rithms. The iterated racing procedures implemented in irace include the iterated F-race algorithm and

several extensions and improvements over it. In this paper, we describe the rationale underlying the it-

erated racing procedures and introduce a number of recent extensions. Among these, we introduce a

restart mechanism to avoid premature convergence, the use of truncated sampling distributions to han-

dle correctly parameter bounds, and an elitist racing procedure for ensuring that the best configurations

returned are also those evaluated in the highest number of training instances. We experimentally eval-

uate the most recent version of irace and demonstrate with a number of example applications the use

and potential of irace , in particular, and automatic algorithm configuration, in general.

© 2016 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1

l

t

i

o

m

a

t

d

t

m

w

o

j

(

g

m

t

a

t

c

s

i

i

p

i

b

r

l

h

2

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector
. Introduction

Many algorithms for solving optimization problems involve a

arge number of design choices and algorithm-specific parameters

hat need to be carefully set to reach their best performance. This

s the case for many types of algorithms ranging from exact meth-

ds, such as branch-and-bound and the techniques implemented in

odern integer programming solvers, to heuristic methods, such

s local search or metaheuristics. Maximizing the performance of

hese algorithms may involve the proper setting of tens to hun-

reds of parameters [42,44,59,89] . Even if default parameter set-

ings for the algorithms are available, these have often been deter-

ined with other problems or application contexts in mind. Hence,

hen facing a particular problem, for example, the daily routing

f delivery trucks, a non-default, problem-specific setting of al-
∗ Corresponding author.

E-mail addresses: manuel.lopez-ibanez@manchester.ac.uk (M. López-Ibáñez),

eremie.dubois-lacoste@ulb.ac.be (J. Dubois-Lacoste), leslie.perez.caceres@ulb.ac.be

L. Pérez Cáceres), mbiro@ulb.ac.be (M. Birattari), stuetzle@ulb.ac.be (T. Stützle).

t

u

f

o

b

ttp://dx.doi.org/10.1016/j.orp.2016.09.002

214-7160/© 2016 The Authors. Published by Elsevier Ltd. This is an open access article u
orithm parameters can result in a much higher-performing opti-

ization algorithm.

For many years, the design and parameter tuning of optimiza-

ion algorithms has been done in an ad-hoc fashion. Typically, the

lgorithm developer first chooses a few parameter configurations,

hat is, complete assignments of values to parameters, and exe-

utes experiments for testing them; next, she examines the re-

ults and decides whether to test different configurations, to mod-

fy the algorithm or to stop the process. Although this manual tun-

ng approach is better than no tuning at all, and it has led to high-

erforming algorithms, it also has a number of disadvantages: (i)

t is time-intensive in terms of human effort; (ii) it is often guided

y personal experience and intuition and, therefore, biased and not

eproducible; (iii) algorithms are typically tested only on a rather

imited set of instances; (iv) few design alternatives and parame-

er settings are explored; and (v) often the same instances that are

sed during the design and parameter tuning phase are also used

or evaluating the final algorithm, leading to a biased assessment

f performance.

Because of these disadvantages, this ad-hoc, manual process has

een sidelined by increasingly automatized and principled meth-
nder the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://core.ac.uk/display/82078507?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.orp.2016.09.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/orp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orp.2016.09.002&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:manuel.lopez-ibanez@manchester.ac.uk
mailto:jeremie.dubois-lacoste@ulb.ac.be
mailto:leslie.perez.caceres@ulb.ac.be
mailto:mbiro@ulb.ac.be
mailto:stuetzle@ulb.ac.be
http://dx.doi.org/10.1016/j.orp.2016.09.002
http://creativecommons.org/licenses/by/4.0/

44 M. López-Ibáñez et al. / Operations Research Perspectives 3 (2016) 43–58

2

2

l

t

p

s

e

m

p

f

fi

b

t

i

r

t

t

e

w

s

e

o

r

a

s

T

p

t

r

l

e

F

a

r

d

a

2

A

t

X

(

a

p

i

b

a

A

r

i

w

n

c

t

a

i
ods for algorithm development. The methods used in this context

include experimental design techniques [2,29] , racing approaches

[20] , and algorithmic methods for parameter configuration, such

as heuristic search techniques [3,10,41,73,81] , and statistical mod-

eling approaches [11,43] . These methods have led to an increasing

automatization of the algorithm design and parameter setting pro-

cess.

Automatic algorithm configuration can be described, from a ma-

chine learning perspective, as the problem of finding good param-

eter settings for solving unseen problem instances by learning on

a set of training problem instances [19] . Thus, there are two clearly

delimited phases. In a primary tuning phase, an algorithm con-

figuration is chosen, given a set of training instances representa-

tive of a particular problem. In a secondary production (or test-

ing) phase, the chosen algorithm configuration is used to solve un-

seen instances of the same problem. The goal in automatic algo-

rithm configuration is to find, during the tuning phase, an algo-

rithm configuration that minimizes some cost measure over the

set of instances that will be seen during the production phase.

In other words, the final goal is that the configuration of the al-

gorithm found during the tuning phase generalizes to similar but

unseen instances. The tuning phase may also use automatic config-

uration methods repeatedly while engineering an algorithm [71] .

Due to the separation between a tuning and a production phase,

automatic algorithm configuration is also known as offline param-

eter tuning to differentiate it from online approaches that adapt or

control parameter settings while solving an instance [13,50] . Nev-

ertheless, online approaches also contain parameters that need to

be defined offline, for example, which and how parameters are

adapted at run-time; such parameters and design choices can be

configured by an offline tuning method [59] .

In our research on making the algorithm configuration process

more automatic , we have focused on racing approaches. Birattari

et al. [19,20] proposed an automatic configuration approach, F-

Race, based on racing [64] and Friedman’s non-parametric two-way

analysis of variance by ranks. This proposal was later improved

by sampling configurations from the parameter space, and refin-

ing the sampling distribution by means of repeated applications of

F-Race. The resulting automatic configuration approach was called

Iterated F-race (I/F-Race) [10,21] . Although a formal description of

the I/F-Race procedure is given in those publications, an imple-

mentation was not made publicly available. The irace package im-

plements a general iterated racing procedure, which includes I/F-

Race as a special case. It also implements several extensions al-

ready described by Birattari [19] , such as the use of the paired

t -test instead of Friedman’s test. Finally, irace incorporates sev-

eral improvements not published before, such as sampling from a

truncated normal distribution, a parallel implementation, a restart

strategy that avoids premature convergence, and an elitist racing

procedure to ensure that the best parameter configurations found

are also evaluated on the highest number of training instances.

The paper is structured as follows. Section 2 introduces the

algorithm configuration problem and gives an overview of ap-

proaches to automatic algorithm configuration. Section 3 describes

the iterated racing procedure as implemented in the irace pack-

age as well as several further extensions including the elitist irace .

Section 4 illustrates the steps followed to apply irace to two con-

figuration scenarios and compares experimentally the elitist and

non-elitist variants. In Section 5 , we give an overview of articles

that have used irace for configuration tasks and we conclude in

Section 6 . For completeness, we include in Appendix A a brief de-

scription of the irace package itself, its components and its main

options.
I

p

p
. Automatic configuration

.1. Configurable algorithms

Many algorithms for computationally hard optimization prob-

ems are configurable, that is, they have a number of parameters

hat may be set by the user and affect their results. As an exam-

le, evolutionary algorithms (EAs) [36] often require the user to

pecify settings such as the mutation rate, the recombination op-

rator and the population size. Another example is CPLEX [45] , a

ixed-integer programming solver, that has dozens of configurable

arameters that affect the optimization process, for instance, dif-

erent branching strategies. The reason these parameters are con-

gurable is that there is no single optimal setting for every possi-

le application of the algorithm and, in fact, the optimal setting of

hese parameters depends on the problem being tackled [2,19,42] .

There are three main classes of algorithm parameters: categor-

cal , numerical and ordinal parameters. Categorical parameters rep-

esent discrete values without any implicit order or sensible dis-

ance measure. An example is the different recombination opera-

ors in EAs. Ordinal parameters are seemingly categorical param-

ters but with an implicit order of their values, e.g., a parameter

ith three values { low , medium , high }. Numerical parameters,

uch as the population size and the mutation rate in EAs, have an

xplicit order of their values. In addition, parameters may be sub-

rdinate or conditional to other parameters, that is, they are only

elevant for particular values of other parameters. For example,

n evolutionary algorithm may have a parameter that defines the

election operator as either roulette_wheel or tournament .
he value roulette_wheel does not have any specific additional

arameters, whereas the value tournament requires to specify

he value of parameter tournament_size . In this case, the pa-

ameter tournament_size is conditional to the fact that the se-

ection operator takes the value tournament . Conditional param-

ters are not the same as constraints on the values of parameters.

or example, given parameters a and b , a constraint may be that

 < b . Such constraints limit the range of values that a certain pa-

ameter can take in dependence of other parameters, whereas con-

itional parameters either are disabled or they have a value from

 predefined range.

.2. The algorithm configuration problem

We briefly introduce the algorithm configuration problem here.

 more formal definition is given by Birattari [19] . Let us assume

hat we have a parameterized algorithm with N

param parameters,

 d , d = 1 , . . . , N

param , and each of them may take different values

settings). A configuration of the algorithm θ = { x 1 , . . . , x N param } is

 unique assignment of values to parameters, and � denotes the

ossibly infinite set of all configurations of the algorithm.

When considering a problem to be solved by this parameter-

zed algorithm, the set of possible instances of the problem may

e seen as a random variable I, i.e., a set with an associated prob-

bility distribution, from which instances to be solved are sampled.

 concrete example of a problem would be the Euclidean symmet-

ic traveling salesman problem (TSP), where each problem instance

s a complete graph, each node in the graph corresponds to a point

ithin a square of some dimensions and the distance between the

odes corresponds to the Euclidean distance between their asso-

iated points. If the points are randomly and uniformly generated,

his class of instances, called RUE, is frequently used in the evalu-

tion of algorithms for the TSP [4 8,4 9] . In principle, the set of RUE

nstances is infinite and all instances are equally interesting, thus

would be an infinite set of equally probable RUE instances. In

ractice, however, each instance may be generated by a concrete

seudorandom instance generator and we are only interested in a

M. López-Ibáñez et al. / Operations Research Perspectives 3 (2016) 43–58 45

p

b

p

o

t

t

i

t

c

c

f

c

t

I

p

fi

o

θ

g

t

T

o

a

m

a

f

v

θ

o

i

e

p

t

2

b

m

p

f

n

t

b

f

t

c

c

[

t

b

i

t

i

p

f

d

B

fi

r

m

c

r

s

c

i

s

o

c

t

c

a

g

m

u

t

o

e

P

t

d

[

p

d

s

r

t

s

t

b

a

p

a

a

c

[

s

c

m

fi

c

b

s

i

n

p

3

3

m

c

a

c

i

f

i

t

m

c

i

t
articular range of dimensions and number of points, which can

e seen as the random variable I having a particular non-uniform

robability distribution, where some elements, i.e., RUE instances

utside the range of interest, have a zero probability associated to

hem.

We are also given a cost measure C(θ, i) that assigns a value

o each configuration θ when applied to a single problem instance

 . Since the algorithm may be stochastic, this cost measure is of-

en a random variable and we can only observe the cost value

 (θ , i), that is, a realization of the random variable C(θ, i) . The

ost value may be, for example, the best objective function value

ound within a given computation time. In decision problems, the

ost measure may correspond to the computation time required

o reach a decision, possibly bounded by a maximum cut-off time.

n any case, the cost measure assigns a cost value to one run of a

articular configuration on a particular instance. Finally, when con-

guring an algorithm for a problem, the criterion that we want to

ptimize is a function F (θ) : � → R of the cost of a configuration

with respect to the distribution of the random variable I . The

oal of automatic configuration is finding the best configuration θ ∗

hat minimizes F (θ).

A usual definition of F (θ) is E[C(θ, i)] , the expected cost of θ .

he definition of F (θ) determines how to rank the configurations

ver a set of instances. If the cost values over different instances

re incommensurable, the median or the sum of ranks may be

ore meaningful. The precise value of F (θ) is generally unknown,

nd it can only be estimated by sampling. This sampling is per-

ormed in practice by obtaining realizations c (θ , i) of the random

ariable C(θ, i) , that is, by evaluating the algorithm configuration

on instances sampled from I . In other words, as most algorithms

f practical interest are sufficiently complex to preclude an analyt-

cal computation, the configuration of such algorithms follows an

xperimental approach, where each experiment is a run of an im-

lementation of the algorithm under specific experimental condi-

ions [11] .

.3. Methods for automated algorithm configuration

The importance of the algorithm configuration problem has

een noted by many researchers and, despite its importance, the

anual approach has prevailed for a long time. In several papers,

roposals were made to exploit more systematically techniques

rom the field of design of experiments (DOE) to set a, usually small,

umber of parameters. These methods include CALIBRA [2] , which

unes up to five parameters using Taguchi partial designs com-

ined with local search methods, methods based on response sur-

ace methodology [29] and more systematic applications of ANOVA

echniques [80,83] .

