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a b s t r a c t

Uncertainty theory provides a new tool to deal with the shortest path problem with
nondeterministic arc lengths. With help from the operational law of uncertainty theory,
this paper gives the uncertainty distribution of the shortest path length. Also, it investigates
solutions to the α-shortest path and the most shortest path in an uncertain network.
It points out that there exists an equivalence relation between the α-shortest path in
an uncertain network and the shortest path in a corresponding deterministic network,
which leads to an effective algorithm to find the α-shortest path and the most shortest
path. Roughly speaking, this algorithm can be broken down into two parts: constructing a
deterministic network and then invoking the Dijkstra algorithm.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The shortest path problem concentrates on finding a path with minimum distance, time, or cost from the source node to
the destination node. Many programming problems, including transportation, routing, communications, and supply chain
management, can be regarded as special cases of the shortest path problem. In the 1950s and 1960s, some successful
algorithmswere proposed or developed by Bellman [1], Dijkstra [2], Dreyfus [3], and Floyd [4], whichmade the shortest path
problem occupy a central position in a network. In this paper, these algorithms will be referred to as classical algorithms. In
classical algorithms, the network is required to have deterministic arc lengths. However, because of failure, maintenance,
or other reasons, the arc lengths are nondeterministic in many situations. As a result, it is improper to employ classical
algorithms in these situations. Some researchers believed that these nondeterministic phenomena conform to randomness,
and they introduced probability theory into the shortest path problem; see Frank [5], Hall [6], Loui [7], Mirchandani [8], for
example. Since Dubois and Prade [9] proposed the fuzzy shortest path problem (FSPP) in 1980, fuzzy theory has begun to
attract network researchers. Some researchers, such as Klein [10], Ji and Iwamura [11], Lin and Chen [12], and Okada [13],
have done a lot of work in this field.

In 2007, Liu [14] proposed uncertainty theory to describe nondeterministic phenomena, especially expert data and
subjective estimation. From then on, uncertainty theory has provided a new approach to deal with nondeterministic factors
in programming problems. Obviously, the length of each path in an uncertain network is uncertain, and we cannot get a
shortest path in the normal sense. What we investigate is the distribution of the shortest path length. In 2010, Liu [15]
proposed the concepts of α-shortest path and themost shortest path in an uncertain network. These two concepts are duals
of each other, and they are the optimal paths under some confidence level constrains. In practice, the α-shortest path and
themost shortest path are of important significance. However, themethod to find α-shortest path or themost shortest path
is not given.

This paper is concerned with two things: (i) the uncertainty distribution of the shortest path length, and (ii) an effective
method to find the α-shortest path and the most shortest path in an uncertain network. In the past literature, the
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Fig. 1. Zigzag uncertainty distribution.

optimal solution to the shortest path problem in a nondeterministic network was usually obtained by methods of heuristic
algorithms, Monte Carlo simulation, or assuming a ranking index for comparing arc lengths. These methods lack rigor
or portability. What is worse, some of them are of high computational complexity. Fortunately, under the framework of
uncertainty theory, the uncertainty distribution of the shortest path length is obtained quite easily. Also, it is found that
the α-shortest path of an uncertain network is just the shortest path in the corresponding deterministic network. This
conclusion provides an effective method to find the α-shortest path in an uncertain network; that is, the α-shortest path
can be obtained by simply invoking any classical algorithm in a deterministic network. In this paper, the classical algorithm
we employ is the Dijkstra algorithm. After obtaining the α-shortest path, we can get the most shortest path easily, which is
the dual problem of obtaining the α-shortest path.

The remainder of this paper is organized as follows. In Section 2, some basic concepts and properties of uncertainty theory
used throughout this paper are introduced. In Section 3, the operational law and related theorem are discussed in detail.
In Section 4, the uncertain shortest path problem is described. Section 5 gives the uncertainty distribution of the shortest
path length. Section 6 derives the method to find the α-shortest path and the most shortest path in an uncertain network.
In Section 7, an example is given to illustrate the conclusions presented in Section 6. Section 8 gives a brief summary to this
paper.

