Product decomposition of loop spaces of configuration spaces

Miguel A. Xicoténcatl ${ }^{\mathrm{a}, \mathrm{b}}$
${ }^{\text {a }}$ Max-Planck-Institut für Mathematik, P.O. Box 7280, D-53072 Bonn, Germany
${ }^{\text {b }}$ Departamento de Matemáticas, CINVESTAV-IPN, Apdo. Postal 14-740, México, DF 07300, Mexico

Received 3 November 1999; received in revised form 28 February 2000

Abstract

The configuration space of k points in $\mathbb{R} P^{n}, \mathbb{C} P^{n}$ and $\mathbb{H} \mathbb{P}^{n}$ are studied. In this article we show that after looping once, they split as a product of spheres and the loop space of certain orbit configuration spaces. © 2002 Elsevier Science B.V. All rights reserved.

AMS classification: 55P35; 55R10; 5R80; 57S25
Keywords: Loop spaces of configuration spaces; Orbit configuration spaces

1. Introduction and main result

Let M be a topological space and G a group acting freely on M. Let $G m$ denote the orbit of an element $m \in M$ under the action of G. Define the orbit configuration space of k points in M by

$$
F_{G}(M, k)=\left\{\left(m_{1}, \ldots, m_{k}\right) \in M^{k} \mid G m_{i} \neq G m_{j} \text { for } i \neq j\right\} .
$$

Such spaces were introduced in [6] as generalizations of the ordinary configuration spaces defined by Fadell and Neuwirth [5]. Indeed, if G is the trivial group, the space $F_{G}(M, k)$ coincides with the usual configuration space

$$
F(M, k)=\left\{\left(m_{1}, \ldots, m_{k}\right) \in M^{k} \mid m_{i} \neq m_{j} \text { for } i \neq j\right\} .
$$

The purpose of this note is to exhibit product decompositions of the loop space of $F(M, k)$ for $M=\mathbb{R} \mathrm{P}^{n}, \mathbb{C} \mathrm{P}^{n}$ and $\mathbb{H} \mathrm{P}^{n}$, in terms of loop spaces of orbit configuration spaces and known spaces.

E-mail address: xico@mpim-bonn.mpg.de, xico@math.cinvestav.mx (M.A. Xicoténcatl).
0166-8641/02/\$ - see front matter © 2002 Elsevier Science B.V. All rights reserved.
PII: S0166-8641(01)00107-9

An equivalent description of $F_{G}(M, k)$ can be given in terms of ordinary configuration spaces. Let $f: M / G \rightarrow B G$ be the map which classifies the principal bundle $G \rightarrow M \rightarrow$ M / G. The following theorem was proven in [7]:

Theorem 1.1. The space $F_{G}(M, k)$ is homeomorphic to the total space of the pull-back of the principal fibration $G^{k} \rightarrow(E G)^{k} \rightarrow(B G)^{k}$ along the composition

$$
F(M / G, k) \hookrightarrow(M / G)^{k} \xrightarrow{f^{k}}(B G)^{k} .
$$

Therefore, there is a principal G^{k}-bundle, $F_{G}(M, k) \rightarrow F(M / G, k)$. More precisely, the group G^{k} acts coordinatewise on the space $F_{G}(M, k)$ and the quotient $F_{G}(M, k) / G^{k}$ is homeomorphic to $F(M / G, k)$. In particular there is a fibration (up to homotopy):

$$
\begin{equation*}
F_{G}(M, k) \rightarrow F(M / G, k) \rightarrow B G^{k} . \tag{1}
\end{equation*}
$$

For the rest of the article, we will only be concerned with the following special cases:
(i) the \mathbb{Z}_{2} action on S^{n} given by the antipodal map,
(ii) the S^{1} action on $S^{2 n+1}$ given by complex multiplication, and
(iii) the S^{3} action on $S^{4 n+3}$ given by quaternionic multiplication,
having as orbit spaces the projective spaces $\mathbb{R} \mathrm{P}^{n}, \mathbb{C} \mathrm{P}^{n}$ and $\mathbb{H} \mathrm{P}^{n}$, respectively. It will be shown in Section 2 that in cases (i), (ii) and (iii), the corresponding fibrations (1) admit a section after looping and they split as products. Thus the main result can be stated as follows:

