Convergence and Extraction of Bounded Sequences in \(L^1(\mathbb{R}) \)

Heinz-Albrecht Klei

Département de Mathématiques, Université de Reims, Moulin de la Housse, B.P. 347, 51062 Reims Cedex, France

Submitted by John Horváth

Received October 17, 1994

We present several applications of H. P. Rosenthal's subsequence splitting lemma: Each bounded sequence in \(L^1(\mathbb{R}) \) admits a subsequence satisfying the conclusion of a generalized Fatou's lemma and presenting a concentration of mass phenomenon. We show that the modulus of uniform integrability of a bounded sequence in \(L^1(\mathbb{R}) \) plays a capital role in the convergence in measure of such a sequence. A Cauchy type theorem for the convergence in measure is established. Finally we study the existence of minima of the \(L^1 \)-norm on closed convex subsets of \(L^1(\mathbb{R}) \).

1. INTRODUCTION

The biting lemma (Corollary 2.5) is a subject of increasing interest. It has been proved among others by Gaposhkin [5], Brooks and Chacon [4], and Slaby [13]. It can be derived from H. P. Rosenthal's subsequence splitting lemma [3, 14], which contains some additional information and which is the main tool of the present paper. For some recent applications of the biting lemma we refer to Saadoune and Valadier [12]. Most of the results presented here were announced in [7].

Throughout this paper, \((\Omega, \Sigma, P) \) will be a fixed probability space. We will consider the Banach space \(L^1(E) \) of Bochner-integrable functions built over the probability space \((\Omega, \Sigma, P) \) and a separable Banach space \(E \). We are frequently concerned with the case \(E = \mathbb{R} \).

In [14] H. P. Rosenthal defined the modulus of uniform integrability \(\eta(H) \) of a bounded subset \(H \subseteq L^1(\mathbb{R}) \): For \(\varepsilon > 0 \), put

\[
\eta(H, \varepsilon) = \sup \left\{ \int_A |h| \, dP : h \in H, A \in \Sigma, P(A) \leq \varepsilon \right\},
\]

\[
\eta(H) = \lim_{\varepsilon \to 0} \eta(H, \varepsilon).
\]

Thus \(H \) is uniformly integrable if and only if \(\eta(H) = 0 \).
If \((x_n)\) is a sequence of real numbers, then \(x \in \mathbb{R}\) belongs to \(L^s(x_n)\) if and only if there is a subsequence of \((x_n)\) that converges to \(x\). For a subset \(A \subseteq \mathbb{R}\), \(\text{co}(A)\) denotes its convex hull and \(\chi_A\) its characteristic function.

2. RESULTS AND THEIR PROOFS

We start with H. P. Rosenthal’s subsequence splitting lemma [14]. See also [3, p. 68].

Lemma 2.1. Let \(f = (f_n)\) be a bounded sequence in \(L^1(\mathbb{R})\). Then there exist a subsequence \((f'_n)\) of \((f_n)\) and a sequence \((A_n)\) of pairwise disjoint measurable sets such that

1. \(\lim_{n \to \infty} \int_{A_n} |f'_n| \, dP = \eta(f)\);
2. the sequence \((\chi_{\Omega \setminus A_n}, f_n)\) converges weakly in \(L^1(\mathbb{R})\).

Lemma 2.2. Let \(E\) be a separable Banach space and \(f = (f_n)\) be a bounded sequence in \(L^1(E)\) which converges in measure to an element \(f_\infty \in L^1(E)\). Then the following assertions are equivalent:

1. the sequence \((\|f_n\|_E)\) converges;
2. \(\eta(f') = \eta(f)\) for each subsequence \(f'\) of \(f\);
3. there are subsequences \(f' = (f'_n)\) and \(f'' = (f''_n)\) such that

\[
\lim_{n \to \infty} \|f'_n\|_1 = \lim_{n \to \infty} \|f_n\|_1,
\]

\[
\lim_{n \to \infty} \|f''_n\|_1 = \lim_{n \to \infty} \|f_n\|_1,
\]

\[\eta(f') = \eta(f'');\]

4. \(\lim_{n \to \infty} \|f_n\|_1 = \eta(f') + \int \|f_n\| \, dP\) for each subsequence \(f'\) of \(f\).

Proof. We simply apply Lemma 1 of [7] to the sequence \((\|f_n\|)\).

Theorem 2.3. Let \(E\) be a separable Banach space and \(f = (f_n)\) a bounded sequence in \(L^1(E)\) that converges in measure to \(f_\infty \in L^1(E)\). Then \((f_n)\) converges in norm if and only if the condition \(\lim\sup_{n \to \infty} \|f_n\|_1 \leq \|f_\infty\|_1\) holds.

