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Abstract 5-Aminolevulinic acid synthase-1 (ALAS1) and heme
oxygenase-1 (HO-1) are the rate-controlling enzymes for heme
biosynthesis and degradation, respectively. Expression of these
two genes showed tissue-specific expression pattern at both
mRNA and protein levels in selected non-treated rat tissues. In
the livers of rats receiving oral ethanol for 10 weeks, ALAS1
mRNA levels were increased by 65%, and the precursor and ma-
ture ALAS1 protein levels were increased by 1.8- and 2.3-fold,
respectively, while no changes were observed in HO-1 mRNA
and protein levels, compared with pair-fed controls. These results
provide novel insights into the effects of chronic ethanol con-
sumption on hepatic heme biosynthesis and porphyrias.
� 2008 Published by Elsevier B.V. on behalf of the Federation of
European Biochemical Societies.
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1. Introduction

5-Aminolevulinic acid synthase-1 (ALAS1) is the first and

normally rate-controlling enzyme of hepatic heme synthesis

and is the house keeping form of ALA synthase [1–4].

5-Aminolevulinic acid synthase 2 (ALAS2) is another isoform

of ALA synthase, which is expressed virtually only in develop-

ing red blood cells [3,5]. Both ALAS1 and ALAS2 use glycine

and succinyl-CoA as substrates and are synthesized in the

rough endoplasmic reticulum (ER) as precursor proteins. Both

isoforms, however, are believed to function only in mitochon-

dria, the site of succinyl-CoA synthesis. Thus, like other nucle-
Abbreviations: ALAS1, 5-aminolevulinic acid synthase-1; ALAS2, 5-
aminolevulinic acid synthase 2; ER, endoplasmic reticulum; GAPDH,
glyceraldehyde 3-phosphate dehydrogenase; HO-1, heme oxygenase-1;
LDC, Lieber-DeCarli; PCR, polymerase chain reaction; qRT-PCR,
quantitative real-time PCR; SDS–PAGE, sodium dodecyl sulfate–
polyacrylamide gel electrophoresis
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ar-encoded mitochondrial proteins, ALAS1 and ALAS2 must

be transported into mitochondria, with cleavage of a leader

sequence [6]. In contrast to ALAS2, which is not responsive

to chemicals or drugs, ALAS1 is up-regulated by chemicals

and drugs [7–9]. Heme oxygenase-1 (HO-1), the rate-control-

ling enzyme for heme degradation, is the inducible form of

heme oxygenase. Induction of HO-1 serves as an adaptive re-

sponse to protect cells from oxidative stress and other types

of stress through breakdown of unassigned heme to biliverdin,

bilirubin, and carbon monoxide [10,11].

Studies suggest that a single ALAS1 mRNA is expressed in

all rat tissues; however, the expression levels in each tissue

measured by different groups remain controversial [12,13].

Additionally, it is not clear whether there is a correlation or

correspondence between levels of expression of ALAS1

mRNA and those of ALAS1 protein in particular tissues and

organs. The same is true of HO-1 mRNA and protein.

Earlier work showed that ethanol administration increases

hepatic ALAS1 enzyme activities in rats [14–16]. Some have

proposed that this effect is secondary to depletion of a heme

regulatory pool, which is depleted during increased formation

of cytochrome(s) P-450 [15]. In rat hepatocyte cultures, the

addition of 16 mM ethanol for 24 h, causes a three-fold in-

crease in the activity of ALAS1 [17]. In humans, increased

ALAS1 activity may lead to the accumulation of neuro- and

dermato-toxic intermediates of the heme biosynthetic path-

way, such as may occur in the porphyrias [1,18–20]. Thus,

ingestion of alcoholic beverages may trigger or exacerbate

acute porphyric attacks. It is critical to understand how etha-

nol exerts its effects on inducing hepatic ALAS1 enzyme activ-

ity.