2. Preliminaries

Founded in 2007, uncertainty theory is a new branch of mathematics. Up to now, theory and practice have shown that
uncertainty theory is an efficient tool to deal with nondeterministic information, especially expert data and subjective
estimation. From a theoretical aspect, an uncertain process [16], and uncertain differential equation [17], and uncertain set
theory [18] have been established. From a practical aspect, uncertain programming [19], uncertain inference [20], uncertain
statistics [21], uncertain optimal control [22], etc., have also developed quickly. In short, uncertainty theory is increasingly
being researched and used.

In this section, we introduce some foundational concepts and properties of uncertainty theory, which will be used
throughout this paper.

Let Γ be a nonempty set, and let L be a σ -algebra over Γ . Each element Λ ∈ L is assigned a number M{Λ} ∈ [0, 1]. In
order to ensure that the number M{Λ} has certain mathematical properties, Liu [14,21] presented four axioms: (1) normal-
ity, (2) self-duality, (3) countable subadditivity, and (4) productmeasure axioms. If the first three axioms are satisfied, the set
function M{Λ} is called an uncertain measure.

Definition 1 (Liu [14]). Let Γ be a nonempty set, L a σ -algebra over Γ , and M an uncertain measure. Then the triplet
(Γ , L, M) is called an uncertainty space.

Definition 2 (Liu [14]). An uncertain variable is a measurable function ξ from an uncertainty space (Γ , L, M) to the set of
real numbers, i.e., for any Borel set B of real numbers, the set

{ξ ∈ B} = {γ ∈ Γ | ξ(γ ) ∈ B}

is an event.

The uncertainty distribution of an uncertain variable ξ is defined by Φ(x) = M{ξ ≤ x} for any real number x. For
example, the zigzag uncertain variable ξ ∼ Z(a, b, c) has an uncertainty distribution (Fig. 1)

Φ(x) =


0, if x ≤ a
(x − a)/2(b − a), if a ≤ x ≤ b
(x + c − 2b)/2(c − b), if b ≤ x ≤ c
1, if x ≥ c.
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Definition 3 (Liu [23]). The uncertain variables ξ1, ξ2, . . . , ξn are said to be independent if

M


n

i=1

{ξi ∈ Bi}


= min

1≤i≤n
M{ξi ∈ Bi}

for any Borel sets B1, B2, . . . , Bn of real numbers.

Definition 4 (Liu [21]). An uncertainty distributionΦ is said to be regular if its inverse functionΦ−1(α) exists and is unique
for each α ∈ (0, 1).

Obviously, zigzag uncertain variable has a regular uncertainty distribution. If Φ is regular, uncertainty distribution Φ is
continuous and strictly increasing at each point x with 0 < Φ(x) < 1. Also, Φ−1 is continuous and strictly increasing in
(0, 1). What is more, we have M{ξ ≤ t} = M{ξ < t}, provided that ξ has a regular uncertainty distribution.

We usually assume that all uncertainty distributions in practical applications are regular. Otherwise, a small perturbation
can be imposed to obtain a regular one. In the following sections,wewill see that the inverse uncertainty distributionΦ−1(α)
has some good operational properties, which makes the solution to uncertain programming problems easy to obtain.

3. The operational law

In uncertainty theory, the operation of independent uncertain variables follows the operational law.