Theorem 1.2. For every $n, k \geqslant 1$ there are homotopy equivalences:
(a) $\Omega F\left(\mathbb{R} \mathrm{P}^{n}, k\right) \simeq\left(\mathbb{Z}_{2}\right)^{k} \times \Omega F_{\mathbb{Z}_{2}}\left(S^{n}, k\right)$ if $n \geqslant 3$.
(b) $\Omega F\left(\mathbb{C P}^{n}, k\right) \simeq\left(S^{1}\right)^{k} \times \Omega F_{S^{1}}\left(S^{2 n+1}, k\right)$ if $n \geqslant 2$.
(c) $\Omega F\left(\mathbb{H P}^{n}, k\right) \simeq\left(S^{3}\right)^{k} \times \Omega F_{S^{3}}\left(S^{4 n+3}, k\right)$ if $n \geqslant 2$.

It is important to mention here that loop spaces of configuration spaces have received a lot of attention recently. This is due to some interesting relations between their homology and the Vassiliev invariants of braids [3], the Lie algebra associated to the descending central series of braid groups, [3,6] and the n-body problem [4], among other topics.

2. Some auxiliary lemmas

The proof of Therorem 1.2 is given after the following lemmas:
Lemma 2.1. For $n \geqslant 3$, the natural inclusion $F\left(\mathbb{R} \mathrm{P}^{n}, k\right) \rightarrow\left(\mathbb{R} \mathrm{P}^{\infty}\right)^{k}$ is an isomorphism on fundamental groups.

Proof. The statement of the lemma is clear for $k=1$. By induction, assume this is true for $k-1$ and consider the map of fibrations induced by the inclusion

where both fibrations are projection onto the first $k-1$ coordinates, and Q_{k-1} denotes a set of $k-1$ distinct points in $\mathbb{R} P^{n}$. Notice that $\left(\mathbb{R P}^{n}-Q_{k-1}\right)$ homotopy equivalent to $\mathbb{R} \mathrm{P}^{n-1} \vee\left(\bigvee_{k-2} S^{n-1}\right)$ and so the natural inclusion $\left(\mathbb{R} \mathrm{P}^{n}-Q_{k-1}\right) \rightarrow \mathbb{R} \mathrm{P}^{\infty}$ gives an isomorphism of fundamental groups (both isomorphic to \mathbb{Z}_{2}). By induction hypothesis, the map between the base spaces also induces an isomorphism on π_{1}. The lemma follows.

Similarly we have:
Lemma 2.2. For $n \geqslant 2$, the natural inclusion $F\left(\mathbb{C P}^{n}, k\right) \rightarrow\left(\mathbb{C P}^{\infty}\right)^{k}$ is an isomorphism on π_{2}.

Lemma 2.3. For $n \geqslant 2$, the natural inclusion $F\left(\mathbb{H} \mathrm{P}^{n}, k\right) \rightarrow\left(\mathbb{H} \mathrm{P}^{\infty}\right)^{k}$ is an isomorphism on π_{4}.

Thus after looping the fibration $F_{\mathbb{Z}_{2}}\left(S^{n}, k\right) \rightarrow F\left(\mathbb{R P}^{n}, k\right) \rightarrow\left(B \mathbb{Z}_{2}\right)^{k}$ we obtain a principal fibration

$$
\Omega F_{\mathbb{Z}_{2}}\left(S^{n}, k\right) \rightarrow \Omega F\left(\mathbb{R P}^{n}, k\right) \rightarrow\left(\mathbb{Z}_{2}\right)^{k}
$$

where the projection induces an isomorphism on π_{0}. Therefore $\Omega F\left(\mathbb{R} P^{n}, k\right)$ is indeed the disjoint union of 2^{k} copies of $\Omega F_{\mathbb{Z}_{2}}\left(S^{n}, k\right)$. Thus we have $\Omega F\left(\mathbb{R} P^{n}, k\right) \simeq\left(\mathbb{Z}_{2}\right)^{k} \times$ $\Omega F_{\mathbb{Z}_{2}}\left(S^{n}, k\right)$. Part (a) follows.