In the present study, the questions of: (1) tissue-specific

expression of ALAS1 and HO-1 mRNA and protein levels in

selected non-treated rat tissues, and (2) effects of chronic etha-

nol administration on ALAS1 and HO-1 mRNA and protein

levels in rat liver were investigated by quantitative real-time

polymerase chain reaction (PCR) and Western blotting analy-

sis. We show that the expression of both ALAS1 and HO-1 is

tissue-specific, and there is a correspondence between levels of

HO-1 mRNA and protein, but not between those of ALAS1

mRNA and protein. Chronic ethanol feeding induces ALAS1

mRNA, cytosolic ALAS1 and mature ALAS1 protein levels,

but not those of HO-1 in rat livers. These provide further evi-

dence for alcohol consumption as trigger of acute porphyric

attacks in human.
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2. Materials and methods

2.1. Materials
Lieber-DeCarli (LDC) liquid diet was purchased from Dyets Inc.

(Bethlehem, PA). All the reagents for reverse transcription and quan-
titative real-time PCR (qRT-PCR) were purchased from Sigma (St.
Louis, MO). Rabbit anti-human ALAS1 antibody was supplied by Ab-
cam (Cambridge, MA). Rabbit anti-human HO-1 polyclonal antibody
was from StressGen (Victoria, BC, Canada). Goat anti-GAPDH anti-
body was from Santa Cruz Biotechnology Inc. (Santa Cruz, CA).
ECL-Plus was from Amersham Biosciences Corp. (Piscataway, NJ).
Ponceau S was from Sigma (St. Louis, MO).

2.2. Animal model of chronic ethanol feeding
All experimental procedures were approved by the Institutional Ani-

mal Care and Use Committee and performed in accordance with the
National Institutes of Health criteria for care and use of laboratory
animals. Untreated male Sprague–Dawley rats (250–300 g; Charles
River Laboratories, Wilmington, MA) were anesthetized with xylazine
(3 mg/kg) and ketamine (70 mg/kg), and livers, forebrains, kidneys,
lungs, spleens, recturs abdominis and hearts were rapidly resected,
snap-frozen in liquid nitrogen, and stored at �80 �C.

Chronic ethanol administration was described previously [21]. Male
Sprague–Dawley rats as described above were randomly assigned to
experimental groups, and fed either control or ethanol-containing
LDC liquid diet for 10 weeks. In ethanol feeding groups, the amount
of ethanol in the LDC was sequentially increased during the first week
of feeding until the amount of ethanol in the diet comprised 36% of to-
tal dietary calories. In subsequent weeks, the amount of food provided
was altered according to consumption and adjusted for changes in
body weight. Control groups received an isocaloric liquid diet in which
maltodextrins were substituted isocalorically for ethanol. During the
course of the studies, food intakes were measured daily, body weights
were measured weekly, and animals were allowed free access to drink-
ing water. During euthanasia, livers were rapidly resected, snap-frozen
in liquid nitrogen, and stored at �80 �C for RNA and protein analysis.

2.3. RNA preparation and quantitative real-time PCR
Total RNA isolation, reverse transcription and qRT-PCR were per-

formed as previously described [22]. Briefly, total RNA was isolated
from frozen liver tissue (approximately 50 lg) using TRIzol (Invitro-
gen). For reverse transcription, 1 lg of total RNA was used with the
following specific primers for qRT-PCR. The ALAS1 sense primer
was 5 0-GGC AGC ACA GAT GAA TCA GAG AG-3 0, and the
ALAS1 antisense primer was 5 0-TTC AGC AAC CTC TTT CCT
CAC GG-3 0. In order to confirm the specificity of qRT-PCR, samples
without template or without reverse transcriptase were used as nega-
tive controls. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
was used as an invariant internal control for liver samples. The sense
primer for GAPDH was 5 0-TTG TTG CCA TCA ATG ACC C-3 0

and the antisense primer for GAPDH was 5 0-CTT CCC GTT
CTC AGC CTT G-3 0. Primers for HO-1 were as described previously
[22].