In configuration scenarios where all parameters are numerical,

onfiguration approaches may rely on the application of classi-

al black-box numerical optimizers, such as CMA-ES [38] , BOBYQA

79] , or MADS [5] . Although these methods are designed for con-

inuous optimization, they can often optimize integer parameters

y simply rounding the decision variables. MADS was used for tun-

ng the parameters of various other direct search methods for con-

inuous optimization. Later, it was extended to more general tun-

ng tasks within the OPAL framework [6] . Yuan et al. [93] com-

ared the three optimizers CMA-ES, BOBYQA and MADS with irace

or tuning numerical parameters using various techniques for han-

ling the stochasticity in the tuning problem. They concluded that

OBYQA works best for very few parameters (less than four or

ve), whereas CMA-ES is the best for a larger number of pa-

ameters. In a follow-up study, they introduced the post-selection

ethod, where the numerical optimizers use few evaluations per

onfiguration in a first phase, and the most promising configu-

ations are evaluated by racing more carefully in a second post-
election phase, which deals better with the stochasticity of the

onfiguration problem [94] .

If we consider the full automatic configuration problem includ-

ng conditional and categorical parameters, this problem can es-

entially be characterized as a stochastic black-box mixed-variables

ptimization problem. Therefore, apart from the above mentioned

ontinuous direct search methods, many other heuristic optimiza-

ion algorithms are natural candidates for tackling the algorithm

onfiguration problem. Among the first proposals is the meta-GA

lgorithm proposed by Grefenstette [37] , who used a genetic al-

orithm (GA) to tune the parameter settings of another GA. A

ore recent method is REVAC [74] , an evolutionary algorithm that

ses multi-parent cross-over and entropy measures to estimate

he relevance of parameters. The gender-based GA [3] uses vari-

us sub-populations and a specialized cross-over operator to gen-

rate new candidate configurations. Hutter et al. [41] proposed

aramILS, an iterated local search method for automatic configura-

ion that works only on categorical parameters and, hence, requires

iscretizing numerical ones. The evolutionary algorithm EVOCA

81] generates at each iteration two new candidates using a fitness

roportionate crossover and a local search procedure; the candi-

ates are evaluated a user-defined number of times on each in-

tance to account for the stochastic behavior of the target algo-

ithm.

The evaluation of configurations is typically the most compu-

ationally demanding part of an automatic configuration method,

ince it requires actually executing the target algorithm being

uned. Several methods aim to reduce this computational effort

y using surrogate models to predict the cost value of applying

 specific configuration to one or several instances. Based on the

redictions, one or a subset of the most promising configurations

re then actually executed and the prediction model is updated

ccording to these evaluations. Among the first surrogate-based

onfiguration methods is sequential parameter optimization (SPOT)

12] . A more general method also using surrogate models is the

equential model-based algorithm configuration (SMAC) [43] . A re-

ent variant of the gender-based GA also makes use of surrogate

odels with promising results [4] .

Finally, some methods apply racing [64] for selecting one con-

guration among a number of candidates using sequential statisti-

al testing [20] . The initial candidate configurations for a race may

e selected by DOE techniques, randomly or based on problem-

pecific knowledge. In the case of iterated racing, a sampling model

s iteratively refined according to the result of previous races. The

ext section explains iterated racing, as implemented in the irace

ackage.

. Iterated racing

.1. An overview of iterated racing

The irace package that we describe in this paper is an imple-

entation of iterated racing, of which I/F-Race [10,21] is a special

ase that uses Friedman’s non-parametric two-way analysis of vari-

nce by ranks [28] .

Iterated racing is a method for automatic configuration that

onsists of three steps: (1) sampling new configurations accord-

ng to a particular distribution, (2) selecting the best configurations

rom the newly sampled ones by means of racing, and (3) updat-

ng the sampling distribution in order to bias the sampling towards

he best configurations. These three steps are repeated until a ter-

ination criterion is met.

In iterated racing as implemented in the irace package, each

onfigurable parameter has associated a sampling distribution that

s independent of the sampling distributions of the other parame-

ers, apart from constraints and conditions among parameters. The

46 M. López-Ibáñez et al. / Operations Research Perspectives 3 (2016) 43–58

Fig. 1. Racing for automatic algorithm configuration. Each node is the evaluation of

one configuration on one instance. ‘ × ’ means that no statistical test is performed,

‘ − ’ means that the test discarded at least one configuration, ‘ = ’ means that the

test did not discard any configuration. In this example, T first = 5 and T each = 1 .

Fig. 2. Scheme of the iterated racing algorithm.

p

[

L

t

n

c

t

3

i

i

t

[

A

I

t

A

R

N

p

T

i

e

E

b

r

o
sampling distribution is either a truncated normal distribution for

numerical parameters, or a discrete distribution for categorical pa-

rameters. Ordinal parameters are handled as numerical (integers).

The update of the distributions consists in modifying the mean

and the standard deviation in the case of the normal distribution,

or the discrete probability values of the discrete distributions. The

update biases the distributions to increase the probability of sam-

pling, in future iterations, the parameter values in the best config-

urations found so far.

After new configurations are sampled, the best configurations

are selected by means of racing. Racing was first proposed in ma-

chine learning to deal with the problem of model selection [64] .

Birattari et al. [20] adapted the procedure for the configuration of

optimization algorithms. A race starts with a finite set of candidate

configurations. In the example of Fig. 1 , there are ten configura-

tions θ i . At each step of the race, the candidate configurations are

evaluated on a single instance (I j). After a number of steps, those

candidate configurations that perform statistically worse than at

least another one are discarded, and the race continues with the

remaining surviving configurations. Since the first elimination test

is crucial, typically a higher number of instances (T first) are seen

before performing the first statistical test. Subsequent statistical

tests are carried out more frequently, every T each instances (by de-

fault for every instance). This procedure continues until reaching a

minimum number of surviving configurations, a maximum number

of instances that have been used or a pre-defined computational

budget. This computational budget may be an overall computation

time or a number of experiments, where an experiment is the ap-

plication of a configuration to an instance.

An overview of the main steps of the iterated racing approach

is given in Fig. 2 . While the actual algorithm implemented in irace

is a search process based on updating sampling distributions [96] ,

the key ideas of iterated racing are more general. An iterated racing

approach would be, from a more general perspective, any process

that iterates the generation of candidate configurations with some

form of racing algorithm to select the best configurations. Hence,

the search process of an iterated racing approach could be, in prin-

ciple, very different from the current irace algorithm, and make

use, for example, of local searches, population-based algorithms or

surrogate-models. The important element here is the appropriate

combination of a search process with an evaluation process that

takes the underlying stochasticity of the evaluation into account.

The next subsection (Section 3.2) gives a complete descrip-

tion of the iterated racing algorithm as implemented in the irace
ackage. We mostly follow the description of the original papers

10,21] , adding some details that were not explicitly given there.

ater, in Section 3.3 , we introduce a new “soft-restart” mechanism

o avoid premature convergence and, in Section 3.4 , we describe a

ew elitist variant of iterated racing aimed at preserving the best

onfigurations found so far. In Section 3.5 , we mention other fea-

ures of irace that were not proposed in previous publications.

.2. The iterated racing algorithm in the irace package

In this section, we describe the implementation of iterated rac-

ng as proposed in the irace package. The setup and options of the

race package itself are given in Appendix A . More details about

he use of irace can be found in the user guide of the package

62] .

An outline of the iterated racing algorithm is given in

lgorithm 1 . Iterated racing requires as input a set of instances

 sampled from I, a parameter space X , a cost function C, and a

uning budget B .

lgorithm 1 Algorithm outline of iterated racing.

equire: I = { I 1 , I 2 , . . . } ∼ I ,

parameter space: X ,

cost measure: C(θ, i) ∈ R ,

tuning budget: B

1: �1 = SampleUniform (X)

2: �elite = Race (�1 , B 1)

3: j = 1

4: while B used ≤ B do

5: j = j + 1

6: �new = Sample (X, �elite)

7: � j = �new ∪ �elite

8: �elite = Race (� j , B j)

9: end while

10: Output: �elite

Iterated racing starts by estimating the number of iterations

iter (races) that it will execute. The default setting of N

iter de-

ends on the number of parameters with N

iter = � 2 + log 2 N

param 	 .
he motivation for this setting is that we should dedicate more

terations for larger parameter spaces, with a minimum of two it-

rations per run to allow for some intensification of the search.

ach iteration performs one race with a limited computation

udget B j = (B − B used) / (N

iter − j + 1) , where j = 1 , . . . , N

iter . Each

ace starts from a set of candidate configurations �j . The number

f candidate configurations is calculated as | � j | = N j = � B j / (μ +

M. López-Ibáñez et al. / Operations Research Perspectives 3 (2016) 43–58 47

T

d

e

a

y

a

o

u

u

s

g

e

i

i

r

c

c

t

t

fi

m

i

a

t

f

fi

v

t

[

o

h

a

t

s

[

t

i

t

i

r

v

t

l

t

p

o

m

e

j

O

o

T

b

b

c

m

e

s

o

m

a

d

w

m

m

i

s

o

a

n

a

r

r

m

r

r

N

A

t

fi

c

w

r

1

p

i

n

d

p

t

p

t

b

r

i

t

p

σ

B

u

t

a

d

s

w

(

s

1 Sampling from a truncated normal distribution was never mentioned by previ-

ous description of I/F-Race [10,21] . However, naive methods of handling the ranges

of numerical parameters, such as “rejection and resampling” or “saturation”, may

lead to under-sampling or over-sampling of the extreme values better methods ex-

ist [82] . For sampling from a truncated normal distribution, we use code from the

each · min { 5 , j}) 	 , that is, the number of candidate configurations

ecreases with the number of iterations, which means that more

valuations per configuration are possible in later iterations. The

bove setting also means that we do not keep decreasing N j be-

ond the fifth iteration, to avoid having too few configurations in

 single race. The parameter μ is by default equal to the number

f instances needed to do a first test (μ = T first), and allows the

ser to influence the ratio between budget and number of config-

rations, which also depends on the iteration number j . The rea-

on behind the formula above is the intuition that configurations

enerated in later iterations will be more similar and, hence, more

valuations will be necessary to identify the best ones.

In the first iteration, the initial set of candidate configurations

s generated by uniformly sampling the parameter space X (line 1

n Algorithm 1) and the best configurations are determined by a

ace (line 2). When sampling the parameter space, parameters are

onsidered in the order determined by the dependency graph of

onditions, that is, non-conditional parameters are sampled first,

hose parameters that are conditional to them are sampled next if

he condition is satisfied, and so on. When a race starts, each con-

guration is evaluated on the first instance by means of the cost

easure C. Configurations are iteratively evaluated on subsequent

nstances until a number of instances have been seen (T first). Then,

 statistical test is performed on the results. If there is enough sta-

istical evidence to identify some candidate configurations as per-

orming worse than at least another configuration, the worst con-

gurations are removed from the race, while the others, the sur-

iving configurations, are run on the next instance.

There are several alternatives for selecting which configura-

ions should be discarded during the race. The F-Race algorithm

19,20] relies on the non-parametric Friedman’s two-way analysis

f variance by ranks (the Friedman test) and its associated post-

oc test described by Conover [28] . Nonetheless, the irace pack-

ge, following the race package [18] , also implements the paired

 -test as an alternative option. Both statistical tests use a default

ignificance level of 0.05 (the value can be customized by the user

62]). The statistical tests in irace are used as a selection heuris-

ic and irace does not attempt to preserve the statistical signif-

cance level by sacrificing search performance. For example, the

 -test is applied without p -value correction for multiple compar-

sons, since poor behavior of racing was previously reported if cor-

ections are applied [19] , due to the test becoming more conser-

ative and not discarding configurations. Similarly, from a sequen-

ial statistical testing perspective, preserving the actual significance

evel would require additional adjustments that may hinder heuris-

ic performance.

The most appropriate test for a given configuration scenario de-

ends mostly on the tuning objective F (θ) and the characteristics

f the cost function C(θ, i) . Roughly speaking, the Friedman test is

ore appropriate when the ranges of the cost function for differ-

nt instances are not commensurable and/or when the tuning ob-

ective is an order statistic, such as the median, or a rank statistic.

n the other hand, the t -test is more appropriate when the tuning

bjective is the mean of the cost function.

After the first statistical test, a new test is performed every

each instances. By default T each = 1 , yet in some situations it may

e helpful to perform each test only after the configurations have

een evaluated on a number of instances. For example, given a

onfiguration scenario with clearly defined instance classes, one

ay wish to find a single configuration that performs well, in gen-

ral, for all classes. In that case, the sequence of instances pre-

ented to irace should be structured in blocks that contain at least

ne instance from each class, and T first and T each should be set as

ultiples of the size of each block. This ensures that configurations

re only eliminated after evaluating them on every class, which re-
m

uces bias towards specific classes. We recommend this approach

hen configuring algorithms for continuous optimization bench-

arks [39] , where very different functions exist within the bench-

ark set and the goal is to find a configuration that performs well

n all functions [57] . In this case, each block will contain one in-

tance of every function, and different blocks will vary the number

f decision variables and other parameters of the functions to cre-

te different instances of the same function.