Proof. Suppose that \(\lim\sup_{n \to \infty} \|f_n\|_1 \leq \|f_\infty\|_1\). From each subsequence \(f'\) of \(f\) we extract another subsequence \(f'' = (f''_n)\) such that \((\|f''_n\|_1)\) converges. We deduce from Lemma 2.2 that \(\eta(f'') = 0\). It is well known that a
measure convergent uniformly integrable sequence is norm convergent. See, for example, [11, Proposition 4.7.5].

Remarks. The preceding theorem is due to Hewitt and Stromberg [6, Theorem 13.47] in the real case. The case $E = \mathbb{R}^n$ is a recent result obtained by Saadoune and Valadier [12, Theorem 4].

Theorem 2.4. Let (f_n) be a bounded sequence in $L^2(\mathbb{R})$. Then there exist a subsequence $f' = (f'_n)$, a function $f_\infty \in L^2(\mathbb{R})$, and a sequence (A_n) of pairwise disjoint measurable sets such that for every $A \in \Sigma$ and for every subsequence $f'' = (f''_n)$ of f', we have

1. $\lim_{n \to \infty} \int_A f_n^* dP = \lim_{n \to \infty} \int_{A \cap A_n} f_n^* dP + \int_A f_n dP \leq \eta(\chi_A f^*) + \int_A f_d P$;

2. $\lim_{n \to \infty} \int_A f_n^* dP = \lim_{n \to \infty} \int_{A \cap A_n} f_n^* dP + \int_A f_n dP \geq \eta(\chi_A f^*) + \int_A f_d P$ provided that $\lim_{n \to \infty} \int_{A \cap A_n} f_n^* dP = \lim_{n \to \infty} \int_A f_n^* dP$;

3. $f_\infty(\omega) \in \text{co}(\text{LS}(f'_n(\omega))) \text{ P-a.e.}$;

4. the sequence $C(f''_n) = ((1/n) \sum_{k=1}^n f''_k)_n$ converges P-a.e. to f_∞;

5. $\eta(f^*) = \eta(f) = \eta(C(f''))$;

6. the equivalence of the following statements:
 (i) $\lim_{n \to \infty} \int f''_n dP \leq \int f_\infty dP$;
 (ii) $\eta(f) = 0$;
 (iii) the sequence f'' converges weakly to f_∞;
 (iv) the sequence $C(f'')$ converges in norm to f_∞.

Proof. We choose a subsequence $f' = (f'_n)$ of (f_n) and a disjoint sequence (A_n) of measurable sets as in Lemma 2.1. Fix a measurable set $A \in \Sigma$. Let f_n be the weak limit of the sequence $(\chi_{A \setminus A_n} \cdot f'_n)$. It is now easy to verify the equalities in (1) and (2). We know from the proof of the subsequence splitting lemma that $\lim_{n \to \infty} \int_{A \setminus A_n} f'_n dP \leq \eta(\chi_A f')$. Thus the proof of assertion (1) is complete.

Let $f'' = (f''_n)$ be a subsequence of (f'_n) such that $\lim_{n \to \infty} \int_A f''_n dP = \lim_{n \to \infty} \int_{A \cap A_n} f''_n dP$. Note that $\lim_{n \to \infty} \int_A f''_n dP = \lim_{n \to \infty} \int_{A \cap A_n} f''_n dP + \int_A f_n dP$. Applying Lemma 2.2 to the sequence $(\chi_{A \cap A_n} \cdot f''_n)$, we obtain $\lim_{n \to \infty} \int_{A \cap A_n} f''_n dP = \eta(\chi_{A \cap A_n} f''_n)$. It is not difficult to see that the last term is equal to $\eta(\chi_A f''_n)$. The proof of (2) is finished.

Note that $(\chi_{A_n} f''_n)$ converges in measure to 0. Without loss of generality we may assume that it converges P-almost everywhere to 0. It follows that $\operatorname{LS}(f'_n(\omega)) = \operatorname{LS}(\chi_{A_n} \cdot f'_n)$. As $(\chi_{A_n} \cdot f'_n)$ converges weakly to f_∞, we know, e.g., from [8, Proposition 1], that $f_\infty(\omega) \in \text{co}(\operatorname{LS}(\chi_{A_n} \cdot f'_n)) \text{ P-a.e.}$

The combination of Lemma 2.1 with Komlós' theorem [9] allows us to prove (4). There is an element $g \in L^1(\mathbb{R})$ and a subsequence of (f'_n), still
denoted by \((f'_n)\), such that for each further subsequence \((f''_n)\) of \((f'_n)\) the sequence \(C(f'')\) converges \(P\)-a.e. to \(g\). It is not hard to see that the equality \(g = f_n\) holds \(P\)-a.e. Applying Lemma 2.2 to \(C(f'')\), we obtain
\[
\lim_{n \to \infty} \int f'_n \, dP = \eta(C(f'')) + \int f_n \, dP.
\]
It follows from the subsequence splitting lemma that
\[
\lim_{n \to \infty} \int f'_n \, dP = \eta(f') + \int f_n \, dP.
\]
Hence \(\eta(f) \geq \eta(f'') \geq \eta(C(f'')) = \eta(f)\).
The statement (6) follows from Lemma 2.1 and assertions (1)--(5).