Theorem 1 (Liu [23], operational law). Let ξ1, ξ2, . . . , ξn be independent uncertain variables, and let f : Rn
→ R be a

measurable function. Then ξ = f (ξ1, ξ2, . . . , ξn) is an uncertain variable such that

M{ξ ∈ B} =


sup

f (B1,B2,...,Bn)⊂B
min
1≤i≤n

Mi{ξi ∈ Bi}, if sup
f (B1,B2,...,Bn)⊂B

min
1≤i≤n

Mi{ξi ∈ Bi} > 0.5

1 − sup
f (B1,B2,...,Bn)⊂Bc

min
1≤i≤n

Mi{ξi ∈ Bi}, if sup
f (B1,B2,...,Bn)⊂Bc

min
1≤i≤n

Mi{ξi ∈ Bi} > 0.5

0.5, otherwise,

where B, B1, B2, . . . , Bn are Borel sets of real numbers.

Example 1. If h > 0, k > 0, we have

hZ(a1, b1, c1) + kZ(a2, b2, c2) = Z(ha1 + ka2, hb1 + kb2, hc1 + kc2).

If the function f in the operational law has some additional feature, such as monotonicity, a very useful conclusion can
be obtained.

A real function f (x1, x2, . . . , xn) is said to be strictly increasing if f satisfies the following conditions:

(1) f (x1, x2, . . . , xn) ≥ f (y1, y2, . . . , yn) when xi ≥ yi for i = 1, 2, . . . , n;
(2) f (x1, x2, . . . , xn) > f (y1, y2, . . . , yn) when xi > yi for i = 1, 2, . . . , n.

Theorem 2. Let ξ1, ξ2, . . . , ξn be independent uncertain variables with regular uncertainty distributions Φ1, Φ2, . . . , Φn,
respectively, and let f : ℜ

n
→ ℜ be a continuous and strictly increasing function. Then the uncertain variable ξ = f (ξ1,

ξ2, . . . , ξn) has an inverse uncertainty distribution:

Ψ −1(α) = f (Φ−1
1 (α), Φ−1

2 (α), . . . , Φ−1
n (α)).

Proof. Since f is an increasing function, we have

{f (ξ1, . . . , ξn) ≤ f (Φ−1
1 (α), . . . , Φ−1

n (α))} ⊃

(ξ1 ≤ Φ−1

1 (α)) ∩ · · · ∩ (ξn ≤ Φ−1
n (α))


.

Because ξ1, ξ2, . . . , ξn are independent and regular, for each α ∈ (0, 1), it follows that

M{ξ ≤ f (Φ−1
1 (α), Φ−1

2 (α), . . . , Φ−1
n (α))}

= M{f (ξ1, ξ2, . . . , ξn) ≤ f (Φ−1
1 (α), Φ−1

2 (α), . . . , Φ−1
n (α))}

≥ M

(ξ1 ≤ Φ−1

1 (α)) ∩ (ξ2 ≤ Φ−1
2 (α)) ∩ · · · ∩ (ξn ≤ Φ−1

n (α))


= M{ξ1 ≤ Φ−1
1 (α)} ∧ M{ξ2 ≤ Φ−1

2 (α)} ∧ · · · ∧ M{ξn ≤ Φ−1
n (α)}

= Φ1(Φ
−1
1 (α)) ∧ Φ2(Φ

−1
2 (α)) ∧ · · · ∧ Φn(Φ

−1
n (α))

= α.

It is assumed that f is strictly increasing; then, we have

{f (ξ1, . . . , ξn) > f (Φ−1
1 (α), . . . , Φ−1

n (α))} ⊃

{ξ1 > Φ−1

i (α)} ∩ · · · ∩ {ξn > Φ−1
n (α)}


.



2594 Y. Gao / Computers and Mathematics with Applications 62 (2011) 2591–2600

Fig. 2. Network N for Example 2.