Each race continues until the budget of the current iteration is

ot enough to evaluate all remaining candidate configurations on

 new instance (B j < N

surv
j

), or when at most N

min configurations

emain (N

surv
j

≤ N

min). At the end of a race, the surviving configu-

ations are assigned a rank r z according to the sum of ranks or the

ean cost, depending on which statistical test is used during the

ace. The N

elite
j

= min { N

surv
j

, N

min } configurations with the lowest

ank are selected as the set of elite configurations �elite .

In the next iteration, before a race, a number of N

new

j
=

 j − N

elite
j−1

new candidate configurations are generated (line 6 in

lgorithm 1) in addition to the N

elite
j−1

elite configurations that con-

inue for the new iteration. For generating a new configuration,

rst one parent configuration θ z is sampled from the set of elite

onfigurations �elite with a probability:

p z =

N

elite
j−1

− r z + 1

N

elite
j−1

· (N

elite
j−1

+ 1) / 2

, (1)

hich is proportional to its rank r z . Hence, higher ranked configu-

ations have a higher probability of being selected as parents.

Next, a new value is sampled for each parameter X d , d =
 , . . . , N

param , according to a distribution that its associated to each

arameter of θ z . As explained before, parameters are considered

n the order determined by the dependency graph of conditions,

on-conditional parameters are sampled first followed by the con-

itional ones. If a conditional parameter that was disabled in the

arent configuration becomes enabled in the new configuration,

hen the parameter is sampled uniformly, as in the initialization

hase.

If X d is a numerical parameter defined within the range [x d , x d] ,

hen a new value is sampled from the truncated normal distri-

ution N

(
x z

d
, (σ j

d
) 2

)
, such that the new value is within the given

ange. 1 The mean of the distribution x z
d

is the value of parameter d

n elite configuration θ z . The standard deviation σ j

d
is initially set

o (x d − x d) / 2 , and it is decreased at each iteration before sam-

ling:

j

d
= σ j−1

d
·
(

1

N

new

j

)1 / N param

. (2)

y reducing σ j

d
in this manner at each iteration, the sampled val-

es are increasingly closer to the value of the parent configura-

ion, focusing the search around the best parameter settings found

s the iteration counter increases. Roughly speaking, the multi-

imensional volume of the sampling region is reduced by a con-

tant factor at each iteration, and the reduction factor is higher

hen sampling a larger number of new candidate configurations

 N

new

j
).

If the numerical parameter is of integer type, we round the

ampled value to the nearest integer. The sampling is adjusted to
sm package [46] .

48 M. López-Ibáñez et al. / Operations Research Perspectives 3 (2016) 43–58

s

v

g

n

a

c

fi

w

z

d

f

a

r

u

T

v

t

e

a

e

m

p

σ

a

a

r

avoid the bias against the extremes introduced by rounding after

sampling from a truncated distribution. 2

If X d is a categorical parameter with levels X d ∈ { x 1 , x 2 , . . . , x n d } ,
then a new value is sampled from a discrete probability distribu-

tion P

j,z (X d) . In the first iteration (j = 1), P

1 ,z (X d) is uniformly

distributed over the domain of X d . In subsequent iterations, it is

updated before sampling as follows:

P

j,z (X d = x j) = P

j−1 ,z (X d = x j) ·
(

1 − j − 1

N

iter

)
+ �P (3)

where

�P =

{

j − 1

N

iter
if x j = x z ,

0 otherwise.

(4)

Finally, the new configurations generated after sampling in-

herit the probability distributions from their parents. A set with

the union of the new configurations and the elite configurations

is generated (line 7 in Algorithm 1) and a new race is launched

(line 8).

The algorithm stops if the budget is exhausted (B used > B) or if

the number of candidate configurations to be evaluated at the start

of an iteration is not greater than the number of elites (N j ≤ N

elite
j−1

),

since in that case no new configurations would be generated. If the

iteration counter j reaches the estimated number of iterations N

iter

but there is still enough remaining budget to perform a new race,

N

iter is increased and the execution continues.

Although the purpose of most parameters in irace is to make

irace more flexible when tackling diverse configuration scenarios,

the iterated F-race procedure implemented in irace has several pa-

rameters that directly affect its search behavior. The default set-

tings described here were defined at design time following com-

mon sense and experience. A careful fine-tuning of irace would

require an analysis over a large number of relevant configuration

scenarios. In a preliminary study, we analyzed the effects of the

most critical parameters of irace [78] on a few classical scenarios.

We could not find settings that are better for all scenarios than the

default ones, and settings need to be adapted to scenario charac-

teristics. The user guide of irace [62] provides advice, based on our

own experience, for using different settings in particular situations.

3.3. Soft-restart

The iterated racing algorithm implemented in irace incorpo-

rates a “soft-restart” mechanism to avoid premature convergence.

In the original I/F-Race proposal [10] , the standard deviation, in

the case of numerical parameters, or the discrete probability of

unselected parameter settings, in the case of categorical ones, de-

creases at every iteration. Diversity is introduced by the variabil-

ity of the sampled configurations. However, if the sampling dis-

tributions converge to a few, very similar configurations, diver-
2 Let us assume we wish to sample an integer with range 1, 2, 3. The naive way

would be to sample from a truncated distribution N (μ = 2 , x = 1 , x = 3) , and then

round such that

round (x) =

{

1 if 1 < x < 1 . 5

2 if 1 . 5 ≤ x < 2 . 5

3 if 2 . 5 ≤ x < 3

however, given these ranges, the interval of values that are rounded to 2 is twice

the length of the interval that are rounded to either 1 or 3 and, thus, the sampling

would be biased against the extreme values. We remove the bias if we instead sam-

ple from N (μ = 2 . 5 , x = 1 , x = 4) , and round such that

round (x − 0 . 5) =

{

1 if 1 < x < 2

2 if 2 ≤ x < 3

3 if 3 ≤ x < 4 .

c

t

i

a

3

i

n

t

t

t

a

c
ity is lost and newly generated candidate configurations will be

ery similar to the ones already tested. Such a premature conver-

ence wastes the remaining budget on repeatedly evaluating mi-

or variations of the same configurations, without exploring new

lternatives.

The “soft-restart” mechanism in irace checks for premature

onvergence after generating each new set of candidate con-

gurations. We consider that there is premature convergence

hen the “distance” between two candidate configurations is

ero. The distance between two configurations is the maximum

istance between their parameter settings, which is defined as

ollows:

• If the parameter is conditional and disabled in both configura-

tions, the distance is zero;

• if it is disabled in one configuration but enabled in the other,

the distance is one;

• if the parameter is enabled in both configurations (or it is not

conditional), then:

– in the case of numerical parameters (integer or real), the

distance is the absolute normalized difference between their

values if this difference is larger than a threshold value

10 −digits , where digits is a parameter of irace ; if the dif-

ference is smaller, it is taken as zero;

– in the case of ordinal and categorical parameters, the

distance is one if the values are different and zero

otherwise.

When premature convergence is detected, a “soft-restart” is

pplied by partially reinitializing the sampling distribution. This

einitialization is applied only to the elite configurations that were

sed to generate the candidate configurations with zero distance.

he other elite configurations do not suffer from premature con-

ergence, thus they may still lead to new configurations.

In the case of categorical parameters, the discrete sampling dis-

ribution of elite configuration z , P

j,z (X d) , is adjusted by modifying

ach individual probability value p ∈ P

j,z (X d) as follows:

p ′ = 0 . 9 · p + 0 . 1 · max {P

j,z (X d) } ,
nd the resulting probabilities are normalized to [0, 1].

For numerical and ordinal parameters, the standard deviation of

lite configuration z , σ j,z

d
, is “brought back” two iterations, with a

aximum limit of its value in the second iteration. For numerical

arameters this is done using

j,z

d
= min

{

σ j,z

d
·
(
N

new

j

)2 / N param

,
x d − x d

2

·
(

1

N

new

j

)1 / N param
}

nd for ordinal parameters, x d − x d is replaced by | X d | − 1 , as these

re the corresponding upper and lower bounds for an ordinal pa-

ameter.

After adjusting the sampling distribution of all affected elite

onfigurations, the set of candidate configurations that triggered

he soft-restart is discarded and a new set of N

new configurations

s sampled from the elite configurations. This procedure is applied

t most once per iteration.

.4. Elitist iterated racing

The iterated racing procedure described above does not take

nto account the information from previous races when starting a

ew race. This may lead irace to erroneously discard a configura-

ion based on the information from the current race, even though

his configuration is the best found so far based on the informa-

ion from all previous races. For example, if the first race identified

 configuration as the best after evaluating it on ten instances, this

onfiguration may get discarded in the next race after seeing only

M. López-Ibáñez et al. / Operations Research Perspectives 3 (2016) 43–58 49

fi

c

h

fi

s

g

a

c

h

i

e

fi

o

t

u

n

a

d

t

l

i

t

i

s

e

t

c

c

t

u

t

p

r

w

N

s

t

a

c

o

o

i

|

w

a

m

t

e

s

t

t

o

i

t

i

i

m

a

i

o

t

v

o

s

t

d

t

d

g

r

t

c

w

i

H

i

v

i

c

c

i

o

a

f

a

3

n

I

c

t

p

P

p

T

t

t

t

o

m

T

F

n
ve instances (the default value for T first), without taking into ac-

ount the data provided by the ten previous evaluations. This may

appen simply because of unlucky runs or because the best con-

guration overall may not be the best for a particular (small) sub-

et of training instances. An empirical example of this situation is

iven in Section 4.3 .

Ideally, the best configuration found should be the one evalu-

ted in the largest number of instances, in order to have a pre-

ise estimation of its cost statistic F (θ) [41] . Therefore, we present

ere an elitist variant of iterated racing. 3 This elitist iterated rac-

ng aims at preserving the best configurations found so far, called

lite configurations, unless they become worse than a new con-

guration that is evaluated in as many instances as the elite

nes.

The main changes are in the racing procedure of irace . After

he first race (iteration), the elite configurations have been eval-

ated on a number e of instances, for example, I 1 , . . . , I e . In the

ext race, we first randomize the order of the instances in this set

nd prepend to it a number of T new newly sampled instances (by

efault one). Randomizing the order of the instances should help

o avoid biases in the elimination test induced by a particularly

ucky or unlucky order of instances. The rationale for prepend-

ng new instances is to give new configurations the opportunity

o survive based on results on new instances, thus reducing the

nfluence of already seen instances. This new set of T new + e in-

tances is used for the new race. In a race, a new configuration is

liminated as usual, that is, if it is found to be statistically worse

han the best one after performing a statistical test. However, elite

onfigurations are not eliminated from the race unless the new

onfigurations have been evaluated on at least T new + e instances,

hat is, as many instances as the elite configurations were eval-

ated in the previous race plus T new new ones. If the race con-

inues beyond T new + e instances, then new instances are sam-

led as usual, and any configuration may be eliminated from the

ace.

If a race stops before reaching T new + e, which may happen

hen the number of remaining configurations is no more than

min , configurations that were not elite are evaluated on fewer in-

tances than the ones that were elite at the start of the race, thus

here would be no unique value of e for the next iteration. We

void this problem by keeping track of the instances on which each

onfiguration has been evaluated so that we can calculate a value

f e for each elite configuration.

With the elitist irace procedure described above, the number

f configurations sampled at each race is limited by the number of

nstances seen in previous iterations. In particular,

 � j | = N j =

⌊
B j + (N

elite
j

· e)

max { μ + T each · min { 5 , j} , nm (T new + e, T each) }
⌋
(5)

here B j is the computational budget assigned to the current iter-

tion j , N

elite
j

is the number of elite configurations, e is the maxi-

um number of instances seen by the elite configurations, T new is

he minimum number of new instances to be evaluated in this it-

ration, and μ (by default T first) and T each control the frequency of

tatistical tests performed, as explained in Section 3.2 . The func-

ion nm(x , d) gives the smallest multiple of d that is not less

han x .

In elitist irace , as shown by the equation above, the number

f new configurations that we can sample at each iteration is lim-

ted by the number of instances seen so far. Thus, if a particular
3 This is the default racing procedure in irace starting from version 2.0, which is

he latest version at the time of writing.

o

I

s

s
teration evaluates a large number of instances, then, subsequent

terations will be strongly limited by this number. This situation

ay arise, for example, in the first iteration, if most configurations

re discarded after the first test and the remaining budget for this

teration will be spent on evaluating a few surviving configurations

n new instances, but not being able to discard enough configura-

ions to reach N

min and stop the race. This will result in a large

alue of e for the subsequent iterations, thus reducing the number

f new configurations that can be sampled. In order to prevent this

ituation, we added a new stopping criterion that stops the race if

here are T max (by default 2) consecutive statistical tests without

iscarding any candidate. This stopping criterion is only applied af-

er seeing T new + e instances, that is, when the statistical test may

iscard any elite configuration.