The following result is known as the biting lemma.

Corollary 2.5. Let \((f_n)\) be a bounded sequence in \(L^1(\mathbb{R})\). Then there exist a subsequence \((f'_n)\) of \((f_n)\) and an integrable selection \(f_n\) of \(\text{co}(Ls(f'_n(\omega)))\) such that the set
\[
H = \{ A \in \Sigma : (\chi_A f'_n) \text{ converges weakly to } (\chi_A f_n) \}
\]
contains, for each \(\varepsilon > 0\), a measurable set \(A_\varepsilon\) with \(P(A_\varepsilon) \geq 1 - \varepsilon\).

Proof. Without loss of generality we may assume that the functions \(f_n\) have positive values. Let the notation be the same as in Theorem 2.4. It is easy and sufficient to check that \(H\) contains all the \(A_n\)'s and \((\bigcup_{n \in \mathbb{N}} A_n)'\), where \(c\) stands for complement.

Another application of Theorem 2.4 yields the generalized Fatou's lemma obtained in [8].

Theorem 2.6. Let \(f = (f_n)\) be a bounded sequence in \(L^1(\mathbb{R}_+)\). If the sequence \((\int f_n \, dP)\) converges in \(\mathbb{R}_+\), then
\[
\lim_{n \to \infty} \int f_n \, dP \geq \eta(f) + \int \lim_{n \to \infty} f_n \, dP.
\]

Proof. Combine assertions (2) and (3) of Theorem 2.4.

Theorem 2.7. Let \(f = (f_n)\) be a bounded sequence in \(L^1(\mathbb{R})\) and \(f_n \in L^1(\mathbb{R})\). If \(\lim_{n \to \infty} \| f_n - f \|_1 \leq \eta(f)\), then there exists a subsequence \(f' = (f'_n)\) of \((f_n)\) converging in measure to \(f_n\) such that
\[
\lim_{n \to \infty} \| f'_n - f \|_1 = \eta(f) = \inf(\eta(f'')): f'' \text{ subsequence of } f'.
\]

Proof. We proceed as in the proof of Theorem 2.4 which we apply to the sequence \((|f_n - f|)\). Thus we can choose a subsequence \(f' = (f'_n)\) of \((f_n)\) and a sequence of pairwise disjoint measurable sets \((A_n)\) such that \((\chi_{\mathbb{R} \setminus A_n} |f'_n - f_n|)\) converges weakly to an element \(h\) belonging to \(L^1(\mathbb{R}_+)\).
Note that $\eta(f) = \eta(f') = \eta(f'_n - f_n) = \eta(f_n - f_n)$. Assertion (2) of Theorem 2.4 says that $\lim_{n \to \infty} ||f'_n - f_n||_1 \geq \eta(f') + \int h d\mu$. Combine the last inequality with the hypothesis to see that $\lim_{n \to \infty} ||f'_n - f_n||_1 = \eta(f')$ and $h = 0$ μ-a.e. It follows that $(\chi_{A_n} f'_n - f_n)$ converges in norm to 0. Consequently $(f'_n - f_n)$ converges in measure to 0. We know from assertion (5) of Theorem 2.4 that $\eta(f'_n) = \eta(f)$ for each subsequence f'_n of f. This completes the proof.

Corollary 2.8. Let $f = (f_n)$ be a bounded sequence in $L^1(\mathbb{R})$ and $f_n \in L^1(\mathbb{R})$.

(a) The following assertions are equivalent:

(i) (f_n) converges in measure to f_n and the sequence of reals $(||f'_n - f_n||_1)$ converges.

(ii) $\lim_{n \to \infty} ||f'_n - f_n||_1 \leq \inf \eta(f'_n): f'_n$ subsequence of f.

(iii) $\lim_{n \to \infty} ||f'_n - f_n||_1 = \eta(f')$ for each subsequence f'_n of f.

(b) Assume that $\eta(f) = \inf \eta(f'_n): f'_n$ subsequence of f and that the sequence of reals $(||f'_n - f_n||_1)$ converges. If (f_n) has a measure convergent subsequence, then (f_n) converges in measure to f_n.