Because ξ1, ξ2, . . . , ξn are independent and regular, for each α ∈ (0, 1), it follows that

M{ξ > f (Φ−1
1 (α), Φ−1

2 (α), . . . , Φ−1
n (α))}

= M{f (ξ1, ξ2, . . . , ξn) > f (Φ−1
1 (α), Φ−1

2 (α), . . . , Φ−1
n (α))}

≥ M

(ξ1 > Φ−1

1 (α)) ∩ (ξ2 > Φ−1
2 (α)) ∩ · · · ∩ (ξn > Φ−1

n (α))


= M{(ξ1 > Φ−1
1 (α))} ∧ M{(ξ2 > Φ−1

2 (α))} ∧ · · · ∧ M{(ξn > Φ−1
n (α))}

= (1 − M{ξ1 ≤ Φ−1
1 (α)}) ∧ (1 − M{ξ2 ≤ Φ−1

2 (α)}) ∧ · · · ∧ (1 − M{ξn ≤ Φ−1
n (α)})

= (1 − Φ1(Φ
−1
1 (α))) ∧ (1 − Φ2(Φ

−1
2 (α))) ∧ · · · ∧ (1 − Φn(Φ

−1
n (α)))

= 1 − α;

thus,

M{ξ ≤ f (Φ−1
1 (α), Φ−1

2 (α), . . . , Φ−1
n (α))} = 1 − M{ξ > f (Φ−1

1 (α), Φ−1
2 (α), . . . , Φ−1

n (α))}

≤ 1 − (1 − α) = α.

It follows that M{ξ ≤ f (Φ−1
1 (α), Φ−1

2 (α), . . . , Φ−1
n (α))} = α, for each α ∈ (0, 1).

Obviously, f (Φ−1
1 (α), Φ−1

2 (α), . . . , Φ−1
n (α)) is a strictly increasing and continuous function of α. The definition of a

regular uncertainty distribution tells us

Ψ −1(α) = f (Φ−1
1 (α), Φ−1

2 (α), . . . , Φ−1
n (α)).

The theorem is proved. �

Theorem 2 gives a simple method to get the uncertainty distribution of f (ξ1, ξ2, . . . , ξn). Although in most uncertain
programming problems we can only get the distribution in a numerical sense, it is never too much to stress the important
role of Theorem 2. In this paper, the solution to the uncertain shortest path problem is just based on this theorem.

4. Problem description

In general, a deterministic network is denoted as N = (V , A), where V = {1, 2, . . . , n} is a finite set of nodes, and
A = {(i, j) | i, j ∈ V } is the set of arcs.

Denote w = {wij | (i, j) ∈ A} as the set of arc lengths. Then in network N = (V , A), from the source node to the destina-
tion node, the shortest path length is a function of w, which is denoted as fSP in this paper. Given w, fSP(w) can be obtained
by using the Dijkstra algorithm. The following example illustrates function fSP .

Example 2. The network N = (V , A, ξ) is shown in Fig. 2.
Whenw = (w12, w13, w14, w24, w34) = (1, 3, 4, 1, 3), the shortest path is 1 → 2 → 4; that is, fSP(w) = w12+w24 = 2.

When w = (w12, w13, w14, w24, w34) = (3, 3, 4, 3, 3), the shortest path is 1 → 4; that is, fSP(w) = w14 = 4.

In this paper, the nondeterministic factor in network N = (V , A) is only the length of each arc. We employ uncertainty
theory to deal with this nondeterministic factor. Some assumptions are listed as follows.

(1) There is only one source node and only one destination node.
(2) There is no cycle in each network.
(3) The length of each arc(i, j) is a positive uncertain variable ξij.
(4) All the uncertain variables ξij are independent.

Define ξ = {ξij | (i, j) ∈ A}. We can denote the network with uncertain arc length as N = (V , A, ξ); its shortest path
length is fSP(ξ). Obviously, fSP(ξ) is an uncertain variable.

For the network N = (V , A, ξ), assume that the uncertainty distribution of fSP(ξ) is Ψ (x); i.e., Ψ (x) = M{fSP(ξ) ≤ x}.
From now on, we use following representation to denote path P:

P = {xij | (i, j) ∈ A},
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where xij ∈ {0, 1} is a decision variable; that is, when xij = 0, arc(i, j) is not in path P; when xij = 1, arc (i, j) is in path P .
Then the length of P is

l(P) =

−
(i,j)∈A

xijξij.