The described elitist strategy often results in a faster conver-

ence to good parameter values, which has the disadvantage of

educing the exploration of new alternative configurations. Unfor-

unately, the soft-restart mechanism explained above is not suffi-

ient to increase exploration in elitist irace , since it applies only

hen the sampling model of all parameters has converged, that

s, when sampling a configuration almost identical to its parent.

owever, we observed in elitist irace that categorical parameters,

n particular, tend to converge quite rapidly to consistently good

alues. Probably this happens because good overall values are eas-

er to find at first and, in the elitist variant, it is harder to dis-

ard the elite configurations that contain them. Hence, they get

ontinuously reinforced when updating their associated probabil-

ties, but differences in numerical values prevent a soft-restart. In

rder to increase exploration, we limit the maximum probability

ssociated to a categorical parameter value after updating it as

ollows:

p i = min { p i , 0 . 2

1 / N param } . (6)

nd re-normalizing the probabilities to [0, 1].

.5. Other features of irace

We have implemented in irace several extensions that were

ever mentioned in the original I/F-Race.

nitial configurations

We can seed the iterated race procedure with a set of initial

onfigurations, for example, one or more default configurations of

he algorithm. In that case, only enough configurations are sam-

led to reach N 1 in total.

arallel evaluation of configurations

The training phase carried out by irace is computationally ex-

ensive, since it requires many runs of the algorithm being tuned.

he total time required by a single execution of irace is mostly de-

ermined by the number of runs of the algorithm being tuned (the

uning budget, B) and the time required by those runs. In irace ,

hese runs can be executed in parallel, either across multiple cores

r across multiple computers using MPI. It is also possible to sub-

it each run as a job in a cluster environment such as SGE or PBS.

he user guide of irace [62] describes all the technical details.

orbidden configurations

A user may specify that some parameter configurations should

ot be evaluated by defining such forbidden configurations in terms

f logical expressions that valid configurations should not satisfy.

n other words, no configuration that satisfies any of these expres-

ions will be evaluated by irace . For example, given a parameter

pace with two parameters, a numerical one param1 and a cat-

50 M. López-Ibáñez et al. / Operations Research Perspectives 3 (2016) 43–58

Fig. 3. Parameter file (parameters.txt) for tuning ACOTSP . The first column is the name of the parameter; the second column is a label, typically the command-line

switch that controls this parameter, which irace will concatenate to the parameter value when invoking the target algorithm; the third column gives the parameter type

(either i nteger , r eal , o rdinal or c ategorical); the fourth column gives the range (in case of numerical parameters) or domain (in case of categorical and ordinal ones); and

the (optional) fifth column gives the condition that enables this parameter.

Fig. 4. Minimal scenario file (scenario.txt) for tuning ACOTSP . We use the

default values for other options (e.g., parameterFile = ‘‘parameters.txt’’ ,
targetRunner = ‘‘./target-runner’’ and trainInstancesDir = ‘‘./
Instances’’), thus we do not need to specify them.

Fig. 5. Comparison of configurations obtained by (elitist) irace and the default con-

figuration of ACOTSP .

w

t

d

c

r

r

2

u

t

r

e

t

s

e

t

a

s

o

t

o

t
egorical one param2 , and the following logical expression (in R

syntax):

then a configuration such as {7, ‘‘x1’’ } will not be evaluated,

whereas {7, ‘‘x2’’ } would be. This is useful, for example, if we

know that certain combinations of parameter values lead to high

memory requirements and, thus, they are infeasible in practice.

4. Applications of irace

In this section, we present two detailed examples of config-

uration scenarios and how to tackle them using irace . The first

scenario illustrates the tuning of a single-objective metaheuristic

(ant colony optimization) on a well-known problem (the traveling

salesman problem). The second scenario concerns the tuning of a

framework of multi-objective ant colony optimization algorithms.

We have chosen these scenarios for illustrative purposes and be-

cause their setup is available in AClib [44] .

4.1. Example of tuning scenario: tuning ACOTSP

ACOTSP [87] is a software package that implements various

ant colony optimization algorithms to tackle the symmetric travel-

ing salesman problem (TSP). The configuration scenario illustrated

here concerns the automatic configuration of all its 11 parameters.

The goal is to find a configuration of ACOTSP that obtains the

lowest solution cost in TSP instances within a given computation

time limit. We explain here the setup of this configuration sce-

nario. For a more detailed overview of the possible options in the

irace package, we refer to Appendix A .

First, we define a parameter file (parameters.txt , Fig. 3)

that describes the parameter space, as explained in Section A.2 .

We also create a scenario file (scenario.txt , Fig. 4) to

set the tuning budget (maxExperiments) to 5 0 0 0 runs of

ACOTSP . Next, we place the training instances in the subdirectory

‘‘./Instances/’’ , which is the default value of the option

trainInstancesDir . We create a basic target-runner-run
script that runs the ACOTSP software for 20 CPU-seconds and

prints the objective value of the best solution found.

At the end of a run, irace prints the best configurations found

as a table and as command-line parameters:
here the first number of each row is a unique number that iden-

ifies a particular configuration within a single run of irace , and NA
enotes that a parameter did not have a value within a particular

onfiguration (because it was not enabled).

Fig. 5 compares the configurations obtained by 30 independent

uns of elitist irace and the default configuration of ACOTSP . Each

un of irace uses the settings described above and a training set of

00 Euclidean TSP instances of size 2 0 0 0 nodes. The best config-

rations found by each run of irace are run once on a (different)

est set of 200 instances of size 2 0 0 0, while the default configu-

ation of ACOTSP is run 30 times on the same set using differ-

nt random seeds. We then report the percentage deviation from

he optimal objective value. Each data point shown in Fig. 5 corre-

ponds to an instance, values are the mean of the results obtained

ither by the 30 runs of the default configuration of ACOTSP or by

he 30 configurations produced by irace . In order to reduce vari-

bility, we associate a random seed to each instance and use this

eed for all runs performed on that instance.

As we can observe, the improvement of the tuned configuration

ver the default one is significant. In practice, we often observe

hat the largest improvements are obtained when configuring an

ptimization algorithm for scenarios that differ substantially from

hose for which it was designed, either in terms of problem in-

M. López-Ibáñez et al. / Operations Research Perspectives 3 (2016) 43–58 51

Fig. 6. Example of the computation of the hypervolume quality measure. Each

white diamond represents a solution in the objective space of a bi-objective mini-

mization problem. The black point is a reference point that is worse in all objectives

than any Pareto-optimal solution. The area of the objective space dominated by all

solutions in the set and bounded by the reference point is called its hypervolume.

The larger the hypervolume of a set, the higher the quality of the set.

s

t

i

c

w

f

h

4

a

c

l

o

t

j

s

i

a

f

f

o

s

m

i

m

q

m

s

fi

i

p

p

t

b

s

c

d

h

t

g

i

v

t

Fig. 7. Comparison of a configuration obtained by (elitist) irace and the default

configuration of MOACO. Hypervolume values should be maximized (since irace

minimizes by default, targetRunner multiplies the values by −1 before return-

ing them to irace).

h

t

t

i

s

p

b

t

d

t

v

I

m

t

c

m

r

t

p

F

i

e

{

c

w

4

t

4 All files needed to replicate these scenarios are provided as supplementary ma-

terial [61] .
tances or in terms of other characteristics of the scenario, such as

ermination criteria or computation environment. Nonetheless, it

s not rare that an automatic configuration method finds a better

onfiguration than the default even for those scenarios considered

hen designing an algorithm and even when not providing the de-

ault configuration as an initial configuration as in our examples

ere.

.2. A more complex example: tuning multi-objective optimization

lgorithms

In this section, we explain how to apply irace to automatically

onfigure algorithms that tackle multi-objective optimization prob-

ems in terms of Pareto optimality. This example illustrates the use

f an additional script (or R function) called targetEvaluator .
In multi-objective optimization in terms of Pareto optimality,

he goal is to find the Pareto front, that is, the image in the ob-

ective space of those solutions for which there is no other fea-

ible solution that is better in all objectives. For many interest-

ng problems, finding the whole Pareto front is often computation-

lly intractable, thus the goal becomes to approximate the Pareto

ront as well as possible. Algorithms that approximate the Pareto

ront, such as multi-objective metaheuristics, typically return a set

f nondominated solutions, that is, solutions for which no other

olution in the same set is better in all objectives.

Automatic configuration methods, such as irace , have been pri-

arily designed for single-objective optimization, where the qual-

ty of the output of an algorithm can be evaluated as a single nu-

erical value. In the case of multi-objective optimization, unary

uality measures, such as the hypervolume (see Fig. 6) and the ε-

easure [95] , assign a numerical value to a set of nondominated

olutions, thus allowing the application of standard automatic con-

guration methods [58,91] . However, computing these unary qual-

ty measures often requires a reference point (or set), which de-

ends on the sets being evaluated. One may define the reference

oint a priori based on some knowledge about the instances being

ackled, such as lower/upper bounds. On the other hand, it would

e desirable if the reference point could be computed from the re-

ults obtained while carrying out the automatic configuration pro-

ess. In irace , the latter can be achieved by first running all can-

idate configurations on a single instance and, once all these runs

ave finished, computing the cost/quality value of each configura-

ion in a separate step.

In practical terms, this means that the targetRunner pro-

ram is still responsible for running the configuration θ on

nstance i , but it does not compute the value c (θ , i). This

alue is computed by a different targetEvaluator program

hat runs after all targetRunner calls for a given instance i
ave finished. The communication between targetRunner and

argetEvaluator is scenario-specific and, hence, defined by

he user.

In the case of elitist irace , targetEvaluator might be called

ncluding configurations that were evaluated in a previous race,

ince they were elite. Therefore, one way to dynamically com-

ute the reference point for the hypervolume computation may be

y targetRunner saving the nondominated sets corresponding

o each pair (θ , i) and targetEvaluator using them (and not

eleting them since they might be needed again later) to update

he reference point or the normalization bounds.

We have applied the above method to automatically configure

arious multi-objective optimization algorithms by means of irace .

n particular, we first applied irace to instantiate new algorith-

ic designs from a framework of multi-objective ant colony op-

imization algorithms (MOACO) [58] . In that work, we tested the

ombination of irace with the hypervolume measure and the ε-

easure, but we did not find significant differences between the

esults obtained with each of them. The MOACO algorithms au-

omatically instantiated by irace were able to significantly out-

erform previous MOACO algorithms proposed in the literature.

ig. 7 compares the results of a configuration obtained by (elitist)

race and the best manually-designed configuration from the lit-

rature [58] on 60 bi-objective Euclidean TSP instances of sizes

50 0,60 0,70 0,80 0,90 0,10 0 0}. The complete MOACO scenario is too

omplex to describe here, but it is provided as an example together

ith irace and it is also included in AClib [44] .

.3. Comparison of irace and elitist irace

In this section, we compare irace with and without elitism in

hree configuration scenarios. 4

ACOTSP is similar to the scenario described in Section 4.1 . We

consider a budget of 5 0 0 0 runs of ACOTSP and 20 s of

CPU-time per run. As benchmark set, we consider Euclidean

TSP instances of size 20 0 0, in particular, 200 training in-

stances and 200 test instances.

MOACO is similar to the scenario described in Section 4.2 .

The benchmark instances are bi-objective Euclidean TSP in-

stances of sizes {50 0, 60 0, 70 0, 80 0, 90 0, 10 0 0}, 10 training

instances and 60 test instances of each size. We use a budget

of 5 0 0 0 runs of the MOACO framework, and each run of a

MOACO algorithm is stopped after 4 · (n /100) 2 CPU-seconds,

where n is the instance size.

SPEAR where the goal is to minimize the mean runtime of

Spear, an exact tree search solver for SAT problems [9] with

52 M. López-Ibáñez et al. / Operations Research Perspectives 3 (2016) 43–58

Fig. 8. Example of a good elite configuration (θ0) lost when configuring SPEAR

with the non-elitist irace using t -test as statistical test. The plots give the 95% con-

fidence intervals of the mean differences between the results obtained by θ 0 and

the new elite configurations (θ1 , . . . , θ6) on different subsets of the training set. The

top plot considers only the 9 instances seen by irace at the iteration in which θ 0

was discarded, the middle plot considers the 37 instances on which θ 0 was evalu-

ated since the start of this run, and the bottom plot considers the full training set.

Negative values indicate that θ0 has a better performance than the configuration to

which it is compared. If the interval contains zero, there is no statistical difference.

The p -values of the t -test performed between θ 0 and (θ1 , . . . θ6) are reported below

each interval.

e

θ

t

p

c

f

c

s

a

b

n

n

o

r

p

f

t

t

o

s

4

p

d

p

p

s

l

r

i

o

I

r

i

m

i

m

a

i

c

m

b

t

a

a

f

p

t

T

t

v

(

a

b

n

r

e

l

f

h

s

o
26 categorical parameters. We consider a budget of 10 0 0 0

runs, a maximum runtime of 300 CPU-seconds per run, and

a training and a test set of 302 different SAT instances [8] .