Theorem 2.9. Let $f = (f_n)$ be a bounded sequence in $L^1(\mathbb{R})$ such that

$$\lim_{n, m \to \infty} ||f'_n - f'_m||_1 \leq 2 \eta(f).$$

Then there exists a measure convergent subsequence (f'_n) of (f_n) such that

$$\lim_{n, m \to \infty} ||f'_n - f'_m||_1 = 2 \eta(f).$$

Proof. We apply Rosenthal’s lemma to the sequence (f_n) and choose (f'_n) and (A_n) as in Lemma 2.1. For each $n \in \mathbb{N}$, we define two functions u_n and d_n as

$$u_n = \chi_{\mathbb{R} \setminus A_n} f'_n, \quad d_n = f'_n - u_n.$$

We then get the equality

$$|\chi_{A_n \cup A_n} (f'_n - f'_m) - (d_n - d_m)| = |\chi_{A_n} u_n - \chi_{A_n} u_m|.$$

Remember that (u_n) is uniformly integrable and that $(P(A_n))$ converges to 0. Therefore we have

$$\lim_{n, m \to \infty} \int |\chi_{A_n} u_m - \chi_{A_n} u_n| d\mu = 0.$$
Note that \(\lim_{n,m \to \infty} \int |d_n - d_m| \, dP = 2\eta(f) \). Summarizing we obtain

\[
\lim_{n,m \to \infty} \int |\chi_{A_n \cup A_m}(f'_n - f'_m)| \, dP = 2\eta(f). \tag{\ast}
\]

In order to finish the proof, it is sufficient to show that \((u_n)\) is a norm Cauchy sequence. Note that

\[
|u_n - u_m| = \chi_{A_n}|f'_n| + \chi_{A_m}|f'_m| + |f'_n - f'_m| - \chi_{A_n \cup A_m}|f'_n - f'_m|.
\]

Hence \(\|u_n - u_m\| = \int \chi_{A_n}|f'_n| \, dP + \int \chi_{A_m}|f'_m| \, dP + \|f'_n - f'_m\|_1 - \int \chi_{A_n \cup A_m}|f'_n - f'_m| \, dP \). Let us consider the four sequences on the right side of the previous equality. The first two converge to 0 when \(n \) and \(m \) tend to infinity, \(n \neq m \). By virtue of the hypothesis we may assume that the third sequence converges to a point less than or equal to \(2h \). The last sequence converges to \(2h \) by (\ast).

Corollary 2.10. Let \(f = (f_n) \) be a bounded sequence in \(L^2(\mathbb{R}) \) such that \(\lim_{n,m \to \infty} \|f_n - f_m\|_1 \) exists. Then \((f_n)\) has a measure convergent subsequence if and only if

\[
\lim_{n,m \to \infty} \|f_n - f_m\|_1 = 2\eta(f).
\]

Theorem 2.11. Let \(C \) be a convex subset of \(L^2(\mathbb{R}_+) \) closed with respect to the topology of convergence in measure. Suppose that \((f_n)\) is a sequence in \(C \) such that

\[
\lim_{n \to \infty} \|f_n\|_1 = \inf\{\|g\|_1 : g \in C\}.
\]

Then \((f_n)\) is uniformly integrable. Furthermore \((f_n)\) admits a subsequence that converges weakly to an element \(f \in C \) such that \(\|f\|_1 = \inf\{\|g\|_1 : g \in C\} \).

Proof. Theorem 2.4 yields a subsequence \(f' \) of \(f \) such that the sequence \(C(f') \) of its Cesaro means converges \(P\)-a.e. to an element \(f \in L^1(\mathbb{R}_+) \). Note that \(f \) belongs to \(C \). By virtue of the hypothesis and Lemma 2.2 we get

\[
\inf\{\|g\|_1 : g \in C\} = \lim_{n \to \infty} \|f_n\|_1 = \eta(C(f')) + \|f\|_1.
\]

It follows that \(\eta(C(f')) = 0 \). Assertion (5) of Theorem 2.4 says that \(\eta(C(f')) = \eta(f) = 0 \). An application of assertion (6) of the same theorem completes the proof.
Remarks. The existence of the minimum in the previous theorem is due to Levin [10]. Balder [1] proved Levin's theorem by means of Komlós' theorem. He applied the latter to the study of weak compactness in L^2 spaces [2].

Corollary 2.12. Let C denote a convex non-void subset of $L^2(\mathbb{R}_+)$ which is closed with respect to the topology of convergence in measure. Then the set

$$C_{\min} = \{ g \in C : \|g\|_1 = \inf \{ \|h\|_1 : h \in C \} \}$$

is convex, non-void, and weakly compact.

REFERENCES

5. V. F. Gaposhkin, Convergence and limit theorem for sequences of random variable, Theory Probab. Appl. 17, No. 3 (1972), 379–400. [Translated from Russian]