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Product decomposition of loop spaces of configuration spaces
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Abstract

The configuration space ofk points inRPn, CPn andHPn are studied. In this article we show that
after looping once, they split as a product of spheres and the loop space of certain orbit configuration
spaces. 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction and main result

Let M be a topological space andG a group acting freely onM. Let Gm denote the
orbit of an elementm ∈M under the action ofG. Define the orbit configuration space ofk
points inM by

FG(M,k)=
{
(m1, . . . ,mk) ∈Mk |Gmi �=Gmj for i �= j}.

Such spaces were introduced in [6] as generalizations of the ordinary configuration spaces
defined by Fadell and Neuwirth [5]. Indeed, ifG is the trivial group, the spaceFG(M,k)
coincides with the usual configuration space

F(M,k)= {
(m1, . . . ,mk) ∈Mk |mi �=mj for i �= j}.

The purpose of this note is to exhibit product decompositions of the loop space ofF(M,k)

for M = RPn, CPn andHPn, in terms of loop spaces of orbit configuration spaces and
known spaces.
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An equivalent description ofFG(M,k) can be given in terms of ordinary configuration
spaces. Letf :M/G→ BG be the map which classifies the principal bundleG→M →
M/G. The following theorem was proven in [7]:

Theorem 1.1. The spaceFG(M,k) is homeomorphic to the total space of the pull-back of
the principal fibrationGk → (EG)k → (BG)k along the composition

F(M/G,k) ↪→ (M/G)k
f k→(BG)k.

Therefore, there is a principalGk-bundle,FG(M,k)→ F(M/G,k). More precisely,
the groupGk acts coordinatewise on the spaceFG(M,k) and the quotientFG(M,k)/Gk

is homeomorphic toF(M/G,k). In particular there is a fibration (up to homotopy):

FG(M,k)→ F(M/G,k)→ BGk. (1)

For the rest of the article, we will only be concerned with the following special cases:
(i) theZ2 action onSn given by the antipodal map,
(ii) the S1 action onS2n+1 given by complex multiplication, and
(iii) the S3 action onS4n+3 given by quaternionic multiplication,

having as orbit spaces the projective spacesRPn, CPn andHPn, respectively. It will be
shown in Section 2 that in cases (i), (ii) and (iii), the corresponding fibrations (1) admit
a section after looping and they split as products. Thus the main result can be stated as
follows:

Theorem 1.2. For everyn, k � 1 there are homotopy equivalences:
(a) ΩF(RPn, k)� (Z2)

k ×ΩFZ2(S
n, k) if n� 3.

(b) ΩF(CPn, k)� (S1)k ×ΩFS1(S2n+1, k) if n� 2.
(c) ΩF(HPn, k)� (S3)k ×ΩFS3(S4n+3, k) if n� 2.

It is important to mention here that loop spaces of configuration spaces have received a
lot of attention recently. This is due to some interesting relations between their homology
and the Vassiliev invariants of braids [3], the Lie algebra associated to the descending
central series of braid groups, [3,6] and then-body problem [4], among other topics.

2. Some auxiliary lemmas

The proof of Therorem 1.2 is given after the following lemmas:

Lemma 2.1. For n � 3, the natural inclusionF(RPn, k)→ (RP∞)k is an isomorphism
on fundamental groups.
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Proof. The statement of the lemma is clear fork = 1. By induction, assume this is true for
k − 1 and consider the map of fibrations induced by the inclusion

(RPn −Qk−1) RP∞

F(RPn, k) (RP∞)k

F (RPn, k − 1) (RP∞)k−1

where both fibrations are projection onto the firstk − 1 coordinates, andQk−1 denotes
a set ofk − 1 distinct points inRPn. Notice that (RPn − Qk−1) homotopy equivalent
to RPn−1 ∨ (∨k−2S

n−1) and so the natural inclusion(RPn −Qk−1)→ RP∞ gives an
isomorphism of fundamental groups (both isomorphic toZ2). By induction hypothesis, the
map between the base spaces also induces an isomorphism onπ1. The lemma follows. ✷

Similarly we have:

Lemma 2.2. For n � 2, the natural inclusionF(CPn, k)→ (CP∞)k is an isomorphism
onπ2.

Lemma 2.3. For n � 2, the natural inclusionF(HPn, k)→ (HP∞)k is an isomorphism
onπ4.

Thus after looping the fibrationFZ2(S
n, k) → F(RPn, k) → (BZ2)

k we obtain a
principal fibration

ΩFZ2

(
Sn, k

) →ΩF
(
RPn, k

) → (Z2)
k

where the projection induces an isomorphism onπ0. ThereforeΩF(RPn, k) is indeed
the disjoint union of 2k copies ofΩFZ2(S

n, k). Thus we haveΩF(RPn, k) � (Z2)
k ×

ΩFZ2(S
n, k). Part (a) follows.