Instance homogeneity is an important factor when tuning an

algorithm. We measure instance homogeneity by means of the

Kendall concordance coefficient (W) [78] computed from the re-

sults of 100 uniformly random generated algorithm configurations

executed on the training set. Values of W close to 1 indicate high

homogeneity while values close to 0 indicate high heterogeneity.

The W values for the ACOTSP , MOACO and SPEAR scenarios are

0.98, 0.99 and 0.16 respectively, showing that SPEAR is a highly

heterogeneous scenario.

Given the characteristics of each scenario [78] , we use as

the statistical elimination test in irace the default F -test in the

ACOTSP and MOACO scenarios, and the t -test in the SPEAR sce-

nario. For each scenario, we run irace 30 times on the training set,

obtaining 30 different algorithm configurations. Then, we run each

of these configurations on the test set, which is always different

from the training set.

As explained in Section 3.4 , the non-elitist irace may discard

high-quality configurations due to the use of partial information,

ignoring the results obtained in past iterations. A concrete exam-

ple is shown in Fig. 8 for an actual run of irace on the SPEAR sce-

nario. The plots give the 95% confidence intervals of the mean dif-

ferences between the results obtained by configuration θ0 , which

is an elite configuration indentified in iteration 5, and the elite

candidates (θ1 , . . . , θ6) obtained in iteration 6. Configuration θ0 is

discarded by irace in iteration 6 due to statistically significantly

worse performance than configuration θ after 9 instances were
6
xecuted (top plot); θ0 is also statistically significantly worse than

1, 3, 4 and it has a worse mean than θ2, 5 . However, θ0 has a sta-

istically better performance on the full training set when com-

ared to all elite candidates of iteration 6 (bottom plot). Even if we

onsider only the 37 training instances on which θ0 was evaluated

rom the start of this run of irace up to the moment it was dis-

arded, θ0 is significantly better than all configurations that irace

elects as final elites (see middle plot of Fig. 8). Hence, using all

vailable information, irace would have detected that θ0 is the

est configuration of the group. The loss of such potentially win-

ing configurations happened in eight of the 30 executions of the

on-elitist irace on SPEAR .

Next, we perform experiments comparing both variants of irace

n the three configuration scenarios mentioned above across 30

epetitions. Fig. 9 shows the results for each scenario as the mean

erformance reached by each of the 30 configurations generated

or each scenario on the test set. On the left, it shows box-plots of

he results and, on the right, scatter plots where each point pairs

he executions of elitist and non-elitist irace using the same set

f initial configurations. In none of the three scenarios, we observe

tatistically significant differences.

.4. Heterogeneous scenario setting

Examining closer the results in the previous section (middle

lots of Fig. 9), one may notice that the non-elitist irace pro-

uces the two worst configurations found for SPEAR . These two

articularly bad runs of irace discard elite configurations as ex-

lained above. We conjecture that for heterogeneous training sets

uch as in the SPEAR scenario, the elitist version may avoid the

oss of high-quality configurations, thus producing more consistent

esults. In fact, facing scenarios with an heterogeneous set of train-

ng instances is a difficult task for automatic configuration meth-

ds, which normally work better in homogeneous scenarios [85] .

n an heterogeneous scenario, measuring the quality of a configu-

ation typically requires evaluating on a large number of instances

n order to find configurations that optimize the algorithm perfor-

ance across the training set and to capture also the possible ex-

stence of few rare but hard instances. Unfortunately, evaluating on

ore instances with the same tuning budget strongly reduces the

bility of the tuner to explore new configurations and, hence, there

s a trade-off between increasing the confidence on the quality of

onfigurations and sampling effectively the configuration space.

When using irace to tackle very heterogeneous scenarios, it

ay be useful to adjust the default settings to increase the num-

er of instances evaluated by each configuration. For elitist irace

his can be achieved by increasing the number of new instances

dded initially to a race (T new); in non-elitist irace this can be

chieved by increasing the number of instances needed to per-

orm the first statistical test (T first). Fig. 10 gives the mean runtime

er candidate on the test set of the algorithm configurations ob-

ained by 10 runs of the elitist irace (top) using various values of

new and of the non-elitist irace using various values of T first (bot-

om) on the SPEAR scenario. We can observe that using a larger

alue than the default for T new and T first strongly improves the cost

mean runtime) of the final configurations, because configurations

re evaluated on more instances before selecting which one should

e discarded. Further increasing the values of T new and T first does

ot lead to further improvements because enough instances are al-

eady seen to account for their heterogeneity. It does lead, how-

ver, to fewer configurations being explored, thus, at some point,

arger values will actually generate worse configurations. This ef-

ect is stronger for T first because all configurations at each iteration

ave to be evaluated on that many instances, which consumes a

ubstantial amount of budget and results in a much lower number

f configurations being generated. This is shown by the number

M. López-Ibáñez et al. / Operations Research Perspectives 3 (2016) 43–58 53

0.50

0.55

0.60

0.65

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

++

+

+

+ ++++

no
n−

el
iti

st
 ir

ac
e

elitist irace

0

10

20

30

40

50

60

+

+

++

++

++ +

+

++

++
+

+

+
+

++

+

+

+++

+

+
+

+
+no

n−
el

iti
st

 ir
ac

e

elitist irace

−1.054

−1.052

−1.050

−1.048

−1.046

+

+

+

+

+

+
+

+

+

+

+

+
+

+
+

+

+

++

+
+ +

+

+

+

+

+

++

+no
n−

el
iti

st
 ir

ac
e

elitist irace

Fig. 9. Comparison between elitist and non-elitist irace . Plots give the mean candidate performance on the test instance set as % deviation from optima, runtime and

hypervolume for the ACOTSP (top), SPEAR (middle), and MOACO (bottom) scenarios respectively. Hypervolume values are multiplied by −1 so that all scenarios must be

minimized. The p -values of the statistical test are reported on the left plots.

Fig. 10. Comparison between 10 configurations obtained by the elitist irace (top plot) on SPEAR adding T new = { 1 , 5 , 10 , 15 , 20 , 30 , 40 , 50 , 60 } new instances at the begin-

ning of the race (default value is 1) and 10 candidates obtained by the non-elitist irace (bottom plot) using T first = { 5 , 10 , 15 , 20 , 25 , 30 , 40 , 50 , 60 } as the required number

of instances to perform the first statistical test of the race (default value is 5). Values in parenthesis are the mean number of candidates sampled by the 10 irace executions.

w

fi

e

t

w

A

n

o

5

a

i

i

o
ithin parentheses in Fig. 10 . In the case of T new , non-elite con-

gurations may be discarded before seeing T new instances and the

ffect on the budget consumed is lower. The same experiment for

he ACOTSP scenario showed that the best configurations become

orse when T new or T first are increased. This is due to the fact that

COTSP has a homogeneous training set and, therefore, sampling

ew candidates is more important than executing a large number
f instances. a
. Other applications of irace

Since the first version of the irace package became publicly

vailable in 2012, there have been many other applications of

race . In this section, we provide a list of the applications of the

race package of which we are aware at the time of writing. Some

f these applications go beyond what is traditionally understood as

lgorithm configuration, demonstrating the flexibility of irace .

54 M. López-Ibáñez et al. / Operations Research Perspectives 3 (2016) 43–58

a

t

t

s

t

w

t

5

t

i

g

s

a

i

o

s

m

c

p

t

i

p

e

h

5

a

g

u

s

t

f

n

p

t

f

5

c

p

s

s

e

i

p

r

c

l

s

c

i

[

t

6

i

e
5.1. Algorithm configuration

The traditional application of irace is the automatic configura-

tion of algorithms. Several publications have used irace when eval-

uating or designing algorithms for problems such as the traveling

salesman with time windows [60] , slot allocation [77] , generalized

hub location [68] , flow shop [14] , virtual machine placement [86] ,

online bin packing [92] , graph coloring [23] , image binarization

[69] , network pricing [90] , combined routing and packing prob-

lems [25] , real-time routing selection [84] , capacitated arc routing

[26] , bike sharing rebalancing [30] , energy planning [47] , university

course timetabling [72] , time series discretization [1] , finite state

machine construction [27] , minimum common string partition and

minimum covering arborescence [24] , and continuous (real-valued)

optimization [7,52,53,55,56,75] .

Automatic configuration is also useful when the goal is to ana-

lyze the effect of particular parameters or design choices. Instead

of a (factorial) experimental design, which often is intractable

because of the large number of parameters and/or the limited

computation time available, the analysis starts from very high-

performing configurations found by an automatic configuration

method, and proceeds by changing one parameter at a time. An

example is the analysis of a hybrid algorithm that combines ant

colony optimization and a MIP solver to tackle vehicle routing

problems (VRP) with black-box feasibility constraints [67] . Pelle-

grini et al. [76] applied this principle to the analysis of param-

eter adaptation approaches in ant colony optimization. More re-

cently, Bezerra et al. [15] have applied the same idea to analyze the

contribution of various algorithmic components found in multi-

objective evolutionary algorithms.

The idea behind the above analysis is that, in terms of perfor-

mance, there are many more “uninteresting” configurations than

“interesting” ones, and statements about the parameters of unin-

teresting configurations are rarely useful, thus it makes more sense

to start the analysis with high-performing configurations. In its

general form, such procedure may be used to analyze differences

between configurations, which has been described as ablation [32] .

5.2. Multi-objective optimization metaheuristics

Besides the application to the MOACO framework described

above [58] , irace has been applied to aid in the design of other

multi-objective optimization algorithms. Dubois-Lacoste et al.

[31] used irace to tune a hybrid of two-phase local search and

Pareto local search (TP + PLS) to produce new state-of-the-art al-

gorithms for various bi-objective permutation flowshop problems.

Fisset et al. [33] used irace to tune a framework of multi-objective

optimization algorithms for clustering. When applied to a suffi-

ciently flexible algorithmic framework, irace has been used to de-

sign new state-of-the-art multi-objective evolutionary algorithms

[16,17] .

5.3. Anytime algorithms (improve time-quality trade-offs)

There is often a trade-off between solution quality and com-

putation time: Algorithms that converge quickly tend to produce

better solutions for shorter runtimes, whereas more exploratory al-

gorithms tend to produce better solutions for longer runtimes. Im-

proving the anytime behavior of an algorithm amounts to improv-

ing the trade-off curve between solution quality and computation

time such that an algorithm is able to produce as high quality so-

lutions as possible at any moment during their execution. López-

Ibáñez and Stützle [59] modeled this trade-off curve as a multi-

objective optimization problem, and measured the quality of the

trade-off curve using the hypervolume quality measure. This ap-

proach allows the application of irace to tune the parameters of
n algorithm for improving its anytime behavior. They applied this

echnique to tune parameter variation strategies for ant colony op-

imization algorithms, and to tune the parameters of SCIP, a MIP

olver, in order to improve its anytime behavior. The results show

hat the tuned algorithms converge much faster to good solutions

ithout sacrificing the quality of the solutions found after rela-

ively longer computation time.

.4. Automatic algorithm design from a grammar description

Algorithm configuration methods have been used in the litera-

ure to instantiate algorithms from flexible algorithmic frameworks

n a top-down manner, that is, the framework is a complex al-

orithm build from components of several related algorithms and

pecific components can be selected through parameters. One ex-

mple using ParamILS is SATenstein [51] . Examples using irace

nclude the MOACO framework described above [58] and multi-

bjective evolutionary algorithms [17] . A different approach de-

cribes the potential algorithm designs as a grammar. This provides

uch more flexibility when composing complex algorithms. Mas-

ia et al. [66] proposed a method for describing a grammar as a

arametric space that can be tuned by means of irace in order

o generate algorithms. They applied this technique to instantiate

terated greedy algorithms for the bin packing problem and the

ermutation flowshop problem with weighted tardiness. Marmion

t al. [63] applied this idea to automatically design more complex

ybrid local search metaheuristics.

.5. Applications in machine learning

In machine learning, the problem of selecting the best model

nd tuning its (hyper-)parameters is very similar to automatic al-

orithm configuration. Thus, it is not surprising that irace has been

sed for this purpose, for example, for tuning the parameters of

upport vector machines [70] . Lang et al. [54] used irace for au-

omatically selecting models (and tuning their hyperparameters)

or analyzing survival data. The automatically tuned models sig-

ificantly outperform reference (default) models. The mlr software

ackage [22] uses irace , among other tuning methods, for tuning

he hyperparameters of machine learning models as a better per-

orming alternative to random search and grid search.

.6. Automatic design of control software for robots

A very original application of irace is the automatic design of

ontrol software for swarms of robots. Francesca et al. [35] pro-

ose a system to automatically design the software that controls a

warm of robots in order to achieve a specific task. The problem is

pecified as a series of software modules that provide many differ-

nt robot behaviors and the criteria to transition between behav-

ors. Each module can be further customized by means of several

arameters. A particular combination of behaviors and transitions

epresents one controller, that is, an instance of the software that

ontrols the robots in the swarm. The performance of a particu-

ar controller is evaluated by means of multiple simulations. The

earch for the best controller over multiple training simulations is

arried out by means of irace . The authors report that this system

s not only able to outperform a previous system that used F-race

34] , but also a human designer, under the scenarios studied by

hem.