It is clear that l(P) is also an uncertain variable. Assume that node 1 is the source and node n is the destination. Then P is a
path from source node 1 to destination node n if and only if

−
j:(i,j)∈A

xij −
−

j:(j,i)∈A

xji =


1, i = 1,
0, 2 ≤ i ≤ n − 1,
−1, i = n,

xij = {0, 1}, ∀(i, j) ∈ A.

In 2010, Liu [15] gave the concepts of the α-shortest path and the most shortest path in an uncertain network N =

(V , A, ξ).

Definition 5 (Liu [15]). In networkN = (V , A, ξ), P0 is a path from the source node to the destination node. Then P0 is called
the α-shortest path if

Tα = min{T | M{l(P0) ≤ T } ≥ α} ≤ min{T | M{l(P) ≤ T } ≥ α}

for all paths P from the source node to the destination node, where α is a predetermined confidence level.

The practical meaning of the α-shortest path is natural. Given an α ∈ (0, 1), we hope to get a smallest length T (denoted
as Tα) and a path P0, where the uncertain variable l(P0) is less than Tα with confidence level α. Here, path P0 is just the
α-shortest path.

Definition 6 (Liu [15]). In networkN = (V , A, ξ), P0 is a path from the source node to the destination node. Then P0 is called
the most shortest path if

M{l(P0) ≤ T } ≥ M{l(P) ≤ T }

for all paths P from the source node to the destination node, where T is a predetermined length.

Given a predetermined confidence length T , the most shortest path P0 is the optimal path which is less than T with the
largest confidence level. It is clear that the α-shortest path and the most shortest path are duals of each other.

In contrast to the situation in a deterministic network, the shortest path length fSP(ξ) is an uncertain variable in an
uncertain network. The α-shortest path and the most shortest path are the optimal paths under some confidence level.
With a change of confidence level, the optimal paths will also change. Then, for uncertain network N = (V , A, ξ), what is
the uncertainty distribution of fSP? And how can we get the α-shortest path and the most shortest path? In Sections 5 and
6, we will give the answers.

5. The uncertainty distribution of fSP(ξ)

For a network, the shortest path length fSP(w) is a continuous and increasing function with respect to each component
of w. It is also clear that reducing the length of each arc leads to a smaller shortest path length; that is,

fSP(x) < fSP(y),

where x = {xij | (i, j) ∈ A}, y = {yij | (i, j) ∈ A}, and xij < yij. Thus, fSP is a strictly increasing function.
According to Theorem 2, we can easily obtain the inverse uncertainty distribution of fSP(ξ).

Theorem 3. In network N = (V , A, ξ), ξij has a regular uncertainty distribution Φij. Then, the inverse uncertainty distribution
of fSP(ξ) is determined by

Ψ −1(α) = fSP(Φ−1
ij (α) | (i, j) ∈ A).

Through Theorem 3, we can get the uncertainty distribution of fSP(ξ) in a numerical sense easily. The following example
illustrates this.

Example 3. Still use the network N = (V , A, ξ) presented in Example 2. Here, ξ12 = 1, ξ14 = 4, ξ34 = 1, ξ13 ∼ Z(2, 3, 3.5),
and ξ24 ∼ Z(2.5, 3, 4). For simplicity, if ξij = c is a constant, we set Φ−1

ij (α) = c , for any α ∈ (0, 1).
When α = 0.9, it is easy to get Φ−1

12 (α) = 1, Φ−1
13 (α) = 3.4, Φ−1

14 (α) = 4, Φ−1
24 (α) = 3.8, and Φ−1

34 (α) = 1, as shown in
Fig. 3.
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Fig. 3. Network N when α = 0.9.

Fig. 4. Network N when α = 0.4.