For case (b), consider the fibration:FS1(S2n+1, k)→ F(CPn, k)→ (BS1)k . Since the
projection induces an isomorphism onπ2, then after looping, the projection induces an
isomorphism onπ1 and there is a lifting

ΩF(CPn, k)

(
∨
k S

1) Ω(BS1)k

Thus by Lemma 2.4 below there exists a section for the multiplicative fibration
ΩFS1(S2n+1, k)→ΩF(CPn, k)→ (S1)k and part (b) follows.
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For case (c), consider the fibration:FS3(S4n+3, k)→ F(HPn, k)→ (BS3)k . Since the
projection induces an isomorphism onπ4, then after looping, the projection induces an
isomorphism onπ3 and there is a lifting

ΩF(HPn, k)

(
∨
k S

3) Ω(BS3)k

Thus by Lemma 2.4 there exists a section for the multiplicative fibration

ΩFS3

(
S4n+3, k

) →ΩF
(
HPn, k

) → (
S3)k

and part (c) follows.
We prove now the lemma needed in cases (b) and (c). Leti denote the inclusion

i :
∨
k G ↪→Gk =Ω(BG)k .

Lemma 2.4. Let α :Z → (BG)k be a fibration. Assume that after looping, the map
i :

∨
k G→Ω(BG)k admits a homotopy lifting toΩZ that is, there is a mapf :

∨
k G→

ΩZ such thatΩα ◦ f � i. Then,f extends to a homotopy section, that is there is a map
F :Gk →ΩZ such that the following diagram homotopy commutes

Gk
F

ΩZ

Ωα

∨
k G

f

i
Ω(BG)k

and the composite: Gk F−→ΩZ
Ωα−→Ω(BG)k is homotopic to the identity.

We prove the lemma in the casek = 2. The proof for generalk is similar and requires the
generalization of the statements below tok factors. As preparation we need the following
facts. Spaces are assumed to be inT∗, the category of compactly generated, weak Hausdorff
spaces, with non-degenerate base points.

Recall from [1] that there are maps

fi :X× Y →ΩΣ(X ∨ Y ), i = 1,2,3,

given as follows. The mapsf1 andf2 are given by the compositions:

X× Y proj−→X
σX−→ΩΣX

j1−→ΩΣ(X ∨ Y ),
X× Y proj−→Y

σY−→ΩΣY
j2−→ΩΣ(X ∨ Y ),

whereσX (respectivelyσY ) is the adjoint to the identity mapΣX → ΣX (respectively
ΣY → ΣY ), j1, j2 are the natural inclusions andf3 is given by the Samelson product
map:

X× Y →X ∧ Y iX∧iY−→ (X ∨ Y )∧ (X ∨ Y ) [ , ]−→ΩΣ(X ∨ Y ).
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The differenceγ = f1 +f2 −f3 in the group[X×Y, ΩΣ(X∨Y )] satisfies the following
properties:

(1) When restricted toX ∨ Y,γ is homotopic to the suspensionσ :X ∨ Y →ΩΣ(X ∨
Y ).

(2) The mapγ composed with the loops on the projectionΩΣ(X ∨ Y )→ ΩΣX is
homotopic to the map obtained as the composite

X× Y proj−→X
σX−→ΩΣX.

(3) The mapγ composed with the loops on the projectionΩΣ(X ∨ Y )→ ΩΣY is
homotopic to the map obtained as the composite

X× Y proj−→Y
σY−→ΩΣY.

The next lemma follows at once:

Lemma 2.5. The mapγ considered above is an extension of the suspensionα :X ∨ Y →
ΩΣ(X ∨ Y ) over the productX× Y . Furthermore, the composite

X× Y γ−→ΩΣ(X ∨ Y )Ω(θ)−→ΩΣX×ΩΣY
is homotopic to the productσX × σY , whereθ :ΣX ∨ ΣY → ΣX × ΣY is the natural
inclusion.

Lemma 2.6. Let α :A→Σ(X ∨ Y ) which admits a section. Taking adjoints this implies
that the suspensionσ :X ∨ Y →ΩΣ(X ∨ Y ) admits a homotopy lifting

Ω(A)

Ω(α)

X ∨ Y σ
ΩΣ(X ∨ Y )

Then there exists an extensionX× Y →Ω(A) such that the composite:
X× Y →Ω(A)→ΩΣ(X ∨ Y )→ΩΣX×ΩΣY

is homotopic toσX × σY .

Proof. We indicate the construction of a lifting. The mapX∨Y →Ω(A) can be expressed
asg1 ∨g2 :X∨Y →Ω(A) whereg1 :X→Ω(A) andg2 :Y →Ω(A). Then the following
diagram is homotopy commutative:

X× Y g1×g2
Ω(A)×Ω(A) mult

Ω(A)

ΩΣ(X ∨ Y )2 ΩΣ(X ∨ Y ) ΩΣX×ΩΣY
The desired map is given by the composite on the top. The second assertion follows now

from the previous lemma.✷
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Proof of Lemma 2.4. Let α :Z→ BG× BH and assume that after looping the inclusion
G∨H →Ω(BG× BH) admits a liftingG∨H →ΩZ. If we takeX =G andY =H in
the previous lemmas, we get a homotopy commutative diagram:

G×H γ
ΩΣ(G∨H) lift

ΩZ

Ω(α)

G∨H ΩΣ(G∨H) Ω(BG∨ BH) Ω(BG× BH)

where
(1) the left hand square homotopy commutes by Lemma 2.5,
(2) the right hand square homotopy commutes by hypothesis,
(3) the composite:

G×H →ΩΣ(BG∨ BH)→ΩΣG×ΩΣH →ΩBG×ΩBH

is a homotopy equivalence. This is a direct consequence of the fact that the natural
compositeG→ΩΣG→ΩBG is a homotopy equivalence.

This gives the desired section and the lemma follows.✷
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