. Conclusion

This paper presented the irace package, which implements the

terated racing procedure for automatic algorithm configuration. It-

rated racing is a generalization of the iterated F-race procedure.

M. López-Ibáñez et al. / Operations Research Perspectives 3 (2016) 43–58 55

T

c

i

t

e

e

o

p

u

p

o

t

s

t

s

t

p

j

d

w

l

u

t

h

t

c

f

d

t

u

f

a

a

p

m

fi

s

l

s

s

e

c

c

u

fi

o

m

fi

o

r

i

m

p

c

d

s

A

w

g

Fig. A.11. Scheme of the user-provided components required by irace .

Table A1

Parameters of irace corresponding to the description

of iterated racing given in Section 3.2 . The full list of

irace parameters is available in the user guide.

Iterated racing parameter irace parameter

B maxExperiments
C (cost measure) targetRunner
μ mu
N min minNbSurvival
T first firstTest
T each eachTest
Statistical test testType

C

L

M

o

a

A

d

i

m

t

t

fi

t

A

i

r

T
he primary purpose of irace is to automatize the arduous task of

onfiguring the parameters of an optimization algorithm. However,

t may also be used for determining good settings in other compu-

ational systems such as robotics, traffic light controllers, compil-

rs, etc. The irace package has been designed with simplicity and

ase of use in mind. Despite being implemented in R , no previ-

us knowledge of R is required. We included two examples for the

urposes of illustrating the main elements of an automatic config-

ration scenario and the use of irace to tackle it. In addition, we

rovided a comprehensive survey of the wide range of applications

f irace .

There are a number of directions in which we are trying to ex-

end the current version of irace . One is the improvement of the

ampling model to take into account interactions among parame-

ers. In some cases, irace converges too quickly and generates very

imilar configurations; thus, additional techniques to achieve a bet-

er balance between diversification and intensification seem worth

ursuing. In the same direction, techniques for automatically ad-

usting some settings of irace (such as T new and T first) in depen-

ence of the heterogeneity of a scenario would be useful. Finally,

e are currently adding tools to provide a default analysis of the

arge amount of data gathered during the run of irace to give the

ser information about the importance of specific parameters and

he most relevant interactions among the parameters.

The iterated racing algorithms currently implemented in irace

ave, however, a few well-known limitations. The most notable is

hat they were primarily designed for scenarios where reducing

omputation time is not the primary objective. Methods designed

or such type of scenarios, such as ParamILS [41] and SMAC [43] ,

ynamically control the maximum time assigned to each run of

he target algorithm and use an early pruning of candidate config-

rations in order to not waste time on time-consuming and, there-

ore, poor configurations. Moreover, the default parameters of irace

ssume that a minimum number of iterations can be performed

nd a minimum number of candidate configurations can be sam-

led. If the tuning budget is too small, the resulting configuration

ight not be better than random ones.

Finally, automatic configuration methods in general may be dif-

cult to apply when problem instances are computationally expen-

ive, for example, when the computational resources available are

imited (lack of multiple CPUs, cluster of computers) or when a

ingle run of the algorithm requires many hours or days. In such

ituations, two main alternatives have been proposed in the lit-

rature. Styles et al. [88] proposed to use easier instances (less

omputationally expensive) during tuning to obtain several good

onfigurations, and then apply a racing algorithm to these config-

rations using increasingly difficult instances to discard those con-

gurations that do not scale. Mascia et al. [65] proposed to tune

n easy instances, and then identify which parameters need to be

odified and how in order for the algorithm to scale to more dif-

cult instances.

The main purpose of automatic algorithm configuration meth-

ds is to configure parameters of optimization and other algo-

ithms. Nonetheless, the use of these methods has a crucial role

n new ways of designing software, as advocated in the program-

ing by optimization paradigm [40] . Moreover, the importance of

roperly tuning the parameters of algorithms before analyzing and

omparing them is becoming widely recognized. We hope that the

evelopment of the irace package will help practitioners and re-

earchers to put these ideas into practice.

cknowledgements

This work received support from the COMEX project (P7/36)

ithin the Interuniversity Attraction Poles Programme of the Bel-

ian Science Policy Office, and the EU FP7 ICT Project COLOMBO,
ooperative Self-Organizing System for Low Carbon Mobility at

ow Penetration Rates (agreement no. 318622). Thomas Stützle and

auro Birattari acknowledge support from the Belgian F.R.S.-FNRS,

f which they are Senior Research Associates. Leslie Pérez Cáceres

cknowledges support of CONICYT Becas Chile.

ppendix A. The irace package

We provide here a brief summary of the irace package. The full

ocumentation is available together with the package and in the

race user guide [62] .

The scheme in Fig. A.11 shows the components that the user

ust provide to irace before executing it. First, irace requires

hree main inputs:

1. A description of the parameter space X , that is, the pa-

rameters to configure, their types, domains and constraints.

Section A.2 summarizes how to define a parameter space in

irace .

2. The set of training instances { I 1 , I 2 , . . . } , which in practice is

a finite, representative sample of I . The particular options for

specifying the set of training instances are given in Section A.1 .

3. The configuration scenario, which is defined in terms of options

provided to irace . Table A.1 maps the description of iterated

racing in Section 3.2 to the options of irace . The complete list

of options is available in the software documentation.

In addition, irace requires a program (or R function) called

argetRunner that is responsible for evaluating a particular con-

guration of the target algorithm on a given instance and returning

he corresponding cost value.

1. Training instances

The set of training instances { I 1 , I 2 , . . . } may be given explic-

tly as an option to irace . Alternatively, the instances may be

ead, one per line, from an instance file (trainInstancesFile).
ypically, an instance is a path to a filename and the string

56 M. López-Ibáñez et al. / Operations Research Perspectives 3 (2016) 43–58

A

p

r

a

e

i

t

m

i

R

given by option trainInstancesDir will be prefixed to them.

Nonetheless, an instance may also be the parameter settings for

selecting a benchmark function implemented in the target algo-

rithm or for invoking an instance generator (in that case, op-

tion trainInstancesDir should be set to the empty string).

If the option trainInstancesFile is not set, then irace con-

siders all files found in trainInstancesDir , and recursively

in its subdirectories, as training instances. The order in which

instances are considered by irace is randomized if the option

sampleInstances is enabled. Otherwise, the order is the same

as given in trainInstancesFile if this option is set or in al-

phabetical order, otherwise.

In order to reduce variance, irace uses the same random seed

to evaluate different configurations on the same instance. If an in-

stance is seen more than once, a different random seed is assigned

to it. Thus, in practice, the sequence of instances seen within a race

(Fig. 1) is actually a sequence of instance and seed pairs.

A2. Parameter space

For simplicity, the description of the parameter space is given

as a table. Each line of the table defines a configurable parameter:

where each field is defined as follows:

< name > The name of the parameter as an unquoted alphanumeric

string, for instance: ‘ ants ’.
< label > A label for this parameter. This is a string that will be

passed together with the parameter to targetRunner . In
the default targetRunner provided with the package,

this is the command-line switch used to pass the value of

this parameter, for instance ‘ ’’--ants ’’ ’.
< type > The type of the parameter, either integer , real , ordinal or

categorical , given as a single letter: ‘ i ’, ‘ r ’, ‘ o ’ or ‘ c ’.
< domain > The range (for integers and real parameters) or the set of

values (for categorical and ordinal) of the parameter.

< condition > An optional condition that determines whether the

parameter is enabled or disabled, thus making the

parameter conditional. If the condition evaluates to false,

then no value is assigned to this parameter, and neither

the parameter value nor the corresponding label are

passed to targetRunner . The condition must be a valid

R logical expression. The condition may contain the name

of other parameters as long as the dependency graph does

not have any cycles. Otherwise, irace will detect the cycle

and stop with an error.

Parameter types and domains

Parameters can be of four types:

• Real parameters are numerical parameters that can take any

floating-point values within a given range. The range is speci-

fied as an interval ‘ (< lower bound > , < upper bound >) ’.
This interval is closed, that is, the parameter value may even-

tually be one of the bounds. The possible values are rounded

to a number of decimal places specified by the option digits .
For example, given the default number of digits of 4, the values

0.12345 and 0.12341 are both rounded to 0.1234.

• Integer parameters are numerical parameters that can take only

integer values within the given range. The range is specified as

for real parameters.

• Categorical parameters are defined by a set of possible

values specified as ‘ (< value 1 > , ... , < value n >) ’.
The values are quoted or unquoted character strings. Empty

strings and strings containing commas or spaces must be

quoted.

• Ordinal parameters are defined by an ordered set of possible

values in the same format as for categorical parameters. They

are handled internally as integer parameters, where the inte-
gers correspond to the indices of the values.
3. Output of irace

During its execution, irace prints a detailed report of its

rogress. In particular, after each race finishes, the elite configu-

ations are printed; and at the end, the best configurations found

re printed as a table and as command-line parameters (see the

xample output shown in Section 4.1)

In addition, irace saves an R dataset file, by default as

race.Rdata , which may be read from R by means of the func-

ion load() . This dataset contains a list iraceResults , whose

ost important elements are:

scenario : the configuration scenario given to irace (any op-

tion not explicitly set has its default value).

parameters : the parameter space.

seeds : a matrix with two columns, instance and seed .
Rows give the sequence of pairs instance–seed seen by

irace .

allConfigurations : a data frame with all configurations

generated during the execution of irace .

experiments : a matrix storing the result of all experiments

performed across all iterations. Each entry is the result of

evaluating one configuration on one instance at a particular

iteration. Columns correspond to configurations and match

the row indexes in allConfigurations . Rows match the

row indexes in the matrix seeds , giving the instance–seed

pair on which configurations were evaluated. A value of ‘ NA ’
means that this configuration was not evaluated on this par-

ticular instance, either because it did not exist yet or it was

discarded.

The irace.Rdata file can also be used to resume a run of

race that was interrupted before completion.

eferences

[1] Acosta-Mesa H-G , Rechy-Ramírez F , Mezura-Montes E , Cruz-Ramírez N ,
Jiménez RH . Application of time series discretization using evolutionary pro-

gramming for classification of precancerous cervical lesions. J Biomed Inform
2014;49:73–83 .

[2] Adenso-Díaz B , Laguna M . Fine-tuning of algorithms using fractional experi-

mental design and local search. Oper Res 2006;54(1):99–114 .
[3] Ansótegui C , Sellmann M , Tierney K . A gender-based genetic algorithm for the

automatic configuration of algorithms. In: Gent IP, editor. Principles and prac-
tice of constraint programming, CP 2009, volume 5732 of lecture notes in com-

puter science. Heidelberg, Germany: Springer; 2009. p. 142–57 .
[4] Ansótegui C , Malitsky Y , Samulowitz H , Sellmann M , Tierney K . Model-based

genetic algorithms for algorithm configuration. In: Yang Q, Wooldridge M, ed-

itors. Proceedings of the twenty-fourth international joint conference on arti-
ficial intelligence (IJCAI-15). Menlo Park, CA: IJCAI/AAAI Press; 2015. p. 733–9 .

[5] Audet C , Orban D . Finding optimal algorithmic parameters using deriva-
tive-free optimization. SIAM J Optim 2006;17(3):642–64 .

[6] Audet C , Dang C-K , Orban D . Algorithmic parameter optimization of the DFO
method with the OPAL framework. In: Naono K, Teranishi K, Cavazos J, Suda R,

editors. Software automatic tuning: from concepts to state-of-the-art results.

Springer; 2010. p. 255–74 .
[7] Aydın D . Composite artificial bee colony algorithms: from component-based

analysis to high-performing algorithms. Appl Soft Comput 2015;32:266–85 .
[8] Babi ́c D , Hu AJ . Structural abstraction of software verification conditions. In:

Computer aided verification: 19th international conference, CAV 20 07; 20 07.
p. 366–78 .

[9] Babi ́c D , Hutter F . Spear theorem prover. SAT’08: proceedings of the SAT 2008

race; 2008 .
[10] Balaprakash P , Birattari M , Stützle T . Improvement strategies for the F-race

algorithm: sampling design and iterative refinement. In: Bartz-Beielstein T,
Blesa MJ, Blum C, Naujoks B, Roli A, Rudolph G, Sampels M, editors. Hybrid

metaheuristics, volume 4771 of lecture notes in computer science. Heidelberg,
Germany: Springer; 2007. p. 108–22 .

[11] Bartz-Beielstein T . Experimental research in evolutionary computation: the
new experimentalism. Berlin, Germany: Springer; 2006 .

[12] Bartz-Beielstein T , Lasarczyk C , Preuss M . Sequential parameter optimization.

In: Proceedings of the 2005 congress on evolutionary computation (CEC 2005).
Piscataway, NJ: IEEE Press; 2005. p. 773–80 .