Then

Ψ −1(0.9) = fSP(Φ−1
12 (0.9), Φ−1

13 (0.9), Φ−1
14 (0.9), Φ−1

24 (0.9), Φ−1
34 (0.9))

= fSP(1, 3.4, 4, 3.8, 1)
= 4;

that is, M{fSP(ξ) ≤ 4} = Ψ (4) = 0.9.
When α = 0.4, it is easy to get Φ−1

12 (α) = 1, Φ−1
13 (α) = 2.8, Φ−1

14 (α) = 4, Φ−1
24 (α) = 2.9, and Φ−1

34 (α) = 1, as shown in
Fig. 4.

Then

Ψ −1(0.4) = fSP(Φ−1
12 (0.4), Φ−1

13 (0.4), Φ−1
14 (0.4), Φ−1

24 (0.4), Φ−1
34 (0.4))

= fSP(1, 2.8, 4, 2.9, 1)
= 2.8 + 1 = 3.8;

that is, M{fSP(ξ) ≤ 3.8} = Ψ (3.8) = 0.4.
For anyα ∈ (0, 1), we can obtainΨ −1(α) by repeating this process, and then get the uncertainty distributionΨ satisfying

any predetermined accuracy.

6. The α-shortest path and the most shortest path

For confidence level α, the following theorem gives a method to get the α-shortest path.

Theorem 4. In network N = (V , A, ξ), ξij has a regular uncertainty distribution Φij, (i, j) ∈ A. Then, the α-shortest path of
N = (V , A, ξ) is just the shortest path of network N̄ = (V̄ , Ā); V̄ = V , Ā = A, and the length of arc(i, j) ∈ Ā is Φ−1

ij (α).

Proof. Assume that node 1 is the source and node n is the destination. According to Definition 5, the α-shortest path P0 is
the optimal solution to the following uncertain programming model:

min T0

s.t. M {l(P) ≤ T0} = M

 −
(i,j)∈A

xijξij ≤ T0


≥ α,

−
j:(i,j)∈A

xij −
−

j:(j,i)∈A

xji =

1, i = 1,
0, 2 ≤ i ≤ n − 1,
−1, i = n,

xij = {0, 1}, ∀(i, j) ∈ A.

(1)

Since each ξij has a regular uncertainty distribution,M
∑

(i,j)∈A xijξij ≤ T0


≥ α canbe replacedbyM
∑

(i,j)∈A xijξij ≤ T0


=

α in themodel. Then, using the inverse uncertainty distribution, model (1) can be equivalently transformed to the following
deterministic model:
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min T0
s.t.

−
(i,j)∈A

xijΦ−1
ij (α) ≤ T0,

−
j:(i,j)∈A

xij −
−

j:(j,i)∈A

xji =

1, i = 1,
0, 2 ≤ i ≤ n − 1,
−1, i = n,

xij = {0, 1}, ∀(i, j) ∈ A.

(2)

Model (2) is equivalent to

min
−

(i,j)∈A

xijΦ−1
ij (α)

s.t.
−

j:(i,j)∈A

xij −
−

j:(j,i)∈A

xji =

1, i = 1,
0, 2 ≤ i ≤ n − 1,
−1, i = n,

xij = {0, 1}, ∀(i, j) ∈ A.

(3)

In fact, the solution to model (3) is just the shortest path of the deterministic network N̄ = (V̄ , Ā); V̄ = V , Ā = A, and the
length of arc(i, j) ∈ Ā is Φ−1

ij (α). We can find the shortest path of network N̄ = (V̄ , Ā) by using the Dijkstra algorithm. The
theorem is proved. �

In the past, the methods of heuristic algorithms, Monte Carlo simulation, or assuming a ranking index for comparing
arc lengths were usually employed to find the optimal solution to nondeterministic programming problems. Although the
stability of these methods is always tested and verified by numerical experiments in such papers, the rigor and portability
of these methods are not good. In other words, these methods are only second best. Theorem 4 provides a better method to
find the α-shortest path in an uncertain network; that is, we only need to employ the Dijkstra algorithm to find the shortest
path of a corresponding deterministic network. Obviously, this method also has a low computational complexity, which is
the same as that of the Dijkstra algorithm, namely O(n2).