For case (b), consider the fibration: $F_{S^{1}}\left(S^{2 n+1}, k\right) \rightarrow F\left(\mathbb{C P}^{n}, k\right) \rightarrow\left(B S^{1}\right)^{k}$. Since the projection induces an isomorphism on π_{2}, then after looping, the projection induces an isomorphism on π_{1} and there is a lifting

Thus by Lemma 2.4 below there exists a section for the multiplicative fibration $\Omega F_{S^{1}}\left(S^{2 n+1}, k\right) \rightarrow \Omega F\left(\mathbb{C P}^{n}, k\right) \rightarrow\left(S^{1}\right)^{k}$ and part (b) follows.

For case (c), consider the fibration: $F_{S^{3}}\left(S^{4 n+3}, k\right) \rightarrow F\left(\mathbb{H} \mathrm{P}^{n}, k\right) \rightarrow\left(B S^{3}\right)^{k}$. Since the projection induces an isomorphism on π_{4}, then after looping, the projection induces an isomorphism on π_{3} and there is a lifting

Thus by Lemma 2.4 there exists a section for the multiplicative fibration

$$
\Omega F_{S^{3}}\left(S^{4 n+3}, k\right) \rightarrow \Omega F\left(\mathbb{H} \mathbb{P}^{n}, k\right) \rightarrow\left(S^{3}\right)^{k}
$$

and part (c) follows.
We prove now the lemma needed in cases (b) and (c). Let i denote the inclusion $i: \bigvee_{k} G \hookrightarrow G^{k}=\Omega(B G)^{k}$.

Lemma 2.4. Let $\alpha: Z \rightarrow(B G)^{k}$ be a fibration. Assume that after looping, the map $i: \bigvee_{k} G \rightarrow \Omega(B G)^{k}$ admits a homotopy lifting to ΩZ that is, there is a map $f: \bigvee_{k} G \rightarrow$ ΩZ such that $\Omega \alpha \circ f \simeq i$. Then, f extends to a homotopy section, that is there is a map $F: G^{k} \rightarrow \Omega Z$ such that the following diagram homotopy commutes

and the composite: $G^{k} \xrightarrow{F} \Omega Z \xrightarrow{\Omega \alpha} \Omega(B G)^{k}$ is homotopic to the identity.
We prove the lemma in the case $k=2$. The proof for general k is similar and requires the generalization of the statements below to k factors. As preparation we need the following facts. Spaces are assumed to be in \mathcal{T}_{*}, the category of compactly generated, weak Hausdorff spaces, with non-degenerate base points.

Recall from [1] that there are maps

$$
f_{i}: X \times Y \rightarrow \Omega \Sigma(X \vee Y), \quad i=1,2,3,
$$

given as follows. The maps f_{1} and f_{2} are given by the compositions:

$$
\begin{aligned}
& X \times Y \xrightarrow{\text { proi }} X \xrightarrow{\sigma_{X}} \Omega \Sigma X \xrightarrow{j_{1}} \Omega \Sigma(X \vee Y), \\
& X \times Y \xrightarrow{\text { proi }} Y \xrightarrow{\sigma_{Y}} \Omega \Sigma Y \xrightarrow{j_{2}} \Omega \Sigma(X \vee Y),
\end{aligned}
$$

where σ_{X} (respectively σ_{Y}) is the adjoint to the identity map $\Sigma X \rightarrow \Sigma X$ (respectively $\Sigma Y \rightarrow \Sigma Y$), j_{1}, j_{2} are the natural inclusions and f_{3} is given by the Samelson product map:

$$
X \times Y \rightarrow X \wedge Y \xrightarrow{i_{X} \wedge i_{Y}}(X \vee Y) \wedge(X \vee Y) \xrightarrow{[,]} \Omega \Sigma(X \vee Y) .
$$

The difference $\gamma=f_{1}+f_{2}-f_{3}$ in the group $[X \times Y, \Omega \Sigma(X \vee Y)]$ satisfies the following properties:
(1) When restricted to $X \vee Y, \gamma$ is homotopic to the suspension $\sigma: X \vee Y \rightarrow \Omega \Sigma(X \vee$ Y).
(2) The map γ composed with the loops on the projection $\Omega \Sigma(X \vee Y) \rightarrow \Omega \Sigma X$ is homotopic to the map obtained as the composite

$$
X \times Y \xrightarrow{\text { proj }} X \xrightarrow{\sigma_{X}} \Omega \Sigma X .
$$