[13] Battiti R , Brunato M , Mascia F . Reactive search and intelligent optimization,
volume 45 of operations research/computer science interfaces. New York, NY:

Springer; 2008 .

http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0001
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0001
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0001
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0001
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0001
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0001
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0002
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0002
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0002
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0003
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0003
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0003
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0003
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0004
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0004
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0004
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0004
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0004
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0004
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0005
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0005
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0005
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0006
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0006
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0006
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0006
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0007
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0007
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0008
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0008
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0008
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0009
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0009
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0009
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0010
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0010
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0010
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0010
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0011
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0011
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0012
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0012
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0012
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0012
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0013
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0013
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0013
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0013

M. López-Ibáñez et al. / Operations Research Perspectives 3 (2016) 43–58 57

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[14] Benavides AJ , Ritt M . Iterated local search heuristics for minimizing total com-
pletion time in permutation and non-permutation flow shops. In: Brafman RI,

Domshlak C, Haslum P, Zilberstein S, editors. Proceedings of the twenty–
fifth international conference on automated planning and scheduling, ICAPS,

Jerusalem, Israel, June 7–11. Menlo Park, CA: AAAI Press; 2015. p. 34–41 .
[15] Bezerra LCT , López-Ibáñez M , Stützle T . Deconstructing multi-objective evo-

lutionary algorithms: an iterative analysis on the permutation flowshop. In:
Pardalos PM, Resende MGC, Vogiatzis C, Walteros JL, editors. Learning and

intelligent optimization, 8th international conference, LION 8, volume 8426

of lecture notes in computer science. Heidelberg, Germany: Springer; 2014a.
p. 57–172 .

[16] Bezerra LCT , López-Ibáñez M , Stützle T . Automatic design of evolutionary al-
gorithms for multi-objective combinatorial optimization. In: Bartz-Beielstein T,

Branke J, Filipi ̌c B, Smith J, editors. PPSN 2014, volume 8672 of lecture notes
in computer science. Heidelberg, Germany: Springer; 2014b. p. 508–17 .

[17] Bezerra LCT , López-Ibáñez M , Stützle T . Automatic component-wise de-

sign of multi-objective evolutionary algorithms. IEEE Trans Evol Comput
2016;20(3):403–17 .

[18] Birattari M . The race package for R : racing methods for the selection of the
best. Technical Report TR/IRIDIA/2003-037. IRIDIA, Université Libre de Brux-

elles, Belgium; 2003 .
[19] Birattari M . Tuning metaheuristics: a machine learning perspective, volume

197 of studies in computational intelligence. Berlin/Heidelberg, Germany:

Springer; 2009 .
20] Birattari M , Stützle T , Paquete L , Varrentrapp K . A racing algorithm for config-

uring metaheuristics. In: Langdon WB, editor. Proceedings of the genetic and
evolutionary computation conference, GECCO 2002. San Francisco, CA: Morgan

Kaufmann Publishers; 2002. p. 11–18 .
[21] Birattari M , Yuan Z , Balaprakash P , Stützle T . F-race and iterated F-race: an

overview. In: Bartz-Beielstein T, Chiarandini M, Paquete L, Preuss M, editors.

Experimental methods for the analysis of optimization algorithms. Berlin, Ger-
many: Springer; 2010. p. 311–36 .

22] Bischl B., Lang M., Bossek J., Judt L., Richter J., Kuehn T., et al. mlr: machine
learning in R . 2013. http://cran.r-project.org/package=mlr . R package.

23] Blum C , Calvo B , Blesa MJ . FrogCOL and frogMIS: new decentralized algorithms
for finding large independent sets in graphs. Swarm Intell 2015;9(2–3):205–27 .

[24] Blum C , Pinacho P , López-Ibáñez M , Lozano JA . Construct, merge, solve &

adapt: a new general algorithm for combinatorial optimization. Comput Oper
Res 2016;68:75–88 .

25] Ceschia S , Schaerf A , Stützle T . Local search techniques for a routing-packing
problem. Comput Ind Eng 2013;66(4):1138–49 .

26] Chen Y , Hao J-K , Glover F . A hybrid metaheuristic approach for the capacitated
arc routing problem. Eur J Oper Res 2016;553(1):25–39 .

[27] Chivilikhin DS , Ulyantsev VI , Shalyto AA . Modified ant colony algorithm for

constructing finite state machines from execution scenarios and temporal for-
mulas. Autom Remote Control 2016;77(3):473–84 .

28] Conover WJ . Practical nonparametric statistics, third edition. New York, NY:
John Wiley & Sons; 1999 .

29] Coy SP , Golden BL , Runger GC , Wasil EA . Using experimental design to find
effective parameter settings for heuristics. J Heuristics 2001;7(1):77–97 .

30] Dell’Amico M , Iori M , Novellani S , Stützle T . A destroy and repair algorithm for
the bike sharing rebalancing problem. Comput Oper Res 2016;71:146–62 .

[31] Dubois-Lacoste J , López-Ibáñez M , Stützle T . Automatic configuration of

state-of-the-art multi-objective optimizers using the TP+PLS framework. In:
Krasnogor N, Lanzi PL, editors. Proceedings of the genetic and evolution-

ary computation conference, GECCO 2011. New York, NY: ACM Press; 2011.
p. 2019–26 .

32] Fawcett C , Hoos HH . Analysing differences between algorithm configurations
through ablation. In: Proceedings of MIC 2013, the 10th metaheuristics inter-

national conference; 2013. p. 123–32 .

[33] Fisset B , Dhaenens C , Jourdan L . MO-Mine clust : a framework for multi-objec-
tive clustering. In: Haenens C, Jourdan L, Marmion M-E, editors. Learning and

intelligent optimization, 9th international conference, LION 9, volume 8994
of lecture notes in computer science. Heidelberg, Germany: Springer; 2015.

p. 293–305 .
34] Francesca G , Brambilla M , Brutschy A , Trianni V , Birattari M . AutoMoDe: a

novel approach to the automatic design of control software for robot swarms.

Swarm Intell 2014;8(2):89–112 .
[35] Francesca G , Brambilla M , Brutschy A , Garattoni L , Miletitch R , Podevijn G ,

et al. AutoMoDe-chocolate: automatic design of control software for robot
swarms. Swarm Intell 2015 .

36] Goldberg DE . Genetic algorithms in search, optimization and machine learning.
Boston, MA, USA: Addison-Wesley; 1989 .

[37] Grefenstette JJ . Optimization of control parameters for genetic algorithms. IEEE

Trans Syst Man Cybern 1986;16(1):122–8 .
38] Hansen N , Ostermeier A . Completely derandomized self-adaptation in evolu-

tion strategies. Evol Comput 2001;9(2):159–95 .
39] Herrera F., Lozano M., Molina D.. Test suite for the special issue of soft comput-

ing on scalability of evolutionary algorithms and other metaheuristics for large
scale continuous optimization problems. http://sci2s.ugr.es/eamhco/ . 2010.

40] Hoos HH . Programming by optimization. Commun ACM 2012;55(2):70–80 .

[41] Hutter F , Hoos HH , Leyton-Brown K , Stützle T . ParamILS: an automatic algo-
rithm configuration framework. J Artif Intell Res 2009;36:267–306 .
42] Hutter F , Hoos HH , Leyton-Brown K . Automated configuration of mixed integer
programming solvers. In: Lodi A, Milano M, Toth P, editors. Integration of AI

and OR techniques in constraint programming for combinatorial optimization
problems, 7th international conference, CPAIOR 2010, volume 6140 of lecture

notes in computer science. Heidelberg, Germany: Springer; 2010. p. 186–202 .
43] Hutter F , Hoos HH , Leyton-Brown K . Sequential model-based optimization for

general algorithm configuration. In: Coello Coello CA, editor. Learning and
intelligent optimization, 5th international conference, LION 5, volume 6683

of lecture notes in computer science. Heidelberg, Germany: Springer; 2011.

p. 507–23 .
44] Hutter F , López-Ibáñez M , Fawcett C , Lindauer MT , Hoos HH , Leyton-Brown K ,

et al. AClib: a benchmark library for algorithm configuration. In: Pardalos PM,
Resende MGC, Vogiatzis C, Walteros JL, editors. Learning and intelligent opti-

mization, 8th international conference, LION 8, volume 8426 of lecture notes
in computer science. Heidelberg, Germany: Springer; 2014. p. 36–40 .

45] IBM. ILOG CPLEX optimizer. http://www.ibm.com/software/integration/

optimization/cplex-optimizer/ .
46] Jackson CH. Multi-state models for panel data: the msm package for R . J Stat

Softw 2011;38(8):1–29 . http://www.jstatsoft.org/v38/i08/ .
[47] Jacquin S , Jourdan L , Talbi E-G . Dynamic programming based metaheuristic for

energy planning problems. In: Esparcia-Alcázar AI, Mora AM, editors. Applica-
tions of evolutionary computation, volume 8602 of lecture notes in computer

science. Heidelberg, Germany: Springer; 2014. p. 165–76 .

48] Johnson DS , McGeoch LA . The traveling salesman problem: a case study in lo-
cal optimization. In: Aarts EHL, Lenstra JK, editors. Local search in combinato-

rial optimization. Chichester, UK: John Wiley & Sons; 1997. p. 215–310 .
49] Johnson DS , McGeoch LA . Experimental analysis of heuristics for the STSP. In:

Gutin G, Punnen A, editors. The traveling salesman problem and its variations.
Dordrecht, The Netherlands: Kluwer Academic Publishers; 2002. p. 369–443 .

50] Karafotias G , Hoogendoorn M , Eiben AE . Parameter control in evolutionary al-

gorithms: trends and challenges. IEEE Trans Evol Comput 2015;19(2):167–87 .
[51] KhudaBukhsh AR , Xu L , Hoos HH , Leyton-Brown K . SATenstein: automatically

building local search SAT solvers from components. In: Boutilier C, editor. Pro-
ceedings of the twenty-first international joint conference on artificial intelli-

gence (IJCAI-09). Menlo Park, CA: AAAI Press; 2009. p. 517–24 .
52] Lacroix B , Molina D , Herrera F . Dynamically updated region based memetic al-

gorithm for the 2013 CEC special session and competition on real parameter

single objective optimization. In: Proceedings of the 2013 congress on evolu-
tionary computation (CEC 2013). Piscataway, NJ: IEEE Press; 2013. p. 1945–51 .

53] Lacroix B , Molina D , Herrera F . Region based memetic algorithm for real-pa-
rameter optimisation. Inf Sci 2014;262:15–31 .

54] Lang M , Kotthaus H , Marwedel , Weihs C , Rahnenführer J , Bischl B . Automatic
model selection for high-dimensional survival analysis. J Stat Comput Simul

2014;85(1):62–76 .

55] Liao T , Stützle T . Benchmark results for a simple hybrid algorithm on the CEC
2013 benchmark set for real-parameter optimization. In: Proceedings of the

2013 congress on evolutionary computation (CEC 2013). Piscataway, NJ: IEEE
Press; 2013. p. 1938–44 .

56] Liao T , Montes de Oca MA , Stützle T . Computational results for an automati-
cally tuned CMA-ES with increasing population size on the CEC’05 benchmark

set. Soft Comput 2013;17(6):1031–46 .
[57] Liao T , Molina D , Stützle T . Performance evaluation of automatically tuned

continuous optimizers on different benchmark sets. Appl Soft Comput

2015;27:490–503 .
58] López-Ibáñez M , Stützle T . The automatic design of multi-objective ant colony

optimization algorithms. IEEE Trans Evol Comput 2012;16(6):861–75 .
59] López-Ibáñez M , Stützle T . Automatically improving the anytime behaviour of

optimisation algorithms. Eur J Oper Res 2014;235(3):569–82 .
60] López-Ibáñez M , Blum C , Ohlmann JW , Thomas BW . The travelling sales-

man problem with time windows: adapting algorithms from travel-time to

makespan optimization. Appl Soft Comput 2013;13(9):3806–15 .
[61] López-Ibáñez M., Dubois-Lacoste J., Pérez Cáceres L., Stützle T., Birattari M..

2016a. The irace package: Iterated racing for automatic algorithm configura-
tion. http://iridia.ulb.ac.be/supp/IridiaSupp2016-003/ .

62] López-Ibáñez M, Pérez Cáceres L, Dubois-Lacoste J, Stützle T, Birattari M. The
irace package: user guide. Technical Report TR/IRIDIA/2016-004. IRIDIA, Uni-

versité Libre de Bruxelles, Belgium; 2016b . http://iridia.ulb.ac.be/IridiaTrSeries/

IridiaTr2016-004.pdf .
63] Marmion M-E , Mascia F , López-Ibáñez M , Stützle T . Automatic design of hy-

brid stochastic local search algorithms. In: Blesa MJ, Blum C, Festa P, Roli A,
Sampels M, editors. Hybrid metaheuristics, volume 7919 of lecture notes in

computer science. Heidelberg, Germany: Springer; 2013. p. 144–58 .
64] Maron O , Moore AW . The racing algorithm: model selection for lazy learners.

Artif Intell Res 1997;11(1–5):193–225 .