After obtaining the α-shortest path, we can obtain the most shortest path by using the following theorem.

Theorem 5. In network N = (V , A, ξ), ξij has a regular uncertainty distribution Φij, (i, j) ∈ A, and the shortest path length
fSP(ξ) has an uncertainty distribution Ψ . Given a predetermined length T0, the most shortest path P0 is just the α-shortest path of
N = (V , A, ξ), where α = Ψ (T0).

Proof. Assume that node 1 is the source and node n is the destination. According to Definition 6, the most shortest path P0
is the optimal solution to the following uncertain programming model:

max α

s.t. M {l(P) ≤ T0} = M

 −
(i,j)∈A

xijξij ≤ T0


≥ α,

−
j:(i,j)∈A

xij −
−

j:(j,i)∈A

xji =

1, i = 1,
0, 2 ≤ i ≤ n − 1,
−1, i = n,

xij = {0, 1}, ∀(i, j) ∈ A.

Since each ξij, (i, j) ∈ Ahas a regular uncertainty distributionΦij, respectively, the abovemodel is equivalent to the following
programming model:

max α

s.t.
−

(i,j)∈A

xijΦ−1
ij (α) ≤ T0,

−
j:(i,j)∈A

xij −
−

j:(j,i)∈A

xji =

1, i = 1,
0, 2 ≤ i ≤ n − 1,
−1, i = n,

xij = {0, 1}, ∀(i, j) ∈ A.

(4)

Let α′
= Ψ (T0), and let P ′ be the α′-shortest path of N = (V , A, ξ). Theorems 3 and 4 give

Ψ −1(α′) = fSP(Φ−1
ij (α′) | (i, j) ∈ A) = T0,−

(i,j)∈P ′

Φ−1
ij (α′) = T0,

which means that P ′ is a feasible solution to model (4), and α′ is the objective. In fact, α′ is also the optimal objective. We
will prove this below.
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Fig. 5. Network N for Example 4.

Table 1
List of arc lengths.

arc(i, j) ξij arc(i, j) ξij

(1, 2) 7 (1, 3) 8
(1, 4) 9 (2, 3) 2
(2, 6) Z(9, 10, 11) (3, 5) Z(7, 9, 10)
(4, 5) Z(10, 11, 12) (4, 7) Z(8, 9, 10)
(5, 6) 3 (5, 7) 3
(5, 8) Z(12, 13, 15) (6, 8) Z(12, 13, 14)
(7, 8) Z(10, 12, 14) – –

Table 2
List of Φ−1

ij (0.95).

arc(i, j) Φ−1
ij (0.95) arc(i, j) Φ−1

ij (0.95)

(1, 2) 7 (1, 3) 8
(1, 4) 9 (2, 3) 2
(2, 6) 10.9 (3, 5) 9.9
(4, 5) 11.9 (4, 7) 9.9
(5, 6) 3 (5, 7) 3
(5, 8) 14.8 (6, 8) 13.9
(7, 8) 13.8 – –

For any α > α′, α ∈ (0, 1), it is obvious that Φ−1
ij (α) > Φ−1

ij (α), (i, j) ∈ A. Then

fSP(Φ−1
ij (α) | (i, j) ∈ A) > fSP(Φ−1

ij (α′) | (i, j) ∈ A) = T0,

which means that, for any path P from source node 1 to destination node n,−
(i,j)∈P

Φ−1
ij (α) ≥ fSP(Φ−1

ij (α) | (i, j) ∈ A) > T0, (5)

since fSP(Φ−1
ij (α) | (i, j) ∈ A) is the shortest path length in network N̄ = (V̄ , Ā). Expression (5) leads to a contradiction with

the constraints in model (4).
It follows that α′

= Ψ (T0) is the optimal objective of model (4), and path P ′ is the most shortest path; that is, P0 = P ′.
The theorem is proved. �

7. An example

In this section, we will give an example to illustrate the conclusions presented above.