2.4. Western blots
Western blotting analysis was as described previously [23]. Liver

samples were homogenized in lysis buffer (150 mM sodium chloride,
50 mM Tris–HCL, pH 7.2 and 5% Nonidet P-40) with protease inhib-
itor cocktail from Pierce (Rockford, IL). Thirty-five to seventy-five
micrograms of protein were separated on 7.5% sodium dodecyl sul-
fate–polyacrylamide gel electrophoresis (SDS–PAGE) from Bio-Rad
(Hercules, CA). After electrophoretic transfer onto Immun-Blot poly-
vinylidene fluoride membranes (Bio-Rad), the membranes were
blocked with 5% non-fat dry milk in phosphate-buffered saline with
Tween-20 (0.1% Tween-20) for 1 h, and then incubated with primary
antibody for 1 h at room temperature. The dilutions of the primary
antibodies were 1:5000 for anti-ALAS1 antibody, 1:2000 for anti-
HO-1 antibody, and 1:1000 for anti-GAPDH antibody. The mem-
branes were then incubated for 1 h with horseradish peroxidase-conju-
gated secondary antibodies (dilution 1:10000). Finally, the bound
antibodies were visualized with the ECL-Plus chemiluminescence sys-
tem, according to the manufacturer�s protocol (Amersham, Piscata-
way, NJ). A Kodak 1DV3.6 computer-based imaging system
(Eastman-Kodak, Rochester, NY) was used to measure the relative
optical density of each specific band obtained after Western blotting.
Data are expressed as percentage of the control.

2.5. Statistical analysis
All experiments included at least triplicate samples for each treat-

ment group. Experiments were repeated at least three times with sim-
ilar results. Representative results from a single experiment are
presented. Statistical analyses were performed with JMP 4.0.4 software
(SAS Institute, Cary, NC). Initial descriptive statistics showed that the
results for continuous variables were distributed normally. Therefore,
the differences in mean values were assessed by ANOVA, with the Tu-
key–Kramer correction for multiple pair-wise comparisons, or Dun-
nett�s test versus a control. Values of P < 0.05 were considered
significant.
3. Results and discussion

3.1. Determination of ALAS1 and HO-1 mRNA levels in

selected rat tissues

In order to determine ALAS1 mRNA levels, seven tissues,

including liver, forebrain, kidney, spleen, lung, abdominal

skeletal muscle and heart were collected. Total RNA was iso-

lated and ALAS1 mRNA levels were determined by qRT-

PCR. As shown in Fig. 1A, ALAS1 mRNA levels (relative

to 28S ribosomal RNA) were set as 1 in the liver, and were

compared to this level in other tissues. The relative levels of

ALAS1 mRNA were about 40% those of liver in the forebrain,

kidney and heart, and were less than 20% in the lung, spleen

and muscle. These results differ slightly from those published

previously [13] in which the levels of ALAS1 in lung, heart

and muscle were similar or higher than those in the liver. These

differences may indicate age or measuring technique variations

since tissues from rats of 250–300 g body mass were collected

followed by qRT-PCR in this study, while those from rats of

100 g body mass were collected followed by Northern blot

and densitometric scanning in the previous study. The low

ALAS1 levels in the muscle observed in this study might be

due to the specific abdominal skeletal muscle being utilized.

In comparison to ALAS1, mRNA levels of another key en-

zyme in the heme metabolic pathway, namely, heme oxygen-

ase-1 (HO-1), the rate-controlling enzyme for heme

breakdown, were also determined. As shown in Fig. 1B, by

far, the highest expression of HO-1 mRNA levels were ob-

served in the spleen: 6.6-fold of those in the liver. This agrees

well with the known roles of the spleen to engulf and digest

senescent erythrocytes. In forebrain, HO-1 mRNA levels were

66% of those in liver, whereas, they were nearly undetectable in

other tissues tested.

When measuring mRNA levels in cell cultures, we and oth-

ers usually ‘‘normalize’’ ALAS1 or HO-1 mRNA levels to

those of ‘‘house keeping genes’’, such as GAPDH or 18S ribo-

somal RNA (rRNA). However, in rat tissues, these house

keeping genes were expressed at different levels among tissues.