65] Mascia F , Birattari M , Stützle T . Tuning algorithms for tackling large instances:
an experimental protocol. In: Pardalos P, Nicosia G, editors. Learning and

intelligent optimization, 7th international conference, LION 7, volume 7997
of lecture notes in computer science. Heidelberg, Germany: Springer; 2013.

p. 410–22 .
66] Mascia F , López-Ibáñez M , Dubois-Lacoste J , Stützle T . Grammar-based gener-

ation of stochastic local search heuristics through automatic algorithm config-

uration tools. Comput Oper Res 2014;51:190–9 .

http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0014
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0014
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0014
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0015
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0015
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0015
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0015
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0016
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0016
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0016
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0016
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0017
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0017
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0017
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0017
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0018
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0018
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0019
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0019
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0020
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0020
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0020
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0020
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0020
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0021
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0021
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0021
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0021
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0021
http://cran.r-project.org/package=mlr
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0022
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0022
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0022
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0022
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0023
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0023
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0023
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0023
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0023
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0024
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0024
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0024
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0024
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0025
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0025
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0025
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0025
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0026
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0026
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0026
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0026
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0027
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0027
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0028
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0028
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0028
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0028
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0028
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0029
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0029
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0029
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0029
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0029
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0030
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0030
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0030
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0030
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0031
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0031
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0031
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0032
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0032
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0032
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0032
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0033
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0033
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0033
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0033
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0033
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0033
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0034
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0034
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0034
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0034
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0034
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0034
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0034
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0034
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0035
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0035
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0036
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0036
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0037
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0037
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0037
http://sci2s.ugr.es/eamhco/
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0038
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0038
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0039
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0039
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0039
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0039
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0039
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0040
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0040
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0040
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0040
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0041
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0041
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0041
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0041
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0042
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0042
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0042
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0042
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0042
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0042
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0042
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0042
http://www.ibm.com/software/integration/optimization/cplex-optimizer/
http://www.jstatsoft.org/v38/i08/
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0044
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0044
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0044
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0044
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0045
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0045
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0045
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0046
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0046
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0046
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0047
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0047
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0047
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0047
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0048
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0048
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0048
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0048
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0048
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0049
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0049
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0049
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0049
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0050
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0050
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0050
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0050
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0051
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0051
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0051
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0051
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0051
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0051
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0051
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0052
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0052
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0052
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0053
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0053
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0053
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0053
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0054
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0054
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0054
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0054
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0055
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0055
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0055
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0056
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0056
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0056
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0057
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0057
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0057
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0057
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0057
http://iridia.ulb.ac.be/supp/IridiaSupp2016-003/
http://iridia.ulb.ac.be/IridiaTrSeries/IridiaTr2016-004.pdf
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0059
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0059
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0059
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0059
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0059
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0060
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0060
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0060
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0061
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0061
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0061
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0061
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0062
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0062
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0062
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0062
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0062

58 M. López-Ibáñez et al. / Operations Research Perspectives 3 (2016) 43–58

[67] Massen F , López-Ibáñez M , Stützle T , Deville Y . Experimental analysis of
pheromone-based heuristic column generation using irace. In: Blesa MJ,

Blum C, Festa, P, Roli A, Sampels M, editors. Hybrid metaheuristics, volume
7919 of lecture notes in computer science. Heidelberg, Germany: Springer;

2013. p. 92–106 .
[68] Meier J.F., Clausen U.. 2014. A versatile heuristic approach for generalized hub

location problems. Preprint, Provided upon personal request.
[69] Mesquita RG , Silva RM , Mello CA , Miranda PB . Parameter tuning for doc-

ument image binarization using a racing algorithm. Expert Syst Appl

2015;42(5):2593–603 .
[70] Miranda P , Silva RM , Prudêncio RB . Fine-tuning of support vector machine

parameters using racing algorithms. In: 22st European symposium on artifi-
cial neural networks, computational intelligence And machine learning, Bruges.

ESANN; 2014. p. 325–30 .
[71] Montes de Oca MA , Aydın D , Stützle T . An incremental particle swarm

for large-scale continuous optimization problems: an example of tun-

ing-in-the-loop (re)design of optimization algorithms. Soft Comput
2011;15(11):2233–55 .

[72] Mühlenthaler M . Fairness in academic course timetabling. Springer; 2015 .
[73] Nannen V , Eiben AE . A method for parameter calibration and relevance esti-

mation in evolutionary algorithms. In: Cattolico M, editor. Proceedings of the
genetic and evolutionary computation conference, GECCO 2006. New York, NY:

ACM Press; 2006. p. 183–90 .

[74] Nannen V , Eiben AE . Relevance estimation and value calibration of evolution-
ary algorithm parameters. In: Veloso MM, editor. Proceedings of the twentieth

international joint conference on artificial intelligence (IJCAI-07). Menlo Park,
CA: AAAI Press; 2007. p. 975–80 .

[75] Nashed YSG , Mesejo P , Ugolotti R , Dubois-Lacoste J , Cagnoni S . A comparative
study of three GPU-based metaheuristics. In: Coello Coello CA, editor. PPSN

2012, part II, volume 7492 of lecture notes in computer science. Springer, Hei-

delberg, Germany; 2012. p. 398–407 .
[76] Pellegrini P , Birattari M , Stützle T . A critical analysis of parameter adaptation

in ant colony optimization. Swarm Intell 2012a;6(1):23–48 .
[77] Pellegrini P , Castelli L , Pesenti R . Metaheuristic algorithms for the simultane-

ous slot allocation problem. IET Intell Transport Syst 2012b;6(4):453–62 .
[78] Pérez Cáceres L , López-Ibáñez M , Stützle T . An analysis of parameters of irace.

In: Blum C, Ochoa G, editors. Proceedings of EvoCOP 2014–14th European con-

ference on evolutionary computation in combinatorial optimization, volume
8600 of lecture notes in computer science. Heidelberg, Germany: Springer;

2014. p. 37–48 .
[79] Powell M . The BOBYQA algorithm for bound constrained optimization without

derivatives. Technical Report Cambridge NA Report NA2009/06. University of
Cambridge, UK; 2009 .

[80] Ridge E , Kudenko D . Tuning the performance of the MMAS heuristic. In: Stüt-

zle T, Birattari M, Hoos HH, editors. International workshop on engineering
stochastic local search algorithms (SLS 2007), volume 4638 of lecture notes in

computer science. Heidelberg, Germany: Springer; 2007. p. 46–60 .
[81] Riff M-C , Montero E . A new algorithm for reducing metaheuristic design effort.

In: Proceedings of the 2013 congress on evolutionary computation (CEC 2013).
Piscataway, NJ: IEEE Press; 2013. p. 3283–90 .
[82] Robert CP . Simulation of truncated normal variables. Stat Comput
1995;5(2):121–5 .

[83] Ruiz R , Maroto C . A comprehensive review and evaluation of permutation
flow-shop heuristics. Eur J Oper Res 2005;165(2):479–94 .

[84] Samà M , Pellegrini P , Ariano AD , Rodriguez J , Pacciarelli D . Ant colony opti-
mization for the real-time train routing selection problem. Transp Res Part B

2016;85:89–108 .
[85] Schneider M , Hoos HH . Quantifying homogeneity of instance sets for algorithm

configuration. In: Hamadi Y, Schoenauer M, editors. Learning and intelligent

optimization, 6th international conference, LION 6, volume 7219 of lecture
notes in computer science. Heidelberg, Germany: Springer; 2012. p. 190–204 .

[86] Stefanello F , Aggarwal V , Buriol LS , Gonçalves JF , Resende MGC . A biased ran-
dom-key genetic algorithm for placement of virtual machines across geo-sep-

arated data centers. In: Silva S, Esparcia-Alcázar AI, editors. Proceedings of the
genetic and evolutionary computation conference, GECCO 2015. New York, NY:

ACM Press; 2015. p. 919–26 .

[87] Stützle T. ACOTSP : a software package of various ant colony optimization al-
gorithms applied to the symmetric traveling salesman problem. 2002. http:

//www.aco- metaheuristic.org/aco- code/ .
[88] Styles J , Hoos HH . Ordered racing protocols for automatically configuring algo-

rithms for scaling performance. In: Blum C, Alba E, editors. Proceedings of the
genetic and evolutionary computation conference, GECCO 2013. New York, NY:

ACM Press; 2013. p. 551–8 .

[89] Thornton C , Hutter F , Hoos HH , Leyton-Brown K . Auto-WEKA: combined
selection and hyperparameter optimization of classification algorithms. In:

Dhillon IS, Koren Y, Ghani R, Senator TE, Bradley P, Parekh R, He J, Gross-
man RL, Uthurusamy R, editors. The 19th ACM SIGKDD international confer-

ence on knowledge discovery and data mining, KDD 2013. New York, NY: ACM
Press; 2013. p. 847–55 .

[90] Violin A . Mathematical programming approaches to pricing problems. Faculté

de Sciences, Université Libre de Bruxelles and Dipartimento di Ingegneria e
Architettura, Università degli studi di Trieste; 2014. Phd thesis .

[91] Wessing S , Beume N , Rudolph G , Naujoks B . Parameter tuning boosts perfor-
mance of variation operators in multiobjective optimization. In: Schaefer R,

Cotta C, Kolodziej J, Rudolph G, editors. Parallel problem solving from nature,
PPSN XI, volume 6238 of lecture notes in computer science. Heidelberg, Ger-

many,: Springer; 2010. p. 728–37 .

[92] Yarimcam A , Asta S , Ozcan E , Parkes AJ . Heuristic generation via parameter
tuning for online bin packing. In: Evolving and autonomous learning systems

(EALS), 2014 IEEE symposium on. IEEE; 2014. p. 102–8 .
[93] Yuan Z , Montes de Oca MA , Stützle T , Birattari M . Continuous optimization

algorithms for tuning real and integer algorithm parameters of swarm intelli-
gence algorithms. Swarm Intell 2012;6(1):49–75 .

[94] Yuan Z , Montes de Oca MA , Stützle T , Lau HC , Birattari M . An analysis of

post-selection in automatic configuration. In: Blum C, Alba E, editors. Proceed-
ings of GECCO 2013. New York, NY: ACM Press; 2013. p. 1557–64 .

[95] Zitzler E , Thiele L , Laumanns M , Fonseca CM , Fonseca VGd . Performance as-
sessment of multiobjective optimizers: an analysis and review. IEEE Trans Evol

Comput 2003;7(2):117–32 .
[96] Zlochin M , Birattari M , Meuleau N , Dorigo M . Model-based search for combi-

natorial optimization: acritical survey. Ann Oper Res 2004;131(1–4):373–95 .

http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0063
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0063
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0063
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0063
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0063
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0064
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0064
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0064
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0064
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0064
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0065
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0065
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0065
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0065
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0066
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0066
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0066
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0066
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0067
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0067
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0068
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0068
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0068
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0069
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0069
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0069
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0070
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0070
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0070
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0070
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0070
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0070
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0071
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0071
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0071
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0071
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0072
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0072
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0072
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0072
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0073
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0073
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0073
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0073
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0074
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0074
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0075
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0075
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0075
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0076
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0076
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0076
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0077
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0077
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0078
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0078
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0078
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0079
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0079
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0079
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0079
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0079
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0079
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0080
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0080
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0080
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0081
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0081
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0081
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0081
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0081
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0081
http://www.aco-metaheuristic.org/aco-code/
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0082
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0082
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0082
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0083
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0083
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0083
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0083
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0083
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0084
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0084
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0085
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0085
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0085
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0085
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0085
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0086
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0086
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0086
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0086
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0086
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0087
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0087
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0087
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0087
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0087
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0088
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0088
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0088
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0088
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0088
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0088
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0089
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0089
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0089
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0089
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0089
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0089
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0090
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0090
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0090
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0090
http://refhub.elsevier.com/S2214-7160(15)30027-0/sbref0090

	The irace package: Iterated racing for automatic algorithm configuration
	1 Introduction
	2 Automatic configuration
	2.1 Configurable algorithms
	2.2 The algorithm configuration problem
	2.3 Methods for automated algorithm configuration

	3 Iterated racing
	3.1 An overview of iterated racing
	3.2 The iterated racing algorithm in the irace package
	3.3 Soft-restart
	3.4 Elitist iterated racing
	3.5 Other features of irace
	 Initial configurations
	 Parallel evaluation of configurations
	 Forbidden configurations

	4 Applications of irace
	4.1 Example of tuning scenario: tuning ACOTSP
	4.2 A more complex example: tuning multi-objective optimization algorithms
	4.3 Comparison of irace and elitist irace
	4.4 Heterogeneous scenario setting

	5 Other applications of irace
	5.1 Algorithm configuration
	5.2 Multi-objective optimization metaheuristics
	5.3 Anytime algorithms (improve time-quality trade-offs)
	5.4 Automatic algorithm design from a grammar description
	5.5 Applications in machine learning
	5.6 Automatic design of control software for robots

	6 Conclusion
	 Acknowledgements
	Appendix A The irace package
	A1 Training instances
	A2 Parameter space
	 Parameter types and domains

	A3 Output of irace

	 References