Example 4. The networkN = (V , A, ξ) is shown in Fig. 5. The length of the shortest path is fSP , with uncertainty distribution
Ψ . The length of each arc is listed in Table 1. We will obtain the following:
(1) the α-shortest path when α = 0.95;
(2) the most shortest path when T0 = 30; and
(3) the uncertainty distribution of fSP(ξ).
If ξij = c is a constant, we set Φ−1

ij (α) = c , for any α ∈ (0, 1). When α = 0.95, we can calculate Φ−1
ij (0.95) for each ξij. The

values are listed in Table 2. Using the data in Table 2, we construct a deterministic network N̄ = (V̄ , Ā); V̄ = V , Ā = A, and
the length of arc(i, j) ∈ Ā is Φ−1

ij (0.95). We employ the Dijkstra algorithm to get the shortest path in network N̄; that is,

P̄0 : 1 → 2 → 6 → 8,



Y. Gao / Computers and Mathematics with Applications 62 (2011) 2591–2600 2599

Table 3
List of α-shortest paths.

α α-shortest path Ψ −1(α), T0

0.95 1 → 2 → 6 → 8 31.8
0.90 1 → 2 → 6 → 8 31.6
0.80 1 → 2 → 6 → 8 31.2
0.70 1 → 2 → 6 → 8 30.8
0.60 1 → 2 → 6 → 8 30.4
0.50 1 → 3 → 5 → 8 30
0.40 1 → 4 → 7 → 8 29.4
0.30 1 → 3 → 5 → 8 28.8
0.20 1 → 3 → 5 → 8 28.2

Fig. 6. Uncertainty distribution of fSP .

and the length of P̄0 is 31.8. According to Theorem 4, the 0.95-shortest path in uncertain network N = (V , A, ξ) is

P0 : 1 → 2 → 6 → 8,

and Ψ −1(0.95) = 31.8.
Choosing different α, we obtain Table 3.
Given a length T0 = 30, from Table 3, we get Ψ (30) = 0.5. Then Theorem 5 tells us that the most shortest path is

1 → 3 → 5 → 8.
Repeating this process, we obtain the uncertainty distribution of fSP in a numerical sense, which is drawn by MATLAB in

Fig. 6.
Generally speaking, we can obtain the α-shortest path in uncertain network N = (V , A, ξ) by using the following three

steps. Step 1: Calculate Φ−1
ij (α), for each arc (i, j) ∈ A. Step 2: Construct a deterministic network N̄ = (V̄ , Ā); V̄ = V , Ā = A,

and the length of arc(i, j) ∈ Ā is Φ−1
ij (α). Step 3: Employ the Dijkstra algorithm to get the shortest path in network N̄ .

The pathwe obtain in Step 3 is just theα-shortest pathwewant. Repeating this process gives the uncertainty distribution
of fSP and the most shortest path at given length T0.

8. Conclusion

Nondeterministic factors often appear in programming problems. In the past, probability or fuzzy theory has been em-
ployed to deal with these nondeterministic factors. Uncertainty theory provides a new approach to deal with nondetermin-
istic factors. In this paper, we have investigated the uncertainty distribution of the shortest path length, the α-shortest path,
and the most shortest path in networks with uncertain arc lengths.

Under the framework of uncertainty theory, the uncertainty distribution of the shortest path length is derived, and it
is proved that there exists an equivalence relation between the α-shortest path of an uncertain network and the shortest
path of the corresponding deterministic network. This equivalence relation leads to a stable and global optimal method to
find the α-shortest path. As a dual problem to the α-shortest path, we can transform the most shortest path problem to an
α-shortest path problem, and then solve it.
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