For example, in forebrain, GAPDH mRNA levels were 3.3-

fold of those in the liver, but were nearly undetectable in the

lung and abdominal skeletal muscle (Supplementary Figure

1). For 18S rRNA, in the kidney, spleen and heart, the mRNA

levels were only about 20% of those in the liver (data not

shown). We therefore, determined the quality and quantity

of total RNA (represented by 28S rRNA in Fig. 1C) from each

tissue by electrophoretic analysis, and found that total RNA

from all tissues studied was of good quality and similar quan-

tity.
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Fig. 1. Relative expression of ALAS1 (A) and HO-1 (B) mRNA in selected rat tissues. Seven tissues were collected from each of three control rats.
Total RNA was isolated from each tissue by TRIzol. ALAS1 (A) and HO-1 (B) mRNA levels were determined by qRT-PCR. To confirm the quality
and quantity of total RNA, 1 lg RNA from each tissue was loaded on 1% ethidium bromide agarose gel. The top band corresponding to the 28S
ribosomal RNA is shown (C). Data in (A) and (B) represent means ± S.D., n = 3, normalized to the level of 28S ribosomal RNA of the respective
tissue in (C). Liver ALAS1 (A) and HO-1 (B) mRNA levels are set to 1, and mRNA levels from other tissues are normalized to those in the liver.
Brain represents the forebrain; muscle represents the abdominal skeletal muscle.

J. Zheng et al. / FEBS Letters 582 (2008) 1829–1834 1831
Both ALAS1 and HO-1 are key enzymes of heme metabo-

lism. Expression of these genes at mRNA levels, however, is

distinct among tissues. Interestingly, in the forebrain, ALAS1

and HO-1 mRNA expressions were about 40% and 60%,

respectively, of those found in the liver (Fig. 1A and B), sug-

gesting they are important for adult brain. Several recent lines

of evidence suggest that heme deficiency might lead to neuro-

nal dysfunction and aging [24,25]; it will be important to inves-

tigate further how ALAS1 and HO-1 are expressed and

regulated in the brains of animals as they age.

3.2. Determination of ALAS1 and HO-1 protein levels in

selected rat tissues

As shown in Fig. 2A, ALAS1 protein levels were greater in

the liver, lung, spleen and heart than those in the forebrain,

kidney and abdominal skeletal muscle. The relative protein

levels are quantitated and shown as a bar graph in Fig. 2D.

The same blot was reprobed with anti-HO-1 antibody, and is

shown in Fig. 2B. HO-1 was the highest in the spleen, slightly

detectable in the abdominal skeletal muscle, and almost unde-
tectable in other tissues. Since GAPDH protein levels differed

among the seven tissues tested (Supplementary Figure 2), to

confirm the equal loading, the same membrane was stained

with Ponceau (Fig. 2C). We found that although there was

no single band that consistently appeared among all these tis-

sues, it is reasonable to consider that the loadings are equal

among different lanes (tissues), based on the total intensities

of the bands on each lane.

Although ALAS1 mRNA levels in the forebrain, kidney and

heart were about 40% of those in the liver (Fig. 1A), ALAS1

protein levels were less than 40% in the forebrain and kidney,

but about 40% higher in the heart than those in the liver (Fig.

2D). On the other hand, ALAS1 mRNA levels were less than

20% in the spleen and lung, however, ALAS1 protein levels

were similar or higher (two-fold) in spleen and lung than those

in the liver. To further compare the expression level of protein

versus mRNA in each tissue, the ratio(s) of ALAS1 protein/

mRNA was calculated as shown in Fig. 2E. The ratio of

ALAS1 protein/mRNA was 15 in the lung and spleen, and

was about 40 in the heart, whereas, it was similar in the
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Fig. 2. Western blot analysis of ALAS1 and HO-1 protein levels in selected rat tissues. Seven tissues were collected from each of three control rats,
homogenized, and 35 lg of proteins were separated on 7.5% SDS–PAGE, transferred to a polyvinylidene fluoride membrane, and probed with anti-
ALAS1 antibody (1:5000 dilution) (A) and anti-HO-1 antibody (1:2000 dilution) (B). Equal loading of total protein from each tissue was confirmed
by Ponceau S staining of the polyvinylidene fluoride membrane after gel transfer and before Western blot (C). Representative results from one of the
three rats are shown in (A)–(C). ALAS1 protein levels were quantitated from each of the three rats and the average level is shown as a bar graph in
(D). The ratio of ALAS1 protein and RNA levels calculated based on this figure (D) and Fig. 1A is shown as a bar graph in (E). Brain represents the
forebrain; muscle represents the abdominal skeletal muscle.
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forebrain, kidney and abdominal skeletal muscle compared to

that in the liver. These results suggest a single ALAS1 mRNA

molecule is subject to differential regulatory mechanism in

translation into its protein in distinct tissues. Due to the low

expression of HO-1 protein in many tissues, we did not per-

form similar calculations for HO-1. However, it is reasonable

to speculate that although there is tissue-specific expression

at both mRNA and protein levels, the ratio(s) of HO-1 pro-

tein/mRNA was similar among different tissues tested.
3.3. Effects of chronic ethanol administration on ALAS1 and