(3) The map γ composed with the loops on the projection $\Omega \Sigma(X \vee Y) \rightarrow \Omega \Sigma Y$ is homotopic to the map obtained as the composite

$$
X \times Y \xrightarrow{\text { proj }} Y \xrightarrow{\sigma_{Y}} \Omega \Sigma Y .
$$

The next lemma follows at once:
Lemma 2.5. The map γ considered above is an extension of the suspension $\alpha: X \vee Y \rightarrow$ $\Omega \Sigma(X \vee Y)$ over the product $X \times Y$. Furthermore, the composite

$$
X \times Y \xrightarrow{\gamma} \Omega \Sigma(X \vee Y) \xrightarrow{\Omega(\theta)} \Omega \Sigma X \times \Omega \Sigma Y
$$

is homotopic to the product $\sigma_{X} \times \sigma_{Y}$, where $\theta: \Sigma X \vee \Sigma Y \rightarrow \Sigma X \times \Sigma Y$ is the natural inclusion.

Lemma 2.6. Let $\alpha: A \rightarrow \Sigma(X \vee Y)$ which admits a section. Taking adjoints this implies that the suspension $\sigma: X \vee Y \rightarrow \Omega \Sigma(X \vee Y)$ admits a homotopy lifting

Then there exists an extension $X \times Y \rightarrow \Omega(A)$ such that the composite:

$$
X \times Y \rightarrow \Omega(A) \rightarrow \Omega \Sigma(X \vee Y) \rightarrow \Omega \Sigma X \times \Omega \Sigma Y
$$

is homotopic to $\sigma_{X} \times \sigma_{Y}$.
Proof. We indicate the construction of a lifting. The map $X \vee Y \rightarrow \Omega(A)$ can be expressed as $g_{1} \vee g_{2}: X \vee Y \rightarrow \Omega(A)$ where $g_{1}: X \rightarrow \Omega(A)$ and $g_{2}: Y \rightarrow \Omega(A)$. Then the following diagram is homotopy commutative:

The desired map is given by the composite on the top. The second assertion follows now from the previous lemma.

Proof of Lemma 2.4. Let $\alpha: Z \rightarrow B G \times B H$ and assume that after looping the inclusion $G \vee H \rightarrow \Omega(B G \times B H)$ admits a lifting $G \vee H \rightarrow \Omega Z$. If we take $X=G$ and $Y=H$ in the previous lemmas, we get a homotopy commutative diagram:

where
(1) the left hand square homotopy commutes by Lemma 2.5 ,
(2) the right hand square homotopy commutes by hypothesis,
(3) the composite:

$$
G \times H \rightarrow \Omega \Sigma(B G \vee B H) \rightarrow \Omega \Sigma G \times \Omega \Sigma H \rightarrow \Omega B G \times \Omega B H
$$

is a homotopy equivalence. This is a direct consequence of the fact that the natural composite $G \rightarrow \Omega \Sigma G \rightarrow \Omega B G$ is a homotopy equivalence.
This gives the desired section and the lemma follows.

References

[1] W. Browder, Algebraic K-theory with coefficients \mathbb{Z} / p, in: Geometric Applications of Homotopy Theory (Proc. Conf., Evanston, IL, 1977),Vol. I, Lecture Notes in Math., Vol. 657, Springer, Berlin, 1978, pp. 40-84.
[2] F.R. Cohen, A course in some aspects of classical homotopy theory, in: Algebraic Topology Proceedings, Seattle 1985, Lecture Notes in Math., Vol. 1286, Springer, Berlin, 1987.
[3] F.R. Cohen, S. Gitler, Loop spaces of configuration spaces, braid-like groups, and knots, in: Proceedings of the 1998 Barcelona Conference in Algebraic Topology, Birkhäuser, Basel, 1998.
[4] E. Fadell, S. Husseini, The space of loops on configuration spaces and the Majer-Terracini index, Topology Methods Nonlinear Anal. 11 (1998) 249-271.
[5] E. Fadell, L. Neuwirth, Configuration spaces, Math. Scand. 10 (1962) 111-118.
[6] M.A. Xicoténcatl, Ph.D. thesis, The University of Rochester, 1997.
[7] M.A. Xicoténcatl, The loop space homology of orbit configuration spaces, Trans. Amer. Math. Soc., to appear.