HO-1 mRNA levels

As shown in Fig. 3A, hepatic ALAS1 mRNA levels were sig-

nificantly increased (+65%) after ethanol administration for 10

weeks, compared with the pair-fed control (P < 0.05). On the

other hand, no significant changes were observed in HO-1

mRNA levels between ethanol treated and pair-fed control

(Fig. 3B). We also measured GAPDH mRNA levels in ethanol

administrated livers and pair-fed controls. As shown in Fig.
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Fig. 3. Effects of chronic administration of ethanol on rat liver ALAS1 and HO-1 mRNA levels. Rats were administrated ethanol or isocalorically
substituted maltodextrins for 10 weeks. Total RNA was isolated from livers of each of three rats. ALAS1 (A) and HO-1 (B) mRNA levels were
determined by qRT-PCR, and normalized to an invariant GAPDH control (C). Data represent means ± S.D. for each group of three rats with
triplicates of each rat. *Differs from control, P < 0.05.
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PAGE and Western blotting analysis, as described in Fig. 2. The
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3C, there were no changes in Ct values (expression level of a

gene) of qRT-PCR, suggesting ethanol had no effects on the li-

ver GAPDH mRNA levels. Therefore, in Fig. 3A and B,

ALAS1 and HO-1 mRNA levels were normalized to GAPDH

mRNA levels. These results suggest that ethanol specifically in-

duces ALAS1 mRNA levels, although it is not clear whether

this induction is through an enhanced transcription and/or

an increase in mRNA stability. Further studies will be needed

to address this issue.

3.4. Effects of chronic ethanol administration on ALAS1 protein

levels

To further determine the effects of chronic ethanol adminis-

tration on ALAS1 gene expression, ALAS1 protein levels were

determined by Western blotting analysis. As shown in Fig. 4A,

the anti-ALAS1 antibody detected two bands, which may cor-

respond to the precursor form (higher MW, 71 kDa), and the

mature form (lower MW, 65 kDa). Ethanol treatment in-

creased the levels of both forms, especially the 65 kDa form.

Since ethanol had no effect on liver GAPDH protein levels

(Fig. 4A, bottom panel), ALAS1 protein levels were quanti-

tated and normalized to GAPDH control (Fig. 4B). In Fig.

4B, without ethanol treatment, the lower molecular weight

(MW) form was 44% of the higher form. After ethanol treat-

ment, both forms increased significantly: the higher MW form

increased by 1.8-fold (P < 0.05), while the lower form in-

creased by 2.3-fold (P < 0.05). These results suggest that

chronic ethanol administration induces both the precursor

and mature forms of ALAS1 and has a relatively greater effect

on the formation of mature form. Using these same sets of ani-

mals in another independent experiment, we found that cyto-
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chrome P450 2E1, an inducible marker for ethanol treatment

was significantly increased [21]. Our findings agree well with

the previously published results in which chronic ethanol

administration increased hepatic ALAS1 enzyme activities by

two- to three-fold compared with those pair-fed controls [14–

16]. Considering that the intra-mitochondrial mature ALAS1

is the functional form, and 2.3-fold increase in the levels of

the mature protein after ethanol treatment provides a rationale

for the ethanol induced increase (two- to three-fold) in ALAS1

enzyme activities observed by other investigators [14–16]. In

this same experiment, HO-1 protein levels were nearly unde-

tectable (data not shown), suggesting ethanol had no effect

on HO-1 protein levels.

Abundant evidence from animal and cell culture models

indicates that ethanol induces hepatic ALAS1 enzyme activi-

ties. Results from this study suggest that ethanol induces

ALAS1 gene expression at the level of transcription, transla-

tion, and also exerts post-translational regulation (precursor

processing) in the livers of rats. Our finding that chronic etha-

nol treatment induces ALAS1 but not HO-1 gene expression

provides further understanding of ethanol as a trigger of acute

porphyric attacks.
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Appendix A. Supplementary data

Supplementary data associated with this article can be

found, in the online version, at doi:10.1016/j.febs-

let.2008.04.047.
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